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Abstract
Electroencephalogram data used in the domain of brain–computer interfaces typically has subpar signal-to-noise ratio and
data acquisition is expensive. An effective and commonly used classifier to discriminate event-related potentials is the
linear discriminant analysis which, however, requires an estimate of the feature distribution. While this information is
provided by the feature covariance matrix its large number of free parameters calls for regularization approaches like Ledoit–
Wolf shrinkage. Assuming that the noise of event-related potential recordings is not time-locked, we propose to decouple
the time component from the covariance matrix of event-related potential data in order to further improve the estimates
of the covariance matrix for linear discriminant analysis. We compare three regularized variants thereof and a feature
representation based on Riemannian geometry against our proposed novel linear discriminant analysis with time-decoupled
covariance estimates. Extensive evaluations on 14 electroencephalogram datasets reveal, that the novel approach increases
the classification performance by up to four percentage points for small training datasets, and gracefully converges to the
performance of standard shrinkage-regularized LDA for large training datasets. Given these results, practitioners in this field
should consider using our proposed time-decoupled covariance estimation when they apply linear discriminant analysis to
classify event-related potentials, especially when few training data points are available.

Keywords Event related potentials · Robust classification · Learning from small datasets · Noise transfer learning ·
Brain–computer interface · Covariance matrix enhancement

Introduction

A brain–computer interface (BCI) allows a subject to
e.g. control a computer program using his or her brain sig-
nals, which are often recorded via the electroencephalogram
(EEG), as it is non-invasive, requires relatively inexpensive
equipment and could be used by a large part of the popula-
tion (Wolpaw et al. 2002). Unfortunately, the signal-to-noise
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ratio of the signals recorded by the EEG electrodes on the
scalp is bad, as many factors—e.g. volume conduction of
the brain or the long distance between sensor and the brain
tissue—impede the recording quality (Srinivasan 2012). To
realize control via BCIs, machine learning techniques are
key to decode the brain signals in real-time. In addition to
the bad signal-to-noise ratio, the machine learning problem
is aggravated by the oftentimes small amount of training
data available in BCI experiments.

Existing approaches to deal with small datasets, such as
transfer learning between subjects or sessions, have limited
success if brain signals differ greatly between subjects
and even between sessions of the same subject (Jayaram
et al. 2016). Also, many BCI paradigms work optimally
only, if their experimental parameters are tuned to each
subject individually (Höhne and Tangermann 2012; Sugi
et al. 2018; Allison and Pineda 2006). As many different
experimental parameters need to be tested to find the
optimal ones, the possibility to work with very small
datasets would be a great benefit here.
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The mentioned challenges explain the popularity of
relatively simple classifiers in the BCI domain which
can make efficient use of the training data (Blankertz
et al. 2011). In contrast, in domains such as image
recognition, the massive amounts of data available enable
the employment of more sophisticated methods such as
neural networks (Russakovsky et al. 2015).

In this work, we are concerned with the classification of
event-related potentials (ERPs) recorded using EEG data.
These ERPs can be evoked by presenting visual, auditory
or haptic stimuli to a subject (Sellers et al. 2012; Schreuder
et al. 2010; Rutkowski and Mori 2015). Time-locked to
the stimulus presentation, the ERP can be measured in the
EEG signal. Due to the small ERP amplitude and the high
amplitude of the EEG’s background activity, visualizations
like in Fig. 1 require repeated stimulus presentations and
averaging of the resulting ERP epochs. In this figure, two
ERPs are shown, one for a specific stimulus the subject has
attended (so-called target ERP), and another one for a single
or even multiple other stimuli the subject has ignored (non-
target ERP). The difference between target and non-target
ERP voltages is the basis for classifying which stimulus a
subject attends to in real-time. For a productive use of a
BCI, however, it is infeasible to average such a large number
of epochs before a classification output can be obtained.
Therefore, machine learning is used to make classification
possible on short recordings.

