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Single‑shot off‑axis digital 
holographic system with extended 
field‑of‑view by using multiplexing 
method
Manoj Kumar1,3, Lavlesh Pensia1,2,3 & Raj Kumar1,2*

We propose a new configuration of single‑shot off‑axis digital holographic system to realize double 
the camera field‑of‑view (FOV) of the existing off‑axis Mech‑Zehnder type holographic setup. The 
double FOV is obtained by double spatial frequency multiplexing of two different areas of an object 
beam by inserting a Fresnel bi‑prism in it, which divides the object beam into two, both carrying 
different object information. The image sensor is placed at the plane where these two different FOVs 
overlap so as to record simultaneously two parts of the wavefront of the object in a single‑shot. The 
multiplexed hologram is carrying two interferometric images corresponding to two different FOVs of 
the object which are modulated with two different spatial carrier frequencies. The feasibility of the 
proposed digital holographic system is experimentally demonstrated by imaging two different areas 
of a resolution test target. The limitation of the proposed system and a method to overcome it, are 
also discussed. The proposed system is useful in a wide range of applications including microscopy and 
optical metrology.

Digital holography (DH) is one of the most versatile multidimensional imaging techniques that use electronic 
devices to record and numerically retrieve the complex-amplitude distribution of an object  wavefront1. DH 
has significant applications in various fields including static and dynamic deformation and displacement 
 measurement2–4, biomedical imaging and  microscopy5–8,  encryption9, object  recognition10,  display11, and infor-
mation  storage12, because it allows fast, non-destructive, and full-field measurement of the specimen. Over time, 
DH has significantly evolved because of substantial developments in digital recording and numerical image 
processing technologies. However, DH has still several limitations such as limited field-of-view (FOV), which 
hinders its application in developing commercial systems based on this technology and there is an urgent need 
to develop efficient methods for FOV extension in DH. The FOV and resolution are the vital parameters of any 
imaging system as their ratio determines the space-bandwidth product (SBP = FOV/Resolution) of the system. 
The SBP is a measure for the information capacity an optical system possesses and it should be higher in order 
to acquire more object information and makes the measurement richer. In comparison to optical holography, 
DH systems have restricted SBP and resolution of reconstructed images because of the limited pixel pitch/size 
and pixel number, and low cutoff frequency of the image sensor (CCD/CMOS), which is much smaller than the 
observable FOV by a lens. There is a trade-off between resolution and FOV, so it is difficult to obtain a digital 
holographic image with high resolution and a wide FOV at the same time.

Several effective approaches have been proposed to overcome this limitation since its invention. The simplest 
method to extend the FOV is to increase the pixel number of the recorded digital hologram, however, commer-
cially available image sensors currently have limited pixel numbers. Another method is the synthetic aperture 
 technique13, in which a hologram is composed of bigger size from several recorded holograms under different 
 conditions14–18. In this method, several holograms need to be recorded, therefore, requiring high stability and 
complicated calibration of the system. The FOV can be increased by recording multiple holograms of different 
areas of the object by mechanically translating the object and/or image sensor. However, such an approach has 
various limitations such as the entire process being time-consuming, the imaging speed is very low, and it is inap-
propriate for monitoring dynamic events. In recent years, the multiplexing approaches with different geometries 
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and the use of special optical  components19–23, to record different areas of the object in a single-shot, have been 
developed and proved to be more efficient ways to extend the FOV of the imaging system.

