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Fibromyalgia syndrome (FMS) is characterized by widespread pain and increased
sensitivity to nociceptive stimulus or tenderness. While familial aggregation could
suggest a potential hereditary component in FMS development, isolation of genetic
determinants has proven difficult due to the multi-factorial nature and complexity of the
syndrome. Central sensitization is thought to be one of the key mechanisms leading
to FMS in a subset of patients. Enhanced central pain signaling can be measured
using the Nociceptive Flexion Reflex (NFR) or RIII threshold. We performed a genome-
wide association study (GWAS) using an array to genotype 258,756 human genetic
polymorphisms in 225 FMS patients and 77 healthy volunteers and searched for
genetic variants associated with a lowered NFR threshold. We have identified a potential
association between a single nucleotide polymorphism resulting in a common non-
synonymous coding mutation in the Huntingtin associated protein 1 (HAP1) gene
(rs4796604, MAF = 0.5) and the NFR threshold (p = 4.78E−06). The Hap1 protein
is involved in trafficking and is particularly enriched in neurons. Our results suggest
a possible involvement of the neuronal trafficking protein HAP1 in modulating pain
signaling pathways and thus participate in the establishment of the NFR threshold.

Keywords: central sensitization, nociceptive flection reflex (NFR) threshold, fibromyalgia, GWAS, HAP1

INTRODUCTION

According to the American College of Rheumatology (ACR), the fibromyalgia syndrome (FMS) is
defined as a chronic pain condition of musculoskeletal origin but uncertain cause (ACR, 2022). It is
a condition characterized by widespread pain and tenderness generally associated with fatigue, sleep
disturbance, mood disorders, and cognitive symptoms (ACR, 2022). The first generally accepted
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diagnostic criteria of fibromyalgia were published only in 1990
(Wolfe et al., 1990), despite the high prevalence of the disease
affecting 0.5–5% of the European (Branco et al., 2010) and 2–8%
of the United States (Clauw, 2014) population. A wide range of
serious co-morbidities, including depression, anxiety, and sleep
disorders are frequently associated with fibromyalgia, increasing
the utilization of health resources and costs (Arnold et al., 2006;
Skaer, 2014).

Although the pathophysiological mechanisms leading to FMS
are still poorly understood, both neuronal plasticity and central
sensitization are important processes involved in the onset of
FMS. Functional magnetic resonance imaging (fMRI) comparing
brain activity in FMS patients versus controls revealed an
increased neuronal activity in pain-processing brain-regions
as well as a diminution in the connections between those
regions and the anti-nociceptive regions of the brain (Sluka and
Clauw, 2016). Those observations suggest that sensitization of
the central nervous system (CNS) results from a physiologic
acquired imbalance between incoming pain stimulation and
pain inhibitory feedback loops originating from the CNS
(Latremoliere and Woolf, 2009). In line with this current
working model, the most potent FMS treatments available
today are directed at restoring the feedback inhibitory loop
with serotonin-norepinephrine reuptake inhibitors (SNRIs) or
decreasing excitatory signals (like NMDA glutamate receptor
antagonists) (Sluka and Clauw, 2016).

A clear familial aggregation has been observed between FMS
patients (Pellegrino et al., 1989; Buskila et al., 1996; Arnold et al.,
2004, 2013), with a recent study estimating a sibling recurrence
risk ratio reaching 13.6 (Arnold et al., 2013). This aggregation
is not observed in rheumatoid arthritis patients under similar
conditions (Arnold et al., 2004) and could suggest a possible
genetic background to the condition. Moreover, heritability
of chronic widespread pain (CWP), which includes FMS, has
been estimated to reach 30–55% depending on the study (Kato
et al., 2006; Rahman et al., 2021). Although candidate gene
approaches focusing on single nucleotide polymorphisms (SNPs)
affecting relevant neuro-transmitters activity did uncover some
polymorphisms with significantly altered distribution in FMS
patients versus controls (Ablin and Buskila, 2015), most genome-
wide approaches of FMS underscored the difficulty of isolating
single genetic determinants of FMS (Docampo et al., 2014; Ablin
and Buskila, 2015).

The Nociceptive Flexion Reflex (NFR) or R-III threshold is
triggered by electrical stimulations of variable intensity applied
directly to the sural nerve. It is considered as an objective
and reliable assessment of central pain pathways since direct
stimulation of the nerve bypasses the activation of peripheral
nociceptors (Willer, 1990; Sandrini et al., 2005). The correlation
between decreased NFR intensities and increased pain sensitivity
is well established both in healthy volunteers and chronic pain
patients (Willer, 1977; Skljarevski and Ramadan, 2002). Previous
studies have shown a decrease in NFR threshold in FMS patients
as compared to non-FMS control subjects (Desmeules et al., 2003;
Banic et al., 2004; Tanwar et al., 2019).

Although all patients with FMS diagnosis suffer from a
chronic pain condition, they represent a heterogenous group with

different symptom presentation and one of the current challenges
in the field concerns the sub-categorization of FMS patients in
the most appropriate therapeutic group. In the current study,
we used a genome-wide association study (GWAS) approach to
identify genetic determinants of central sensitization using the
NFR threshold as objective marker of increased sensitivity in
both patients and healthy controls. We uncovered an association
between a SNP in the N-terminus of the Huntingtin associated
protein 1 (HAP1) gene and NFR threshold levels.