Many BCI systems make use of a linear discriminant
analysis (LDA) (see e.g. Bishop 2006) to classify if a stimu-
lus was attended or not. The LDAmakes use of ERP voltage

Fig. 1 Example of the mean ERP responses obtained from a single
subject during an auditory oddball paradigm with stimulus onset
asynchrony (SOA) of 193ms. For this plot, 300 target and 1500 non-
target epochs were averaged. Prior to averaging, each epoch had been
corrected for baseline shifts relative to the interval [-0.2, 0.0] seconds.
Five gray shaded areas between 0.1 and 0.5 seconds post stimulus
onset indicate which time intervals are typically used to derive features
for classification

features and the corresponding covariance (Blankertz et al.
2011). In the domain of ERPs, the shrinkage-regularized
LDA still belongs to the state-of-the-art methods (Lotte et al.
2007; Lotte et al. 2018). For ideal ERP data, the assumptions
of LDA would even be fulfilled, making LDA the optimal
classification approach. However, in practice there are non-
stationarities, outliers and artifacts which violate the LDA’s
assumptions. Recently, Riemannian methods found their
way into BCI. For ERP classification they show promising
performance gains for some datasets (Barachant et al. 2010;
Barachant and Congedo 2014).

When using LDA to classify ERP signals, most
formulations require an estimate of the covariance matrix.
This matrix has 0.5 · (D + 1) · D free parameters with
D being the dimensionality of the feature vector. Using an
EEG cap with 31 channels and five time intervals only to
derive voltage features (as indicated in Fig. 1), the feature
dimensionality of D = 155 results in 12090 free parameters
of the covariance matrix, which need to be estimated
during the LDA training. Usually, the amount of data points
(epochs) in BCI problems is rather small, leading to sub-
optimal estimates of the covariance matrix. If the number
of data points happens to be smaller than D, the covariance
does not even have full rank and cannot be inverted.

In one of the example datasets in Blankertz et al. (2011)
they found this to be especially true if “the number of train-
ing samples [is] low (750) compared to the dimensionality
of the features (385)”. For comparison, in our benchmark
the smallest training dataset has 72 training samples while
the features have 310 dimensions. Farquhar and Hill (2013)
show that classification performance increases with more
training data, as they expected. However, they also note
that “minimizing the number of training samples required
to achieve acceptable performance is critically important
to practical BCI performance”. Lotte et al. (2018) suggest
that typical BCI systems could be trained with as few as
20-100 trials per class. In our benchmark, in the smallest
dataset we use 12 target and 60 non-target training samples
to train the classifiers. All authors recommend to shrink the
covariance matrix used in LDA to the (scaled) unit sphere,
especially when very few training data are available. The
required amount of regularization can be determined analyt-
ically as proposed by Ledoit and Wolf (2004) or by using
cross-validation.

There are alternative approaches for dealing with few
training data. A first step is usually to perform strict data
cleaning, such that the quality of the data is improved, for
example using spatial filtering approaches (Winkler et al.
2014; Foodeh et al. 2016). Aside from regularization to
deal with the dimensionality issue, another straightforward
way is to reduce dimensionality altogether, e.g. by selecting
channel subsets (see e.g. Lal et al. 2004; Sannelli et al. 2010;
Feess et al. 2013) or using preprocessing methods that find
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a lower-dimensional representation, e.g., xDAWN (Rivet
et al. 2009) or kernel principal component analysis
(kPCA) (Schölkopf et al. 1997). Other approaches employ
transfer learning, which re-use data from previous sessions
or even different subjects to improve the classification
performance (Jayaram et al. 2016). However, in this work
we focus on developing a method that can be applied
without sophisticated preprocessing or using additional
data. This both increases the employability of our method
and facilitates the application to a large number of different
ERP datasets.

In this work, we aim at improving the regularized covari-
ance matrix even further by making use of the observation,
that the noise in ERP data can be mostly attributed to task-
unrelated background brain activity (Blankertz et al. 2011),
which therefore is not time-locked to the stimulus.

To show the efficacy of our method named time-
decoupled covariance estimation, we carefully evaluate its
performance on datasets recorded by our lab as well as on
public ERP datasets of which most are available in MOABB
(Mother of All BCI Benchmarks) (Jayaram and Barachant
2018).

