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Abstract. The most malignant type of brain tumour is glio-
blastoma multiforme (GBM). Patients with GBM often have 
a poor prognosis, as a result of incomplete or inaccurate diag-
noses. Regulatory pathways have been demonstrated to serve 
important roles in complex human diseases. Therefore, deci-
phering these risk pathways may shed light on the molecular 
mechanisms underlying GBM progression. In the present study, 
differentially expressed genes and microRNAs (miRNAs) in 
a publicly available database were identified between normal 
and tumour samples. To determine the pathophysiology and 
molecular mechanisms underlying GBM, integrated network 
analysis was performed to mine GBM-specific risk path-
ways. Specifically, a GBM‑specific regulatory network was 
constructed that integrated manually curated GBM-associated 
transcription and post-transcriptional data resources, including 
transcription factors and miRNAs. A total of 1,827 differen-
tially expressed genes and 30 miRNAs were identified. The 
differentially expressed genes were significantly enriched in 
a number of immune response-associated functions. Based on 
the GBM‑specific regulatory network, 15 risk regulatory path-
ways containing not only known regulators, but also potential 
novel targets that might be involved in tumourigenesis were 
identified. Network analysis provides a strategy for leveraging 
genomic data to identify potential oncogenic pathways and 
molecular targets for GBM.

Introduction

As a biologically aggressive subtype of malignant glioma, 
glioblastoma multiforme (GBM) is the most common and 
lethal brain tumour in adults (1). GBM diffusely infiltrates the 
brain at an early time point, and its complexity and distinct 

pathophysiology are facilitated and dictated by the unique 
brain milieu and cellular interactions (2,3). In total, >80% of 
GBM cases are primary tumours, which typically respond 
poorly to current therapeutic approaches (4). Although previous 
studies detected a number of events associated with initiation 
or progression (5,6), identification of the key molecular targets 
underlying the regulatory mechanisms of GBM remains to be 
elucidated.

At present, the wealth of molecular information gener-
ated by massively parallel sequencing technologies provides 
a great opportunity for discovering novel biomarkers in 
different types of cancer (7,8). Transcriptome analysis 
involving protein-coding genes and noncoding microRNAs 
(miRNAs/miRs) has proven to be a valuable first step for 
studying the genetic characteristics of various complex human 
diseases, especially in malignant gliomas (9,10). For example, 
Lai et al (11) found that miRNA-210 could serve as a poten-
tially non-invasive biomarker for the diagnosis and prognosis 
of GBM. An increased expression level of the protein-coding 
gene PLAUR was determined to be a valuable predictor of the 
mesenchymal GBM subtype (12). However, it is unlikely that 
a single dysfunctional gene would lead to abnormal pheno-
types. Multiple aberrant gene-gene interactions may have 
co-operative effects in the development and progression of 
complex diseases such as cancer (13,14).

Understanding the molecular events associated with activa-
tion of the risk pathways in patients with GBM may facilitate 
the development and clinical testing of potential therapeutic 
targets.

In the present study, differentially expressed genes and 
miRNAs were identified by analysing a large protein‑coding 
gene and miRNA expression dataset comprised of normal and 
tumour tissues from GBM samples obtained from The Cancer 
Genome Atlas (TCGA). A GBM‑specific regulatory network 
involving transcription factors (TFs) and miRNAs was built. 
The GBM‑specific regulatory network showed a scale‑free 
network with a small-world property. The key molecules in 
the regulatory network were significantly associated with 
immune-related functions. Linear risk pathways of GBM 
were identified through systems‑level analyses of the regula-
tory network. The identified molecular risk pathways may be 
a potential resource for understanding the pathogenesis and 
aetiology underlying GBM.
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Materials and methods

Acquiring known GBM‑related genes. The GeneCards data-
base provides a comprehensive map of manually curated 
human disease genes (15). In total, 32 GBM‑associated 
genes were obtained by searching the GeneCards database 
according to all descriptions and aliases of GBM, including 
ʻGBM ,̓ ʻglioblastoma multiforme ,̓ ʻmalignant brain tumour ,̓ 
ʻgliomatosisʼ and ʻhigh‑grade glioma .̓ In addition, 41 
experimentally validated GBM-related miRNAs from the 
miR2Disease database were retrieved (16), a manually curated 
database of miRNA deregulation in various human diseases.

Identification of differentially expressed genes and miRNAs. 
The mRNA and miRNA expression profiles for 378 patients 
with GBM were downloaded from TCGA database 
(https://portal.gdc.cancer.gov/). The dataset contained 378 
tumour samples and 10 patient-matched normal samples. 
The genes were mapped to the Entrez Gene IDs for mRNA 
expression data using biomaRt software version 2.40.0 (17). 
In total, 11,273 genes and 470 miRNAs were included in the 
subsequent analysis. A Student's t-test was used to identify 
significantly differentially expressed genes and miRNAs from 
the GBM expression profiles. All P‑values were adjusted using 
Bonferroni correction to account for multiple comparisons. 
Only genes and miRNAs with an adjusted P‑value <0.01 and a 
fold change >1.2 were considered statistically significant.