MATERIALS AND METHODS

Study Population
All data and genetic material were collected during three
subsequent clinical trials with patients suffering from FMS
conducted by the Division of Clinical Pharmacology and
Toxicology of the University Hospital of Geneva (HUG)
between 1998 and 2009. The first study (AquaFM) is a
case-control trial evaluating different pain assessment tools
(including NFR) between FMS patients and a matched control
population (Desmeules et al., 2003; Cedraschi et al., 2004).
This study was followed by another case-control clinical
trial (“PNR”) assessing the psychological and physiological
differences between FMS patients and controls in function of
the COMTVal158 genotype (Desmeules et al., 2014). Finally,
the Milna study is a placebo-controlled trial investigating the
pharmaco-dynamic activity of milnacipran in a cohort of FMS
patients (Matthey et al., 2013). Each study was approved
by the Geneva Ethics Committee (CCER 98-63, 05-052, 05-
215), which also approved the reutilization of the collected
biological material for the GWAS analysis (CCER 2016-01811).
All clinical studies were conducted in accordance with the ethical
principles of the Helsinki declaration, the ICH guidelines and
Swiss national law governing clinical trials. All participants
signed an inform consent form and were free of disease or
medical disorder requiring immediate treatment at the time
of their enrollment and during the time of the study. All
FMS patients were diagnosed according to the 1990 ACR
criteria based on tender point examination only. Additional
symptoms such as fatigue, sleep disturbance, mood disorders,
or cognitive symptoms were integrated in the diagnosis of
FMS at a later time point and not considered in this study
(Hauser et al., 2017).

Nociceptive Flexion Reflex
Measurements
The nociceptive flexion R-III reflex (NFR) was measured as
previously described (Desmeules et al., 2003). Briefly, the sural
nerve was electrically stimulated with single impulses (0.5 ms)
delivered at 6–10 s intervals by a constant current stimulator with
variable intensities (1–100 mA). Electromyographic responses
were recorded using a pair of surface electrodes placed
over the ipsilateral biceps femoris. The NFR response was
identified as a multiphasic signal appearing 90–200 ms after
stimulation with an AUC greater than 0.150 mV/ms. The
NFR threshold (mA) was defined as the stimulation intensity
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TABLE 1 | Genome-wide association study population.

FMS patients Controls Total

Individuals 212 72 284

Age (min. − max.) 52 ± 11 (18–81) 50 ± 11 (29–75) 51 ± 11 (18–81)

Cohort of origin (1 = AquaFM, 2 = Milna, 3 = PNR) 1:48 2:96 3:68 1:21 2:0 3:51 1:69 2:96 3:119

Mean NFR ± SD 34.8 ± 22.4 39.9 ± 21.0 36.1 ± 22.1

Median NFR ± IQRa 28.6 ± 22.2 33.0 ± 19.8 30.2 ± 21.7

Gender 11 males, 201 females 2 males, 70 females 13 males, 271 females

Participants with co-medication Yes: 69 No: 143 Yes: 2 No: 70 Yes: 71 No: 213

aMann–Whitney–Wilcoxon test: p-value < 0.01, W = 6072.

generating 50% positive responses in a series of 30–40
stimulations using Hill’s equation. An upper threshold for input
current intensities was set at 100 mA. Only baseline NFR
thresholds measured before any study intervention, but after
treatment interruption for patients able to stop their medication
were considered.

DNA Samples Preparation
DNA purification and concentration of 302 samples (225 FMS
patients and 77 controls) was performed in the Laboratory
for Clinical Pharmacology and Toxicology of the Geneva
University Hospital (HUG) using the QIAamp DNA blood mini
kit (QIAGEN). Quantification was performed with the Qubit
dsDNA BR Assay (Thermo Fischer Scientific).

Genotyping
Genotyping was performed at the iGE3 genomic platform of the
University of Geneva (UniGE) using an Infinium CoreExome-24
BeadChip from Illumina containing 555,356 markers including
4000 custom markers (Mouterde et al., under review1), among
which 906 SNPs selected on the basis of their potential association
to FMS and/or central pain sensitization through literature-
mining (list of FMS related SNPs in Supplementary Data 1).

Genotype intensities were called using Illumina
GenomeStudioTM. All sample call rates (CRs) from the
genotyping experiment exceeded 99%. The mean genotyping
CR for the 302 samples was 99.73%. All SNPs were evaluated
by the Illumina cluster quality score and SNPs with GenTrain
score < 0.7 were discarded.

In the final data set, SNPs with a genotyping CR below 98%, a
significant deviation from Hardy–Weinberg equilibrium (HWE)
or a minor allele frequency (MAF) below 5% (CR < 98%, HWE
p < 10−5, MAF < 0.05) were discarded. All genetic coordinates
refer to the Ensembl GRCh37 reference assembly.