Methods

We first describe our benchmarking approach. This includes
the datasets we used, the general classification and valida-
tion procedure as well as the preprocessing of the EEG data.
Afterwards we present the classification methods we use

for comparisons. Finally, in “Time-decoupled Covariance
Matrices” we detail our proposed new method with time-
decoupled covariance estimation.

Benchmark

To compare competing classification approaches, we
evaluated their obtained performances on fourteen datasets,
which have been derived from twelve ERP data sources
(see Table 1) using MOABB (Mother of All BCI
Benchmarks) (Jayaram and Barachant 2018). We used
all (at the time of writing) ERP datasets available in
MOABB and added complementing datasets from our lab,
i.e. two additional visual speller datasets and ERP data from
auditory paradigms with tone and word stimuli.

For analysis purposes we have logically split two of the
data sources into two datasets each: The original EPFL
dataset (EPFL) was split into data obtained from healthy
subjects and patients, while the brain invaders dataset
(BI) was split into subjects with one session and subjects
with eight sessions. Note that for the TONE patient and
the WORD patient datasets, a publication is still pending,
however the paradigms that were used are a tone oddball and
a word oddball, similar to the paradigm described in Musso
et al. (2016). Some datasets share subjects: the subjects who
took part in the word paradigm in WORD healthy also took
part in the tone oddball paradigm in TONE healthy. The
same is true for WORD patient and TONE patient, except
that in this case four additional subjects are contained in
the latter dataset. For in-depth explanations of the datasets

Table 1 Overview of the ERP datasets evaluated and their characteristics

Dataset Subjects Sessions Channels Paradigm Access Reference

EPFL healthy* 4 4 32 visual, 6-choices public Hoffmann et al. (2008)

EPFL patient* 4 4 32 visual, 6-choices public Hoffmann et al. (2008)

BNCI healthy 1 10 1 16 visual, speller public Aricò et al. (2014)

BNCI healthy 2 10 1 8 visual, speller public Guger et al. (2009)

BNCI patient 8 1 8 visual, speller public Riccio et al. (2013)

BI a+ 7 8 16 visual, speller-like public Van Veen et al. (2019)

BI b+ 17 1 16 visual, speller-like public Van Veen et al. (2019)

SPOT 13 1 31 auditory, tones, oddball public Sosulski and Tangermann (2019)

TONE healthy 20 1 63 auditory, tones, oddball closed Musso et al. (2016)

WORD healthy 20 1 63 auditory, words, 6-choices closed Musso et al. (2016)

TONE patient 14 11–25 31 auditory, tones, oddball closed pending

WORD patient 10 11–25 31 auditory, words, 6-choice closed pending

SPELLER LLP 12 1 31 visual speller closed Hübner et al. (2017)

SPELLER MIX 12 1 31 visual speller closed Hübner et al. (2018)

Datasets listed as closed access have been recorded in our own lab but cannot be fully published as subjects’ consent had not been obtained for
this purpose. Datasets marked with an asterisk and a plus sign each have been derived by splitting a larger data source (see main text)
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please refer to the corresponding references in Table 1. In
total we evaluate on ERP data of 131 subjects (390 sessions
in total).

We are primarily interested in the classification perfor-
mance on very small datasets. However, some of the datasets
available to us consist of many epochs per session of each
subject. To investigate training concepts for small datasets,
we have split most datasets into virtual data subsets. These
splits were done at logical points in the paradigm. For exam-
ple in the SPOT dataset, where a subject performed 60 to 80
auditory oddball runs with 90 stimuli each and an approx-
imately eight second pause between runs, we could split
this data up into virtual, non-overlapping subsets consisting
of only 90 epochs, i.e. using each oddball run individually
for a cross-validation loop. For this dataset, we therefore
obtained between 60 and 80 virtual data subsets. For each
novel subset, the classification performance was estimated
in an individual cross-validation loop. In order to obtain
a single classification performance value per session of a
subject, we averaged the performances obtained from the
virtual data subsets. Overall, the virtual data subsets have
sizes between 90 and 4200 epochs.