In this work, we present a new method of optically multiplexing two FOVs into a single off-axis interferogram, 
by using a special optical component: the Fresnel bi-prism, in the object beam, to double the FOV in DH. Several 
researchers have employed either special optical components (including the grating, Fresnel bi-prism, Wollaston 
prism, Rochon prism, beamsplitter, beam displacer, etc.) or optical configurations in DH to generate the object 
and reference beams needed for making the interference pattern between these  beams24–33. In Ref.24, a lens-less 
cyclic lateral shearing DH for quantitative phase contrast imaging is proposed. The optical configuration is a 
self-reference type in which the object and reference beams are generated from the same spherical wavefront 
after the light beam has passed through the sample plane. The optical configuration is implemented with a beam 
splitter and mirrors. Due to the overlapping of the two wavefronts, the interference is formed in a small region 
(a region smaller compared to the CCD/CMOS sensor area), therefore, effective FOV is smaller than the sensor 
FOV. Sun et al.25 demonstrated interferometric microscopy that uses the combination of a cube beamsplitter and 
a Fresnel bimirror. The tilted beamsplitter divides the incident beam into two replicas (with π phase shift) and the 
Fresnel bimirror is then employed to interfere these two replicas with each other at the image plane of the image 
sensor. Therefore, two interference channels are acquired with a relative π (rad) phase shift in one interferogram, 
resulting in a lower FOV. A common-path phase imaging system is  reported26 that uses a grating to divide the 
object beam into 0 and ± 1 orders. The 0th order is spatially filtered to erase all object information to make a 
clean reference beam which is allowed to interfere with the + 1 order (the object beam) to form the interference 
pattern. The FOV is equivalent to the sensor FOV in this configuration. In Ref.27, the authors have demonstrated 
the use of a beam displacer in a combination of polarizers in the path of the input beam to introduce a small 
displacement in two orthogonal polarized beams with a small displacement. These beams interfere after passing 
through another polarizer and form interference at the lateral shearing region behind the beam displacer. On 
the contrary, the optical configurations proposed by Lee and  Park28 and Kim et al.29 use Wollaston and Rochon 
prisms respectively, to generate two orthogonal polarization beams and the interference occurs after passing 
through the polarizer placed before the image sensor. A pair of GRIN lenses, in the path of the collimated object 
beam, is used which yields a pair of high numerical aperture focal spots in their common output plane and the 
interference between these output beams fills the camera  array30. Fresnel bi-prism has found its applications in 
several optical systems, e.g. for making common-path optical  configurations31,32. In these  systems31,32, the Fresnel 
bi-prism is employed to divide the incident object beam into two beams where one serves as the object beam and 
another reference beam, and finally, these two beams are allowed to interfere to form the digital hologram. The 
Fresnel bi-prism is also used in the digital holographic system to enable high temporal sensitivity, stability, high 
speed, high accuracy, and high spatial  resolution33. The research work demonstrated in Refs.23–33 is the case of 
limited FOV where the interference region is smaller in comparison to the sensor FOV. Contrarily, the optical 
configuration, we proposed in this work utilizing the Fresnel bi-prism to extend the FOV, is different from the 
optical configurations presented in these works.

The Fresnel bi-prism creates two FOVs when placed in the collimated object beam. The image sensor is placed 
at a plane where two different FOVs overlap, as shown in Fig. 1b. Therefore, two FOVs can simultaneously be 
recorded in single-shot. A plane reference beam, acting as a common reference beam for both the FOVs, is 
added to form a multiplexed digital hologram. Figure 1a depicts that the image sensor captures only a part of 
the object wave, termed sensor FOV, due to the limited active region of the sensor. On the other hand, Fig. 1b 
shows the proposed geometry, employing the Fresnel bi-prism, by which the same active region of the sensor 
can simultaneously capture two FOVs with different object information, in a single acquisition. Therefore, the 
present setup enables recording more interferometric information into a single multiplexed hologram in com-
parison to an optical holographic system.

Theory
The digital holograms are generated by coherent mixing of the object beam Eo(x, y) and reference beam Er(x, y) , 
and recorded by an image sensor (e.g., charged-coupled device (CCD) and complementary metal oxide semi-
conductor (CMOS)). The object beam and reference beam can be represented  as34

where Ao(x, y) and ϕo(x, y) represent amplitude and phase distributions, respectively, of the object beam, and 
Ar(x, y) and ϕr(x, y) represent amplitude and phase distribution of the reference beam, respectively, and j = √−1. 
The intensity distribution of interference patterns Eh(x, y) obtained at the hologram plane after coherent mixing 
of the object beam and reference beam, can be represented as,
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conjugate respectively. This intensity distribution, digitized by the image sensor and recorded as a digital holo-
gram, is stored in a computer.