Extraction of the GBM‑specific regulatory network. A TF and 
miRNA regulatory network was constructed by integrating the 
molecular interaction associations between genes and miRNAs 
from four databases [miRTarBase (18); The Transcription 
Factor Database (19); miRecords (20); and TarBase (21)]. To 
ensure the reliability of the relationships between the curated 
regulations, each individual interaction presented is supported 
by the literature.

Although differential expression analysis is often used to 
screen disease candidate genes, previous studies have shown 
that a number of disease-associated genes do not always 
exhibit differential expression patterns in microarray experi-
ments (14,22). Therefore, a candidate risk regulatory network 
was constructed by connecting all of the risk-associated differ-
entially expressed nodes with their immediate neighbouring 
non-differentially expressed nodes.

Mining for GBM‑specific risk regulatory linear pathways. 
Linear risk pathways potentially associated with GBM were 
obtained according to the following criteria: i) The begin-
ning of a risk pathway was defined as a gene or miRNA with 
a 0-indegree (it could not be regulated by other genes or 
miRNAs); and ii) the end of a risk pathway was defined as 
a gene or miRNA with a 0-outdegree (it could not regulate 
other genes or miRNAs). In the GBM‑specific regulatory 
network, all linear regulatory pathways were defined as 
pathways from the beginning node to the end node and were 
detected using R (23).

Funct ional enrichment analysis.  The R package 
ʻclusterProfilerʼ (24) was used to examine the significantly 
enriched gene ontology (GO) biological functions (25) of the 

differentially expressed genes. The adjusted P‑values were 
calculated using the Benjamini and Hochberg method.

Results

Differential expression analysis of mRNAs and miRNAs. To 
detect potential key molecules underlying the pathology of 
GBM, the mRNA and miRNA gene profiles of patients with 
GBM from TCGA database were downloaded and differen-
tial expression analysis was performed. In total, 1,827 and 
30 significantly differentially expressed genes and miRNAs 
were detected, respectively. The number of upregulated genes, 
(1,085) was greater than the number of downregulated genes 
(742). Conversely, the number of upregulated miRNAs (11) 
was smaller than the number of downregulated miRNAs, 
19 (Fig. 1). These results suggested that a number of candidate 
molecules may contribute to the carcinogenesis of GBM, and 
that miRNAs may serve a negative regulatory role.

Systematic characterization of a regulatory network specific 
to GBM. To examine the systems-level characteristics of the 
'true' biological processes, including interactions and other 
combined activities associated with GBM, a comprehensive 
regulatory network among TFs, miRNAs and genes was built 
by combining four manually curated databases that focused on 
both transcriptional and post-transcriptional regulation. The 
background regulatory network was composed of 6,036 regula-
tory relationships. Of the background regulatory relationships, 
1,827 differentially expressed genes and 30 differentially 
expressed miRNAs were considered as the risk seeds and 
mapped into the regulatory network to obtain a GBM‑specific 
sub-network (Fig. 2). Given that networks provide knowl-
edge that can be used to infer the information flow between 
regulators and target genes, a GBM-specific sub-network 
consisting of differentially expressed genes/miRNAs and their 
immediate neighbouring nodes from the TF-miRNA-gene 
regulatory network was further extracted. The GBM‑specific 
regulatory network contained 160 interactions involving 23 
TFs, 17 miRNAs and 105 target genes.

The network showed dense local interconnectivity and 
complied with a power-law distribution suggesting that the 
GBM-specific sub-network was scale-free, similar to most 
biological networks (26) (Fig. 3). The biological functions of the 
GBM‑specific network were investigated. Functional enrichment 
analysis was performed, and the top 30 significantly enriched 
Gene Ontology functions are presented in Fig. 3. Notably, the 
results demonstrated a number of immune response-associated 
functions, including ʻneutrophil‑mediated immunity ,̓ ʻneutrophil 
activation involved in immune responseʼ and ʻleukocyte 
differentiation .̓ Numerous studies have reported profound and 
generalised immunosuppression of GBM tumours, particularly 
within the context of cell-mediated immunity (27,28). In addition, 
a number of other types of functions were found, such as ʻaxon 
development ,̓ ʻhaemostasisʼ and ʻresponse to peptide ,̓ which 
might be unique or important to the brain. Together, these results 
support the possibility that the GBM‑specific sub‑network may 
be a potential resource for GBM-related research.