Evaluation Procedures

We used stratified 5-fold cross-validation within each
virtual data subset in order to derive the classification
performance expressed by the area under the receiver
operating characteristic curve (AUC). Table 2 indicates for
each dataset, how many epochs per session of each subject

Table 2 Average number of virtual data subsets (VDS) available for a
session of a subject in each dataset

# of Epochs

Dataset # of VDS per VDS

EPFL healthy* 1 832

EPFL patient* 1 833

BNCI healthy 1 18 96

BNCI healthy 2 1 2520

BNCI patient 1 4200

BI a+ 1 480

BI b+ 1 480

SPOT 61 90

TONE healthy 2 300

WORD healthy 18 540

TONE patient 2 300

WORD patient 54 152

SPELLER LLP 54 204

SPELLER MIX 60 204

Also indicates the number of epochs within the virtual data subsets

were available in total, and additionally, how many epochs
were used within a virtual data subset.

Some datasets contained multiple sessions of each
subject. We decided to condense them into a single AUC
value per subject and classification approach. For this
reason, AUC values obtained over multiple sessions of a
subject were averaged before reporting.

Statistical significance (at α = 0.05) between the
classification methods were determined using a paired
Wilcoxon signed rank test (Wilcoxon et al. 1970) on
the differences between the average performance of each
dataset, i.e. 14 values. We compared our proposed method
with its underlying base classification, and our proposed
method with the best other classification method. Correction
for multiple testing was done using the Holm–Bonferroni
method (Holm 1979).

Using the code supplied in our repository,1 the bench-
mark results can be reproduced.

Data Preprocessing

Before obtaining the actual features which can be used by
the classifiers, all EEG datasets are preprocessed using a
forward and a backward pass of a Butterworth bandpass
filter in the range of 0.5 Hz to 16 Hz. Afterwards, the
data was downsampled to 100 Hz and windowed to 0 s
to 1 s relative to each stimulus onset to represent the
corresponding data epoch.

The common preprocessing step of baseline correction
for ERP analysis causes the standard deviation in each
channel to not be equal between time intervals (see Fig. 2),
i.e. causes heteroscedasticity. As our proposed method
assumes homoscedasticity, we both run the benchmark with
and without baseline correction to determine the impact of
this.

A common step to reduce the influence of artifacts is to
exclude epochs that exceed a min-max criterion or reject
channels that show abnormal variance. However, we kept
all epochs and channels in all datasets, as picking the right
criterion for each dataset can lead to subjective results.
Using one common criterion for all datasets can also be
detrimental, as the datasets recorded using visual paradigms
tend to have large amplitudes compared to the auditory ones.
Therefore, we consider the ability to cope with artifacts as
another challenge for the evaluated classification methods.

A common preprocessing for LDA-based classifiers is
to average the ERP responses in certain time intervals
(cf. gray shaded areas in Fig. 1) to reduce the number
of feature dimensions. When subject-specific maximized
performance is desired, these time intervals could be
determined automatically (see e.g. Bashashati et al. 2016).

1https://github.com/jsosulski/time-decoupled-lda
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Fig. 2 Top row: Averaged event-related potential of all epochs of sub-
ject 1 of the BNCI healthy 1 dataset in response to visual stimuli
with two standard errors of the mean, a without and b with baseline
correction as indicated by the horizontal gray box. Bottom row: Corre-
sponding pooled standard deviation of the mean-free ERPs c without

and d with baseline correction. As expected, the standard deviation
is clearly reduced in the baseline interval. However, there is a dis-
tortion outside the baseline interval which leads to different standard
deviations in the feature intervals (gray vertical boxes)

However, for comparability in our benchmark, we evaluated
four sets of fixed time intervals (depending on the paradigm
of the dataset, see Table 3) for all datasets and subjects for
obtaining the features.

This averaging in time intervals is not necessary for
the Riemannian method (cf. “Classification Methods”), as
it uses xDAWN-preprocessing (Rivet et al. 2009), which
extracts the ERP components in the whole epoch (0 s to
1 s) and inherently reduces dimensionality by using few
obtained xDAWN components instead of the whole EEG
channel set.