Genome-Wide Association Study Quality
Control and Bioinformatics Analysis
Quality control and genome-wide association analysis were
performed using the PLINK 1.07v software (Purcell et al., 2007).
Principal component analyses (PCAs) were performed in R
1 Mouterde, M., Daali, Y., Rollason, V., Čížková, M., Mulugeta, A., Al-Balushi, K.
K., et al. (under review) Joint analysis of phenotypic and genomic diversity sheds
light on the evolution of xenobiotic metabolism in humans. Genome Biology and
Evolution.

version 3.5.3 using the Adegenet package (v2.1.1) (Jombart,
2008; Jombart and Ahmed, 2011). Manhattan and QQ-plots
were drawn using the qqman R package (v0.1.4) (Turner, 2014).
Lambda statistics was calculated in R version 3.5.3.

Quality control considered relatedness, gender attribution,
heterozygosity and inbreeding, genotype consistency versus
HapMap phase III population of European descend, allele
frequency consistency and ethnicity versus the HRC r1.1 (Human
Reference Consortium version r1.1 2016) EUR population data,
as well as sample reproducibility (Supplementary Data 2).
A final neighborhood analysis confirmed that all outliers had
been detected (Guo et al., 2014). From the initial population
of 302 participants, 3 were excluded due to first-degree family
relationships and 15 based on ethnicity.

Following quality control, 258,756 SNPs (46.59%) in 284
samples including 212 FMS patients and 72 controls were
cleared for further analysis. The genotyping rate in the final
population is >0.999.

Genome-wide association study imputation of chromosome
17 was performed using the Michigan imputation server
(Minimac4) and the EUR population of the HRC r1.1 as reference
panel (r2 filter = 0.3, phasing with Eagle v2.4). Following
imputation, the dataset on chromosome 17 reached 348,128
SNP, which after QC filtration (MAF > 0.05, CR > 0.98,
HWE > 1E−05 and imputation R2 > 0.8) left 114,238 SNPs for
association analysis (versus 7100 before imputation).

Single nucleotide polymorphisms were annotated with the
Annovar software using the hg19 build (Wang et al., 2010).
Linkage disequilibrium (LD) analysis was performed using the
Ensembl tool LD Calculator for the GRCh37 assembly and
association results filtered for LD r2 < 0.3 (Hunt et al., 2018).
Regional association plots for chromosome 17 were prepared
using the LocusZoom tool (Boughton et al., 2021). Fine mapping
was performed using the FUnctional Mapping and Annotation
(FUMA) toolbox (Watanabe et al., 2017).

Molecular Biology Experiments
Expression plasmid containing the wild type C-terminally myc-
DDK tagged HAP1 cDNA under the control of the constitutive
CMV promoter or the corresponding Hap1K4R (rs4796604
G > A) variant were transfected in the human neuroblastoma
derived cell line, SH-SYS5 (ATCC CRL-2266) cells. Cells
and supernatant were harvested 48 h after transfection. For
protein analysis, cell lysis supernatant were recovered after

Frontiers in Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 807773

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-807773 June 24, 2022 Time: 11:12 # 4

Gloor et al. Central Pain Sensitization GWAS

FIGURE 1 | Median NFR threshold is slightly lower in FMS patients than controls. Boxplot showing the median and IQR NFR thresholds values for FMS patients and
controls included in the final GWAS population. The difference between the two populations is small but statistically significant according to the
Mann–Whitney–Wilcoxon test, p-value <0.01; W = 6072.

FIGURE 2 | Manhattan plot from the linear regression analysis of the GWAS versus log10(NFR thresholds). Each point represents one single nucleotide
polymorphism ordered according to its genomic position (x axis). The y axis reflects the probability value [expressed as −log10(value)] obtained from the logistic
regression analysis of each individual SNP in the study. The red line marks the genome-wide association p-value threshold level (2E−07). The blue line marks an
arbitrary level set at 1E−05.
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10 min centrifugation at 10,000 × g. Sub-cellular fractionation
were performed using the Subcellular Protein Fractionation
Kit for Cultured Cells (ThermoFisher Scientific). All protein
preparations were separated by SDS-PAGE and analyzed by
Western-blotting. mRNA expression levels were analyzed by RT-
PCR with normalization to ACT1 mRNA. All molecular biology
experiments were done in triplicates and similar transfection
efficiency controlled using a co-transfected fluorescent construct.
Human HAP1 expression data where extracted from the NCBI
Gene Expression Omnibus (GEO) and analyzed using the
GEO2R tool for comparison (Edgar et al., 2002; Barrett et al.,
2013). Detailed protocols for cell culture experiments are
available in Supplementary Methods 3.

Statistical Analysis
Descriptive statistics, group comparisons, multicollinearity
variance inflation factor (vif) and linear regressions for sensitivity
analyses were done in R version 3.5.3 (Johnston et al., 2018; Fox
and Weisberg, 2019). The Mann–Whitney–Wilcoxon (numerical
variables) and Chi-square (categorical variables) statistics were
used for pairwise comparison. The Fischer’s exact test was used
for higher order categorical variables, while correlation between
ordinal or numerical variables were tested using the Kendall
rank correlation coefficient test. The results of statistical tests
with p-values ≤ 0.05 were considered significant. The Bonferroni
correction for multiple testing was applied where appropriate.
Sensitivity analyses were performed by comparing the changes
of the estimates (beta values) resulting from calculating the
linear regression parameters either in a subgroup of the
study population (by removing patients taking comedication,
considering only FMS patients or patients above 40 years old) or
removing a variable form the analysis (for no diagnosis) (Thabane
et al., 2013). The sensitivity analysis was considered successful is
the deviation was below 12%.