GBM‑specific risk pathways. A biological interaction network 
contains a large amount of information, and its complex 
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structure may hinder the deduction of new insights for interested 
risk pathways. The risk pathways obtained from the regulatory 
network can shed light on the molecular mechanisms of GBM. 

Detecting disease-associated pathways in a clear and simple 
manner is an important goal. In the present study, 615 linear 
risk pathways from the GBM-specific regulatory network 

Figure 1. Volcano plot of the differentially expressed genes and miRNAs associated with glioblastoma multiforme. A total of 1,827 and 30 significantly 
differentially expressed genes and miRNAs, respectively were detected. Red dots represent genes and miRNAs with ≥1.2‑fold change increase and blue dots 
represent genes and miRNAs with ≤1.2‑fold decrease. miRNA, microRNA.

Figure 2. Glioblastoma multiforme‑specific regulatory network. Green square nodes represent transcription factors, orange pointed nodes represent microRNAs 
and blue round nodes represent target genes.
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were identified. Notably, a TF named EGFR was not only a 
known GBM disease gene, but also a differentially expressed 
gene (29). A total of 15‑risk pathways were connected by 
EGFR and its up-stream regulator hsa-miR-7 (Fig. 4), which 
is a miRNA that has been reported as a prospective risk factor 
for GBM (30,31).

Discussion

Glioblastoma is an astrocyte-derived tumour with a propen-
sity for malignancy and is caused by an abnormal disorder 
of multiple interacting genes rather than a single gene acting 
in isolation (32). Activation of molecular signalling cascades 
have been shown in GBM tumourigenesis (33). Identification 
of a cascade regulatory pathway, which usually has a clear and 
simple linear structure (34), may help reveal molecular mecha-
nisms of the disease. A network-based approach to analyse risk 
regulatory pathways in GBM was used in the present study. 
Noncoding RNAs are emerging as key regulators of diverse 
biological processes and are important in cancer pathogen-
esis (35,36). Therefore, noncoding RNAs involved in pathway 
regulation were also considered.

Through differential expression analysis, a total of 1,827 
genes and 30 miRNAs were identified in normal and tumour 
tissues from GBM samples. When these candidate risk factors 
were taken as seed nodes, a GBM‑specific regulatory network 
involving TFs, miRNAs and target genes was identified. 
Functional analysis showed that the GBM‑specific network 
was significantly associated with several important functions 
of the immune response, axon development, haemostasis and 
response to peptides. From these, 15 reliable risk pathways 
specific to GBM were identified, which may be a useful 

resource for increasing our fundamental understanding of the 
molecular role and regulation of GBM. These results showed 
that the 15 GBM‑associated risk pathways were connected by 
a TF named EGFR that was both a known GBM gene and a 
differentially expressed gene. Numerous studies have high-
lighted the vital role played by EGFR during the emergence 

Figure 3. Characterization of the GBM‑specific regulatory network. Top 30 significantly enriched biological processes in the GBM‑specific regulatory network. 
The colour bar on the right represents the adjusted P‑value and the circle size represents the number of genes.

Figure 4. Risk regulatory pathways connected by EGFR and hsa-miR-7. 
EGFR, epidermal growth factor; miR, microRNA.
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and development of GBM. Shao et al (37) showed that 
~80% of patients with GBM presented with EGFR genomic 
amplification or overexpression. Mischel et al (38) reported 
that EGFR-overexpressing GBMs promoted GBM cell prolif-
eration, survival and angiogenesis. Wheeler et al (39) showed 
that EGFR inhibitors may be a novel therapeutic strategy for 
treating patients with GBM. In the present study, EGFR indi-
rectly regulates 15 GBM‑related genes (Fig. 4) and forms a 
cascade regulatory pathway with hsa-miR-7 and hsa-miR-21, 
participating in the occurrence and development of GBM. 
Regarding the downstream target genes, FAS-induced expres-
sion of chemokines in human glioma cells (40) and TGFβ1 
gene expression are potential signatures for the mesenchymal 
high-grade glioma subtype (41). Therefore, the risk regula-
tory pathways miR-7, EGFR, miR-21 and FAS, and miR-7, 
EGFR, miR-21 and TGFB1 may cause disease by affecting 
the abnormal function of glioma cells.

In conclusion, accumulating evidence indicates that a single 
mutated or aberrantly expressed gene is not sufficient to result in 
an abnormal phenotype and that complex diseases are caused by 
the accumulative and co-operative effects of multiple dysregu-
lated genes and gene interactions (42,43). Risk regulatory 
pathways that consist of interacting genes with a linear chain 
structure can help reveal the molecular mechanisms of diseases. 
Through integration of transcriptional and post-transcriptional 
regulation, risk regulatory pathways in GBM that might serve as 
potential targets for clinical treatment were identified.
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