Table 3 Used time interval boundaries for the temporal sample-wise
averaging for the different paradigms

# of Intervals Interval boundaries [s]

Visual and tone paradigms

2 {0.10, 0.18, 0.28}
5 {0.10, 0.17, 0.23, 0.30, 0.41, 0.50}
10 {0.10, 0.14, 0.17, 0.20, 0.23, 0.27,

0.30, 0.35, 0.41, 0.45, 0.50}
40 {0.10, 0.11, . . . , 0.49, 0.50}

Word paradigms

2 {0.40, 0.56}, {0.65, 0.91}
5 {0.18, 0.26, 0.40, 0.56, 0.68, 0.91}
10 {0.18, 0.23, 0.29, 0.40, 0.48, 0.56,

0.61, 0.68, 0.75, 0.82, 0.91}
73 {0.18, 0.19, . . . , 0.90, 0.91}

ClassificationMethods

We employed three major types of classifiers. The first
comprises three versions of the linear discriminant analysis,
with each version using a different calculation method
for the covariance matrix. All three versions directly use
the EEG voltage features derived from sensor space. The
number of voltage features per channel was treated as a
hyperparameter. One version to calculate the covariance
matrix for LDA is to estimate one matrix for each class
and average these matrices into a common matrix. We call
this LDA approach LDA c-covs. The implementation for
this method was taken from the scikit-learn toolbox
version v0.21.3 (Pedregosa et al. 2011). Alternatively,
one can subtract the class-wise means from the data,
and then pool the data of both classes and calculate
one common covariance matrix from this pooled data
(cf. (4) to (6) in “Feature Extraction and Covariance
Calculation”). We refer to this approach as LDA p-cov.
This was a custom implementation that can be found in
our repository. The third version is the newly proposed
LDA with a time-decoupled covariance estimation, named
LDA imp. p-cov, which is detailed in “Time-decoupled
Covariance Matrices”.

As we are interested in settings with tiny datasets, we
often faced the situation that the feature dimensionality
exceeds the number of training samples. Therefore, the
second major classifier type uses a dimensionality reduction
step, which was performed initially on the voltage features
using a linear kernel PCA (Schölkopf et al. 1997). This
results in a smaller number of component features, which
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were furthermore classified by a LDA c-covs approach.
The number of components to use was treated as a
hyperparameter. In each cross-validation split, the kPCA
components were calculated on the training fold and applied
to both training and test folds. For brevity, we refer to this
classifier type as kPCA.

The third classifier type makes use of a specific space
to represent each epoch as a covariance matrix and perform
operations in this space of covariance matrices using
Riemannian geometry. First proposed for BCI by Barachant
and colleagues for motor imagery data (Barachant et al.
2010), extensions for ERP processing have been proposed.
We followed the ERP analysis pipeline of Kolkhorst
et al. (2018), making use of xDAWN as a spatial filter
preprocessing step (Rivet et al. 2009), extending the feature
representation by target (and non-target) templates prior
to calculating the covariance matrix per epoch, and a
classification thereof in a tangent space representation using
logistic regression. Note that in each cross-validation split,
the xDAWN components were determined on the training
fold and applied to both training and test folds. For the
Riemannian method, we varied the number of xDAWN
components between one and six and treated this choice as
a hyperparameter. Additionally we varied whether the target
class only, or both target and non-target class templates were
used in the covariance representation. This pipeline will be
referred to as Riemann.

For all classifier types, hyperparameters were evaluated
using values from a predetermined grid. In the case of
the LDA types and kPCA, the boundaries for the time
interval features considered are given by Table 3. For
instance, the boundaries {0.10, 0.18, 0.28} describe two
time intervals, with the first being [0.10, 0.18) and the
second one [0.18, 0.28).

All evaluated hyperparameters can be found in Table 4.
For the kPCA and the Riemann methods, all possible
hyperparameter combinations are evaluated. To avoid
overfitting, we report the single parameter set which

Table 4 All evaluated hyperparameters for each type of classifier

Type Hyperparameter Values

LDA Time intervals {2, 5, 10, all}
kPCA Time intervals {2, 5, 10, all}

kPCA comps. {10, 20, . . . , 90, all}
Riemann xDAWN comps. {1, 2, 3, 4, 5, 6}

Template class {both, target}

A value of ‘all’ time intervals means that every EEG sample in the
ERP interval is taken individually, the exact time points differ between
the paradigms (cf. Table 3)

obtained the best average performance across all datasets
and subjects.