RESULTS

Population Data and Genome-Wide
Associations Study Set-up
The characteristics of the final study population (212 FMS
patients and 72 controls) used for the genomic analysis are
described in Table 1. The gender distribution in the patient
group is expected as FMS is known to affect primarily women
and the proportion of men in the control population is similar
to the patient group [5 versus 3%, χ2 (1, N = 284) = 0.27,
p = 0.60]. All patients were asked to stop medication susceptible
to affect the NFR threshold, and while withdrawal was a
condition for further participation in the original clinical studies
(Desmeules et al., 2003; Cedraschi et al., 2004; Matthey et al.,
2013), all participants with a complete NFR recording and
DNA sampling were included in the current genomic study.
Drugs affecting NFR threshold in patients unable to stop their
medication (USM) were identified according to Sandrini et al.
(2005). As expected from previous studies (Desmeules et al.,
2003; Tanwar et al., 2019), there is a significant difference
(Mann–Whitney–Wilcoxon test, p < 0.01; W = 6072) in NFR

FIGURE 3 | QQ-plot from the linear regression analysis of the GWAS versus
log10(NFR thresholds). Plot of observed versus expected distribution of
p-values across all SNPs of the GWAS analysis. The predicted p-value is
determined as a normally distributed set of probability statistics based on the
number of SNPs included in the study (Turner, 2014). The graph shows no
major deviation from normality (diagonal) and suggest the absence of
confounder in the data. The tendency observed for the lowest p-values
indicating that we identified less highly specific targets than might have been
expected from a completely random distribution, could reflect the high
complexity of the trait as well as the genetic redundancy underlying
fundamental neuronal processes. The genetic inflation statistics (λGC = 0.989,
λ1000 = 0.962) reveals no systematic population stratification bias in our
analysis.

threshold values between the FMS patient and the control
groups (Figure 1).

Due to deviation from normality of the NFR threshold values
distribution (Supplementary Data 4), log10 transformed values
were used for regression analysis. The co-variates selected for
multiple regression analysis were age, gender, FMS diagnosis,
cohort of origin, and presence of co-medication susceptible to
affect the NFR threshold. There was no relevant correlation
between any of those variables and the 10 first axes of the PCA
of the genetic data (Supplementary Data 5). An additive genetic
model was assumed.

Genome-Wide Association Study Results
The association p-values for SNPs located on autosomal
chromosomes and the NFR threshold are shown in Figure 2.
The corresponding QQ-plot displayed in Figure 3 and inflation
statistics with λGC = 0.989, shows that there is no notable
evidence of population substructure. The top hits from the linear
regression analysis are shown in Supplementary Data 6. No
SNPs located on the X chromosome appeared in the top 20 results
and the Y chromosome was not investigated due to the low
proportion of men in the cohort.

None of the candidates from the genome-wide analysis of the
cohort reaches the threshold set by the Bonferroni correction
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FIGURE 4 | Regional visualization plots of GWAS results surrounding lead SNP rs4796604. (A) Association results from the original GWAS analysis. (B) Association
results following imputation of chromosome 17. (C) Zoomed in window (39,860,000–39,930,000) for imputed chr17 results.

(i.e., 0.05/258,756 = 2E−07). However, both the highly polygenic
nature of pain signaling, and the low number of samples included
in the study could account for the low association statistics.
In addition, the Bonferroni correction is often considered too
stringent for genome-wide analyses as SNPs are not entirely
independent from each other and using the method presented
in Li et al. (2012) to evaluate the effective number of tests
gives a suggestive p-value threshold of 5.95E−06 for the present
study. The top hit of our analysis and only SNP to reach
this threshold is rs4796604 (A > G) (p = 4.78E−06) located
on chromosome 17.

To increase the SNP coverage around rs4796604, we
performed the imputation on chromosome 17 and obtained a
dataset of 348,128 SNP. Fine mapping of the association results
using the imputed data, confirmed rs4796604 as the lead SNP of
our analysis as shown on the regional association plots displayed
in Figure 4.

Different sensitivity analyses were used to test the robustness
of the association between rs4796604 and log10(NFR). We found
the association to be consistent with respect to comedication
(excluding patients taking comedications), FMS diagnosis (using
either FMS patients group alone or excluding the diagnosis from
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the linear regression model) and age (excluding participants
below 40 years old).