In digital holography, the recorded digital holograms can be reconstructed using various numerical recon-
struction methods such as the angular spectrum method (ASM)1, Fresnel diffraction method (FDM)35, con-
volution  method36, and so on. We used FDM in both systems (with and without Fresnel bi-prism) because it 
satisfies the distance criterion for propagation. ASM and convolution-based methods are exact methods that are 
constrained to shorter propagation distances and induce aliasing in reconstruction for large objects that require 
longer propagation distances. Zero padding can be used in both ASM and convolution methods to reconstruct 
large objects over longer distances, but it significantly increases the execution time in numerical reconstruction 
processing. As a result, FDM is considered the most appropriate for this work. The complex amplitude of the 
object recorded in digital holograms can be reconstructed using the Fresnel diffraction method, represented as

where OO(ξ, η) and Eh(x, y) are complex amplitude distributions at the object plane and hologram plane, respec-
tively. FT represents Fourier transform, k = 2π/λ, λ is the source wavelength, z is the propagation distance, and 
j = √−1. For reconstruction, two conjugate orders, mentioned in Eq. (6), are filtered out in the Fourier domain 
and then propagated using the FDM. This filtering removes the constant DC terms and other conjugate orders.

Experimental procedure and results
Figure 2a shows the schematic of the experimental setup of the proposed DH system. A laser beam of wavelength 
532 nm is expanded by the spatial filter (with 40X microscopic objective and 5 μm pinhole) and collimated by 
using a lens (L, f = 200 mm). The collimated laser beam, of diameter ~ 25 mm, is divided into the object and 
reference beams by using a beam splitter  (BS1). The object beam is allowed to pass through the USAF resolution 
chart (RC). The key element of the proposed setup is Fresnel bi-prism (apex angle ~ 176˚, refractive index ~ 1.51, 
material—BK-7), which is placed after the RC, at a distance of 145 mm, and it divides the object beam into two 
FOVs. The image sensor (Matrix Vision, CMOS sensor, the resolution is 2592 × 1944 and 2.2 μm pixel size) is 
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Figure 1.  Two cases of FOV: (a) Limited FOV: without the use of Fresnel bi-prism records only the sensor FOV, 
and (b) Double FOV: with the use of Fresnel bi-prism to record two FOVs simultaneously.
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placed at the plane of superposition of the two FOVs generated by the Fresnel bi-prism. Figure 2b shows the 
enlarged view of two FOV generations by the Fresnel bi-prism and the position of the image sensor. The plane 
reference beam is allowed to interfere, with the help of  BS2, in off-axis geometry with two FOVs of the object 
beam, at the active region of the image sensor to form a multiplexed digital hologram. The off-axis configuration 
is created by providing a small tilt to  BS2. Figure 3a shows the recorded multiplexed digital hologram in which it is 
clearly seen that the multiple object information corresponding to different areas is superimposed onto the same 
photosensitive area of the image sensor. The whole object wave is composed of two captured partial object waves.

Since the reference beam is common for both the two FOVs of the object, each pair of beams encodes a dif-
ferent wavefront, and the image sensor records three separable off-axis interferences when seen in the spatial 
frequency domain of the multiplexed hologram: two between the reference beam and each of the FOVs and one 

Figure 2.  (a) Schematic of the experimental setup and (b) enlarged view of two FOV generations by FB 
(excluding the reference beam and  BS2).

Figure 3.  Experimental results of the proposed DH systems: (a) recorded multiplexed digital hologram, 
(b) Fourier spectrum of (a); (c) and (d) the amplitude reconstructed images corresponding to two FOVs 
(Eo1E

∗
r andEo2E

∗
r ) ; (e) and (f) are the improved reconstructed images corresponding to two FOVs when a 

diffraction grating is used just after the object.
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between the two FOVs, as depicted in Fig. 3b. The intensity distribution of the interference pattern formed by 
the two object beams and one reference beam at the image sensor plane can be represented as

where, Eo1 and Eo2 are the amplitudes of the object beams corresponding to the two FOVs, Er is the electric field 
amplitude of the reference beam, and * represents complex conjugate. In the spatial-frequency domain (see 
Fig. 3b), the first three terms on the right side of Eq. (2) represent auto-correlation (AC) elements; the other six 
terms represent the cross-correlation (CC) between the waves.