Feature Extraction and Covariance Calculation

This section details the typical process of obtaining
amplitude-based features and the LDA weights as detailed
by Blankertz et al. (2011) for ERP-based BCIs. We describe
this procedure very detailed, as we build upon parts of it in
the next section for our proposed method.

The number of epochs per training dataset, the number
of available EEG channels and the number of time intervals
(or, when using kPCA preprocessing, the number of
kPCA components) varied between datasets. However, for
readability we will simplify the notation in this section
and the next, by providing the formulae for an example
dataset with 31 channels, 5 time intervals per channel and
90 training epochs. Note however, that the method can be
applied to any number of channels, epochs or time intervals
larger than one.

We use the notation x
Tj
ci

for the scalar value representing
the voltage in the i-th channel c during the j -th time interval
T of one epoch. This yields the stacked feature vector

x := (x
c1
T1

, x
c2
T1

, . . . , x
c31
T1

, x
c1
T2

, . . . , x
c31
T5

)T, (1)

which contains the relevant voltage features of a single
epoch, with x ∈ R

155. Stacking the feature vectors x of
all 90 available epochs of a single trial, we obtain the data
matrix

X := [x1, x2, . . . , x90], (2)

with X ∈ R
155×90 and xi belonging to the i-th epoch.

Similarly, the class labels of all 90 epochs are contained
in the vector

y := (y1, y2, . . . , y90)
T yi ∈ {0, 1}, (3)

with an entry of 1 indicating a target stimulus and 0 a
non-target of the i-th epoch.

Before calculating the covariance matrix Σ , we must
make X mean-free. As we have two different classes in our
data, target and non-target, we need the class-wise means

Mi :=
{

μ1 if yi = 1

μ0 if yi = 0
, (4)

where Mi describes the i-th column of the matrix M , with
μ1 and μ0 containing the average target / non-target ERP
voltages (in these 90 epochs), respectively. Now we can
calculate the class-wise mean-free feature matrix

X̃ := X − M, (5)

and finally obtain the sample covariance matrix

Σ̂ := 1

N − 1
X̃X̃T, (6)
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with Σ̂ ∈ R
155×155. Given that in this example we consider

using only 90 epochs, Σ̂ is linearly dependent and therefore
not invertible. In addition, Σ̂ badly approximates the true
underlying covariance matrix Σ due to a systematic bias of
overestimating large and underestimating small eigenvalues
when too few datapoints are available (Blankertz et al.
2011). A practical method to obtain an invertible covariance
matrix and counter the abovementioned bias is to regularize
the covariance matrix toward the main diagonal:

ν := diag(Σ̂) (7)

Σ̃ := (1 − γ )Σ̂ + γ ν̄I (8)

The sample covariance matrix Σ̂ is regularized towards
a diagonal matrix where diagonal entries correspond
to the average ν̄ of the diagonal values of Σ̂ . The
regularization strength γ was obtained using the Ledoit–
Wolf lemma (Ledoit and Wolf 2004).

Time-decoupled Covariance Matrices

Our proposed method builds on the general LDA p-cov
pipeline from the previous section, but improves the
covariance matrix by a better estimation of the spatial noise
structure. This is made possible by time-decoupling of the
noise estimation.

For the purpose of classification using LDA, two
common domain-specific assumptions about the noise in
ERP data work well in practice (Blankertz et al. 2011):
The first (A1) states that the noise on the ERP features
is normally distributed and has zero-mean, which is
reasonable to assume when using a high-pass filter on
the measured signal and acknowledging that the EEG
background noise is the result of many spatio-temporally
overlapping brain sources. The second assumption (A2) is
that the noise is unrelated to the current user task (i.e. either
attend or ignore a stimulus) or—going one step further—if
a stimulus has been played recently or not. On the level of
a single epoch, this means that within a single EEG channel
the noise should be homoscedastic, i.e. the same for the five
extracted voltage features per channel. We saw before, that
this is approximately fulfilled when no baseline correction is
performed on the epochs (cf. Fig. 2). For the most common
noise sources, such as technical noise and background EEG
activity this assumption seems reasonable.