Gene mapping shows that the SNP rs4796604 corresponds
to a non-synonymous variant located inside the HAP1 gene
(chr17, MAF of 0.5 in Europeans). HAP1 is mainly expressed
in neuronal cells (Li et al., 1995, 1998b; Gutekunst et al., 1998).
It has been associated with microtubule-dependent transporters
(Twelvetrees et al., 2019), neurotrophic growth factors trafficking
and recycling of internalized membrane receptors including
TrkA, TrkB, and GABAAR (Li et al., 2002; Gauthier et al., 2004;
Kittler et al., 2004; Rong et al., 2006; Sheng et al., 2006, 2008;
Twelvetrees et al., 2010; Wu et al., 2010; Yang et al., 2011; Xiang
et al., 2014; Mele et al., 2017; Lim et al., 2018) in humans, as well
as catecholamine and glutamate release from mouse chromaffin
cells (Mackenzie et al., 2016).

Log10 NFR Thresholds Correlate With
rs4796604 Genotype, Fibromyalgia
Syndrome Diagnosis, and Presence of
Co-medication
We used a multiple linear regression analysis including five co-
variates (age, gender, FMS diagnosis, presence of co-medication,
and cohort of origin) to assess the GWAS data. The parameters
of the model for the association between the rs4796604 genotype
and log10 transformed NFR threshold levels are displayed in
Table 2. The resulting regression model equation is significant
(F6,277 = 8.047, p = 5.08E−08) with an adjusted R2 of 0.130
that is consistent with the complexity of the trait. All variance
inflation factors (vif) of the multicollinearity analysis are <1.2,
well below accepted thresholds indicating the presence of
collinearity in the data.

The individual parameters of each variable show that the
presence of co-medication and FMS diagnosis are important
co-variates of the model while neither age nor gender bring
significant contributions. It is noteworthy that the cohort of
origin does not introduce any significant bias although NFR
measurements were spread from 1998 to 2009.

The parameters of the standardized regression model suggest
that the three significant parameters share similar weights, with
the presence of any additional G allele at position rs4796604
increasing the NFR value by an factor of 0.261. In comparison,
the presence of co-medications increases the threshold with a
standardized beta of 0.222, while FMS diagnosis decreases the
threshold by an standard estimate of 0.208 versus the control
population. The NFR threshold values and distribution for the
different groups in our study according to rs4796604 genotype,
FMS diagnosis and presence of co-medication are presented in
Table 3.

Relationship Between Nociceptive
Flexion Reflex Threshold, Fibromyalgia
Syndrome Diagnosis, and rs4796604
Genotype
The correlation between the rs4796604 genotype and NFR
thresholds is highly significant (rT = 0.23, p = 6.12E−07, Kendall’s

Tau statistics). Moreover, according to the Mann–Whitney U test,
the rs4796604 AA genotype group has significantly lower NFR
threshold values than the AG and GG groups (Figure 5A).

In addition, although the correlation between the rs4796604
genotype and the NFR threshold is visible in every subgroup,
there are no significant differences between the subgroups (i.e.,
FMS versus controls or with and without co-medication) based
on rs4796604 genotype except, in the most severely affected
AA group, where FMS patients have significantly lower NFR
thresholds than the controls (p < 0.01) (Supplementary Data 7).

Thus, our genome-wide analysis identified the SNP
rs4796604 as a putative candidate for the prediction of
NFR threshold levels. However, there is no correlation between
this polymorphism and FMS diagnosis or the presence of
co-medication using the Fisher exact test (Figures 5B,C).
We found no correlation between rs4796604 genotype and
any other clinical scale available from the original studies
records (Desmeules et al., 2003; Cedraschi et al., 2004; Matthey
et al., 2013), such as pain or FMS severity as evaluated
through quantitative sensory testing (QST) (hot and cold
temperature pain thresholds, cold pressor test), or questionnaires
assessing the impact of FMS on the patient’s quality-of-life
(Fibromyalgia Impact Questionnaire – FIQ), Psychological
General Well-Being (PGWB), or functional status (Physical
Component Score of the SF-36). However, as previously
reported in the literature (Neziri et al., 2011), although all
mentioned QST results, except cold and warm perception
thresholds, showed a highly significant difference between
case and controls, they are only poorly correlated with NFR
threshold values. The summary of the QST results in our
cohort and their correlation with NFR values is available in
Supplementary Material 8.

Effect of the rs4796604 Mutation on
Huntingtin Associated Protein 1 (HAP1)
Transcription, Protein Expression, and
Sub-cellular Distribution
The rs4796604 A > G polymorphism is located within the
first exon of the HAP1 gene and results in a lysine (K)
to arginine (R) amino-acid substitution in position 4 of
the encoded protein. The SNP rs4796604 is located at the
very N-terminus of the protein and in close proximity to a
N-myristylation site. Myristoyl is a lipid tail used for membrane
or protein interaction which is often involved in sub-cellular
localization of the attached protein (Martin et al., 2011). Thus,
we decided to investigated the difference in protein levels and
the cellular distribution of the mutant versus the wild-type
protein. We therefore transfected the neuroblastoma-derived
SH-SYS5 cells with plasmids constitutively overexpressing a
C-terminal DDK-myc tagged version of the Hap1K4R mutant
and corresponding wild-type protein. Cells were harvested
48 h post-transfection and both the mRNA and protein
content were analyzed.