The numerical reconstruction based on the Fresnel diffraction  method36 is carried out twice corresponding 
to the two FOVs by spatial filtering of Eo1E∗r andEo2E∗r  . Figure 3c,d show the amplitude reconstructed images 
corresponding to two FOVs (Eo1E∗r andEo2E∗r ) , hence, equivalent to double the recording area, if compared with 
the case when no Fresnel bi-prism is used in the object beam (see Fig. 4). The experimental results of the Mech-
Zehnder type DH system, i.e. without the use of Fresnel bi-prism, are presented in Fig. 4. Figure 4a shows the 
recorded hologram, the sensor FOV equivalent to the elements 4 and 5 of group 0 of the USAF test target. On 
the other hand, the proposed DH system has the ability to record and retrieve the optical FOV equivalent to 
elements 3, 4, 5, and 6 of the group 0. Therefore, the system shows imaging capability to obtain a double FOV.

However, at the same time, it is observed (as in Fig. 3c,d) that the system loses image resolution, therefore, 
making it a weaker candidate for practical applications. This is due to the fact that the complex-conjugate terms 
( Eo1E∗r andEo2E∗r  ) corresponding to the two FOVs are closely packed and held fixed in the spatial frequency 
domain of the multiplexed digital hologram. The spatial frequency distributions of the complex-conjugate terms 
( Eo1E∗r andEo2E∗r  ) are slightly superimposed due to the fixed small refraction angle of the Fresnel bi-prism and 
therefore, the reconstructed images are degraded. The Fresnel bi-prism employed in this proposed experimental 
setup does not provide any control on varying the position of these CC terms in the spatial frequency domain 
for the two FOVs, by changing the orientation of the interference fringes with the same reference beam. So, to 
improve the resolution in the present setup, we employed a one-dimensional diffraction grating (500 lines per 
mm) on the object, redirecting the higher spatial-frequencies of the spectrum of the object toward the image 
 sensor36,37. The grating is placed in near contact with the object, in order to avoid the cross-talk among different 
orders. To demonstrate proof of concept, we conducted an experiment with and without the diffraction grating. 
The experimentally obtained results are depicted in Fig. 5. Figure 5a shows the reconstructed image obtained 
without the use of grating and 5(b) shows the intensity profile across the red line of case 5(a) in the red square 
(group 1 element 4). On the other hand, an image with the improved resolution is retrieved when the grating is 
placed on the object, as depicted in Fig. 5c. Figure 5d shows the intensity profile across the red line. Comparing 
the profile in Fig. 5d with Fig. 5b, the resolution is effectively improved. The experimental results, by employing 
the diffraction grating in the proposed DH system for FOV extension, are presented in Fig. 3e,f. The reconstruc-
tion results of Fig. 3e,f, in contrast to Fig. 3c,d, give clear evidence of optical resolution improvement in the 
proposed FOV extension DH system based on Fresnel bi-prism.
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Figure 4.  Experimental results of the Mech-Zehnder type DH system: (a) recorded digital hologram, (b) 
Fourier spectrum of (a); (c) the reconstructed image, and (d) the reconstructed image when the grating is used 
just after the object.
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Holographic methods have been demonstrated to be versatile tools for the solution of many non-destructive 
measurement problems. Due to the potential capability of the proposed DH system to retrieve phase infor-
mation of a large area (as double of its counterparts), it can be used as a non-destructive, optical measure-
ment and inspection tool in a wide range of applications. We experimentally demonstrate some of its opti-
cal metrological applications by extracting the phase information of the objects such as an optical glass plate 
(23 mm × 22 mm × 1.5 mm) and candle flame. In this experiment, two holograms: one in the presence of the 
object (glass plate or candle flame) and another without the object, are recorded by the proposed DH system. 
These objects are placed at the position of the resolution chart in Fig. 2a. Figure 6a–b show the recorded holo-
grams with and without the glass plate, respectively. The Fourier spectrums of these two holograms are depicted 
in Fig. 6c–d, where ± 1 orders corresponding to two FOVs are clearly seen. The phase distribution of the object 
wavefronts for the two holograms and for both the FOVs, are numerically reconstructed separately from these 
recorded digital holograms by the Fresnel diffraction  method1,35. The interference phase, i.e., the phase difference 
between two states of the object (with and without object), is calculated directly by modulo 2π  subtraction38,39. 
Figure 6e–f show the wrapped phase difference maps corresponding to the two FOVs. The numerically calcu-
lated interference phase remains wrapped in the range (− π, + π) radian and may range over an interval greater 
than 2π. This 2π phase discontinuity was corrected by the PUMA phase unwrapping  method40 to obtain a 
continuous unwrapped phase. The unwrapped phase distributions are aberration correlated. The aberration 
correlation can be accomplished either by numerical methods or physical methods. The numerical methods 
are implemented by quantifying and removing aberrations during the digital reconstruction process, whereas 

Figure 5.  Amplitude reconstructed images of the Mech-Zehnder type DH system (a) without and (c) with 
grating; (b) and (d) corresponding normalized intensity profiles calculated along the red line shown in (a) and 
(c).
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the physical methods include, for example, subtraction of the phase of a reference hologram without the object 
from the phase of the object hologram. Here, we used the physical method, i.e. the object phase is subtracted 
from the reference hologram phase to obtain aberration-free phase distribution. Figure 6g,h show the obtained 
unwrapped phase distributions corresponding to the wrapped phase maps of Fig. 6e,f, respectively. The obtained 
continuous unwrapped phase distributions can further be used for measuring various physical parameters of the 
object under study including the deformation, displacement, strain/stress, vibration, refractive index, density, 
temperature, etc.41–45. Similarly, the recorded digital holograms, their Fourier spectrums, and phase distribution 
information, corresponding to two FOVs of a candle flame, are depicted in Fig. 7. The obtained phase distribu-
tion results corroborate the feasibility of the proposed DH system and indicate its potential applications for the 
non-destructive testing, shape and dynamic deformation measurements, and experimental stress analysis with 
the additional advantage of double the camera FOV.

Conclusion
In summary, we proposed and experimentally demonstrated a new configuration of a single-shot multiplexed 
DH system based on Fresnel bi-prism. We have shown that it extends the FOV by recording two different areas 
of the object beam, contrary to a fraction of it, i.e. sensor FOV, as in the case of the optical DH system. How-
ever, due to overlapping of the spatial frequency distributions of the complex-conjugate terms in the frequency 
domain, the resolution of the reconstructed images is severely degraded. The resolution is kept at almost the same 
level as that of an optical DH system by employing a diffraction grating in near contact with the object which 
allows recording the high spatial frequencies and optimization of the information capacity. The feasibility of 

Figure 6.  (a) Recorded digital hologram with the glass plate, (b) recorded digital hologram without the glass 
plate, (c–d) Fourier transform spectrums of (a) and (b), (e–f) wrapped phase difference maps corresponding to 
FOV1 and FOV2, respectively, and (g–h) unwrapped phase distributions corresponding to (e–f), respectively.
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the proposed system is experimentally demonstrated by imaging and numerical reconstruction of two different 
areas of the USAF resolution test target, and analysis of the scientific and industrial measurement applications 
by calculating the phase distribution of a glass plate and a candle flame. The proposed system has prospective 
applications in multiplexing microscopy, quantitative phase imaging, high-speed imaging, 3D imaging applica-
tions, and optical metrology.

Data availability
Data underlying the results presented in this paper are not publicly available at this time but may be obtained 
from the authors upon reasonable request.
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