RT-PCR analysis of mRNA extracts showed that the
expression levels of both constructs are similar in the chosen
expression system. In parallel, we compared HAP1 mRNA
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expression levels in function of the rs4796604 genotype in
a human reference population of European descent (CEU)
using global expression dataset available from the GEO public
repository [(Huang et al., 2007), accession number: GSE7761]
and the GEO2R tool. There were no differences in HAP1 mRNA
expression based on rs4796604 polymorphism among the 82
participants included (22 AA, 44 AG, and 16 GG with a MAF
of 0.54, p = 0.33).

Total protein expression and subcellular distribution were
assessed using the C-terminal Flag-tag of the constructs. As
shown in Supplementary Data 9, and in line with the expression
data, the Hap1K4R mutation did not affect the overall protein
amount when compared to actin expression levels. As expected
from previous studies, the major portion of the wild-type protein
is found associated with secretory vesicles and/or cytoskeletal
fraction (Li et al., 1996, 1998a; Engelender et al., 1997; Gutekunst
et al., 1998). The Hap1K4R mutation has no visible effect on
subcellular protein distribution under the current experimental
conditions (Supplementary Data 9).

DISCUSSION

Our GWAS identified rs4796604, a polymorphism resulting in
an amino-acid substitution in the HAP1 gene, as a potential
new genetic determinant of the NFR threshold, a measure
of enhanced central pain signaling. The linear regression
model parameter obtained for rs4796604 shows that FMS
diagnosis and the presence of concomitant medication are
important co-factors, while neither age nor gender have a
significant effect. The influence of FMS diagnosis is in line
with previous studies reporting a lowering of the threshold in
FMS patients compared to a control population (Desmeules
et al., 2003; Banic et al., 2004; Tanwar et al., 2019). Similarly,
many pharmacological compounds affecting neurotransmission
in the CNS are known to have a strong influence on NFR
thresholds (Skljarevski and Ramadan, 2002; Sandrini et al.,
2005). Although gender influence on NFR thresholds has been
previously reported, the low proportion of men in our cohort
might mask this effect.

TABLE 2 | Multiple linear regression model parameters for the association between log10(NFR threshold) and rs4796604.

Beta CI (95%) Z-score T stat p-Value

Intercept 1.328 1.115 to 1.542 4.71E−17 0.000 1.00E−00

rs4796604 (AA = 1, AG = 2, GG = 3) 0.091 0.053 to 0.130 0.261 4.666 4.78E−06***

FMS diagnosis (no = 1, yes = 2) −0.125 −0.196 to −0.054 −0.208 −3.457 6.32E−04***

Gender (women = 0, men = 1) −0.036 −0.174 to 0.103 −0.028 −0.506 6.13E−01

Age (years) 0.001 −0.002 to 0.004 0.042 0.745 4.57E−01

Co-medication (no = 1, yes = 2) 0.134 0.063 to 0.206 0.222 3.688 2.72E−04***

Cohort (AquaFM = 1, Milna = 2, PNR = 3) −0.011 −0.049 to 0.026 −0.035 −0.594 5.53E−01

Beta, regression coefficient; CI (95%), lower-upper limit of the 95% confidence interval; Z-score, standardized regression coefficient; T stat, coefficient t-statistics; p-value,
asymptotic p-value for t-statistics. ***p < 0.001.

TABLE 3 | NFR threshold distribution according to significant study parameters.

rs4796604 genotype All ASM USM

N NFR N NFR N NFR

Full cohort Total 284 30.2 (±21.7) 213 28.4 (±20.0) 71 38.8 (±24.2)

AA 82 23.1 (±17.1) 67 23.0 (±15.3) 15 33.6 (±22.3)

AG 124 33.3 (±18.6) 91 29.9 (±23.1) 33 38.8 (±23.0)

GG 78 35.6 (±33.3) 55 30.2 (±31.3) 23 48.1 (±39.2)

p-value 6.12E−07 1.07E−04 7.50E−03

FMS Total 212 28.6 (±22.2) 143 25.1 (±17.4) 69 38.8 (±23.9)

AA 60 21.1 (±14.5) 45 19.1 (±12.5) 15 33.6 (±22.3)

AG 98 33.1 (±17.2) 65 28.5 (±15.2) 33 38.8 (±23.0)

GG 54 34.4 (±34.1) 33 25.7 (±28.1) 21 48.1 (±39.5)

p-value 3.01E−06 6.92E−04 5.16E−03

Controls Total 72 33.0 (±19.8) 70 33.0 (±19.4) 2 36.8 (±14.6)

AA 22 30.9 (±10.0) 22 30.9 (±10.0) – na

AG 26 34.8 (±21.9) 26 34.8 (±21.9) – na

GG 24 40.4 (±37.6) 22 40.4 (±38.6) 2 36.8 (±14.6)

p-value 7.18E−02 6.03E−02 na

NFR: median values (±IQR). N, number of participants; FMS, fibromyalgia patients; ASM, able to stop medication; USM, unable to stop medication; p-values for Kendall
rank correlation coefficient test.
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FIGURE 5 | The rs4796604 A allele correlates with lower NFR threshold values. (A) Median NFR threshold distribution in function of rs4796604 genotypes.
Mann–Whitney statistics were used to assess the differences between genotypes (with ***p < 0.001). There is no correlation between rs4796604 genotype and FMS
diagnosis (B), nor presence of co-medication (C). n.s. = not significant.

Central sensitization results from an acquired imbalance
in pain-transmitting and pain-attenuating signals in the CNS.
Many different neuro-transmitters (NT) such as catecholamines,
glutamate and GABA are involved in transmission and down-
regulation of nociceptive stimuli in nerve terminals (reviewed
by Harte et al., 2018). Moreover, neuronal growth factors as
BDNF or nerve growth factor (NGF) play an important role
not only in the development but also in the maintenance
of different neuronal cell populations that are important for
the regulation of nociceptive stimuli (Dai and Zhou, 2014).
Although the precise molecular function of Hap1 in neuronal
cells remains unclear, this microtubule-associated protein is
involved in intracellular trafficking in neurons and participates
both in neurotransmitter (NT) release (Mackenzie et al.,
2016) and plasma membrane receptor recycling via endocytic
compartments (Li et al., 2002; Kittler et al., 2004; Rong et al.,
2006; Sheng et al., 2008; Twelvetrees et al., 2010; Xiang et al.,
2014) possibly by acting as a scaffold protein (Rong et al., 2007).
HAP1 expression is particularly enriched in the hypothalamus,

although HAP1 mRNA is detected in all brain tissues and the
spinal cord.2

HAP1 was first identified as an interactor of
neurodegenerative Huntingtin (Htt), the protein responsible
for Huntington disease and was subsequently shown to protect
specific neuronal cells from degradation (Li et al., 2003; Mele
et al., 2017; Wroblewski et al., 2018). Moreover, HAP1 has many
connections to nociceptive signal transduction. First, HAP1
plays a role in the NGF-receptor TrkA recycling to the plasma
membrane (Rong et al., 2006). NGF promotes neurite outgrowth
in developing cells and is required for survival of sensory
neurons (Marmigere et al., 2006). Interestingly, intramuscular
injections of NGF are able to induce neuronal sensitization in
rats (Hoheisel et al., 2007) and some mutations in TrkA result
in congenital insensitivity to pain with anhidrosis (CIPA), an
autosomal recessive disorder characterized by the inability to
feel pain and absence of sweating (Indo et al., 1996). HAP1

2https://gtexportal.org
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also participates in regulating neuronal excitability through
the recycling of GABAA receptors to postsynaptic membranes
(Kittler et al., 2004; Sheng et al., 2006; Twelvetrees et al., 2010;
Mele et al., 2017). Inhibitory mechanisms regulated by GABA
and GABA-receptors in the spinal dorsal horn play a central role
in modulating pain signals transmitted to the brain (Prescott,
2015), and the strength of the inhibitory signal at synapses
correlates with the amount of GABAA receptors present on the
membrane (Jacob et al., 2008). Pharmacological modulation of
GABAA receptor mediated signaling is considered an interesting
alternative for pain management in chronic pain conditions.
However, the sedative properties of currently available GABAA
receptor agonists limit their use as analgesics (Fischer, 2017). In
a slightly different register, HAP1 was also shown to participate
directly in exocytosis and regulate plasma membrane docking
of secretory vesicle from mouse neuroendocrine cells thereby
regulating release of catecholamines and glutamate from
synapses (Mackenzie et al., 2016). While glutamate is the
main excitatory NT in human CNS acting through NDMA-
receptors to transmit peripheral nociceptive signals to the
brain, catecholamines, as serotonin or norepinephrine, are the
mediators of descending pain modulatory signals transmission
playing an important role in pain attenuation (Pereira and
Goudet, 2018; Bravo et al., 2019). Finally, Hap1 is involved
both in proBDNF anterograde transport, and endocytosis of
the BDNF-TrkB receptor complex (Gauthier et al., 2004; Sheng
et al., 2008; Wu et al., 2010; Yang et al., 2011; Xiang et al.,
2014; Lim et al., 2018). BDNF is a neurotrophic growth factor
promoting neuronal growth and survival, as well as synaptic
plasticity influencing memory, learning and cognition processes
(Sasi et al., 2017). BDNF acts as an interesting modulator of
nociception and has been involved in central sensitization,
although its pleiotropic roles at different levels of the CNS are
hard to interpret (Merighi et al., 2008; Sasi et al., 2017). Indeed,
internalization of the BDNF-TrkB complex triggers a variety
of signaling cascades modulating both excitatory (glutamine)
and inhibitory (GABA) signaling pathways (Sasi et al., 2017).
Thus, many nociceptive signal transduction pathways are
connected to HAP1 function. In addition, in a completely
different approach, the authors of a recent immunolabeling
study showed an important overlap between HAP1 and different
neurochemical markers in the mouse dorsal root ganglion (DRG)
neurons and suggested a role for HAP1 in pain transduction
(Islam et al., 2020).

Although Hap1 rs4796604 genotype correlates with levels of
the NFR threshold, we found no direct link between Hap1 and
FMS diagnosis according to ACR 1990 criteria. However, many
of the processes regulated by Hap1 have been linked with FMS
and are believed to participate in the onset or the progression
of the condition, suggesting that understanding Hap1 cellular
activity could help specify the nature of the central sensitization
process in different FMS patients. Indeed, reflecting the broad
range of functions mediated by neurotrophic growth factors like
BDNF and NGF, their implication in FMS has been postulated
at many different levels, from regulation of neurotransmission
to synaptic plasticity affecting learning and memory processes.
However, while the involvement in pain signaling of those factors

is well documented, if not well understood, their implication
in FMS is less clear. Indeed, differences in BDNF and NGF
circulating and cerebrospinal fluid (CSF) levels between FMS
patients and healthy controls are still controversial although
most studies report increased concentrations (Baumeister et al.,
2019; Brietzke et al., 2019). However, the expression pattern of
neurotrophic factors are not uniform across different regions
of the CNS (Notaras and van den Buuse, 2020), thus the
physiological implications of increased peripheral or even central
BDNF or NGF levels remain unclear. On the genetic level, a
study associated different BDNF related polymorphisms with
FMS in the Korean population (Park et al., 2018). A recent
study showed increased GABAAR levels in cortical neurons of
FMS patients (Pomares et al., 2020). Regarding NTs in FMS,
both serotonin and norepinephrine levels were found to be
significantly decreased in CSF of FMS patients (Russell et al.,
1992), while glutamate levels are increased in specific brain areas
of FMS patients (Foerster et al., 2015). In addition, the most
common pharmacological treatments used in the context of FMS
are inhibitors of the NMDA glutamate receptor or of serotonin
and/or norepinephrine reuptake (Sluka and Clauw, 2016; Pereira
and Goudet, 2018; Bravo et al., 2019).

Despite the observed heritability of pain-related diseases,
the search for polymorphisms associated with chronic pain
conditions in general and FMS in particular is a long-standing
issue. Candidate gene approaches focused their attention on SNPs
affecting neurotransmitters activity known to be relevant for pain
signal transduction and processing as well as on endogenous
pain modulating systems (reviewed by Knezevic et al., 2018;
Janssen et al., 2021). Frequently reported genes include serotonin
receptors and transporter (HTRs, SLC6A4), dopamine receptor
and degradation (COMT, TAAR1), glutamate receptor (GRIA4),
adrenergic receptors (ADRs) as well as the mu opioid receptor
OPRM1, the NGF BDNF or sodium channels (TRVPs for
instance). In addition to candidate approaches, several genome-
wide association studies directed toward elucidation of the
genetic background of FMS, chronic widespread pain (CWP) or
related chronic pain conditions uncovered additional candidate
genes and polymorphisms (Docampo et al., 2014; Johnston et al.,
2019; Rahman et al., 2021). None of the polymorphism previously
associated with FMS or other chronic pain conditions nor any
of the more recent GWAS candidates did show significant
association with NFR in our study (data not shown). This is not
unexpected as the NFR threshold, while being intimately linked
to pain signal transmission is not a proxy for FMS nor CWP.

Pain perception is a highly polygenic trait that is very difficult
to evaluate accurately, and although measurement of NFR
thresholds constitutes one of the most objective assessment of
the central pain signaling network reactivity available, a number
of modulating factors ranging from pharmacological interactions
to mental and psychological states have been identified (Sandrini
et al., 2005). Thus, taking all those considerations into account,
the number of participants in the current study is low and
could easily account for the poor statistical power of our GWAS
results, which is clearly the major limitation of the current
study. Additional limitations to the current study, include the
recognized inter- and even intra-individual variability of NFR
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measurements that are affected by a number of environmental
and psychological factors in addition to the physical parameters
as well as the low proportion of men in our cohort or the use of
the old ACR 1990 criteria for FMS diagnosis.

The replication of our findings in independent cohorts will
be critical to confirm their validity. Considering the measured
effect size, a MAF of 0.5 in a European population and a
significance threshold of p = 0.05, the replication of rs4796604
association with NFR would require a sample size of about
200 participants (power calculations heatmaps according to
Visscher et al. (2017) are presented in Supplementary Data
10). Moreover, characterization of the functional implication
of the Hap1Lys4Arg mutation at the molecular level will
be central to unravel the importance of this variant for
transmission of painful stimuli and understand whether there
is a physiological relevant difference in nociceptive signal
transmission between individuals expressing different forms of
the protein. Although the position of the mutation at the
very beginning of a N-myristoylated protein could potentially
interfere with Hap1’s membrane attachment, we could not
observe any differences in expression nor subcellular repartition
between the wild type and mutant protein under current
experimental conditions. However, N-myristoylation is often
associated with dynamic membrane attachment which might
not be apparent in a steady-state distribution. Alternatively, the
high expression levels resulting from constitutive expression of
the exogenous transcript could mask or disrupt the normal
cellular pattern.

In summary, using a GWAS, we identified a new potential
genetic determinant of NFR threshold level. While Hap1 is not
a predictor of FMS, this protein is involved in the regulation of
several signaling pathways involved in the pathophysiology of
the disease, and differential regulation of synaptic transmission
through modulation of intracellular vesicular transport at
synapses might help to better characterize the enhanced
sensitization in individual patients. Further studies will be
directed at replicating the current results in independent cohorts,
as well as unraveling of the functional implications of the
Hap1K4R mutation in Hap1 protein function.
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