In the conventional estimation of the covariance matrix,
the channel-wise noise within a time interval is estimated
for each time interval individually. However, when there is
no difference in the channel-wise noise between the time
intervals (A2), it seems reasonable to estimate one common
channel-wise covariance matrix that is decoupled from the
different time intervals. We propose the idea, to obtain a
robust estimation of the between-channel covariance matrix

in order to enhance the covariance matrix needed for the
calculation of the LDA weight vectors and bias. We thereby
build on the process described in “Feature Extraction and
Covariance Calculation”.

The dimensionality of the feature vector x results in a
covariance matrix Σ̃ with a particular structure. In order
to describe submatrices of Σ̃ we use the notation Σ̃i:j,n:m
which indicates the submatrix obtained by using the i-th up
to the j -th row and the n-th up to the m-th column from Σ̃ .
For example, using the feature vector definition as described
in Eq. 1, the matrix Σ̃1:31,1:31 would describe the covariance
between all 31 channels within the first time interval T1. The
covariance between all channels and between time intervals
T1 and T2 is contained in Σ̃1:31,32:62 (and Σ̃32:62,1:31 the
other way around).

If A2 is true, the covariance between channels (given time
intervals of the same size) should look similar within each
time interval, i.e.,

Σ̃1:31,1:31 � Σ̃32:62,32:62 � . . . � Σ̃125:155,125:155 (9)

These five different blocks, which describe the covariance
between channels separately for the five time intervals will
be called B1, B2, . . . , B5 in the following.

An example of a covariance matrix obtained from ERP
data is given by Fig. 3 as a heat map. The within-time
interval blocks on the main diagonal (depicted with a green
border) show a similar structure, but slightly vary in the
average intensities. The latter is caused by a different
number of temporal samples averaged in each time interval.
However, if both A1 and A2 are true, the within-time interval

Fig. 3 Covariance matrix of the ERP features depicted in the ERP plot
in Fig. 1, except that no baseline correction was applied (see Fig. 2).
There are five distinct blocks (indicated by green borders), each
containing the covariance between EEG channels within one time
interval
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channel covariance matrices Bm should (aside from noise)
be equal, if the number of samples that are averaged in
each of the time intervals Tm are identical. In this case, we
can calculate the within channel covariance regardless of a
specific time interval in the epoch. Let

xC := (xc1 , xc2, . . . , xc31)T, (10)

with xC ∈ R
31 represent the features of a single time

interval only. For our example, we obtain five of these
vectors xC per epoch, one for each of the five different time
intervals. Stacking these vectors, the feature matrix can be
re-arranged to

XC := [xC
1 , xC

2 , . . . , xC
450], (11)

with XC ∈ R
31×(90·5). Compared to Eq. 2, we now

have a much larger number of samples to estimate
this smaller between-channel covariance matrix Σ̂C . The
calculation of Σ̂C can be performed as described in Eqs. 5
and 6. Empirically we found, however, that shrinkage
regularization should be avoided (except when D > N) as
it negatively affects classification performance. Note, that if
the width of the feature time intervals T1, T2, . . . , T5 differs,
the data should be scaled to a common variance prior to
creating XC . This can be accomplished by considering the
number of samples in a time interval Tm averaged per time
interval, leading to a scaling factor of

√|Tm| for the m-th
time interval.

After obtaining an estimate for the between-channel
covariance matrix Σ̂C , we use it to replace the blocks Bm of
the whole covariance matrix Σ̂ , however, only after having
rescaled Σ̂C to match the determinant of Bm, i.e.

Σ̂C
m :=

(
detBm

det Σ̂C

) 1
31

Σ̂C . (12)

This rescaling ensures detBm = det Σ̂C
m . Intuitively, the

rescaling has the effect, that the overall spread of the data
distribution described by the covariance matrix Σ̂C

m remains
equal to the overall spread of the data distribution described
by Bm.

After the rescaling, we can substitute Bm with Σ̂C
m and

obtain a new covariance matrix Σ̇ which will be used for the
calculation of the classifier weights in linear discriminant
analysis:

w := Σ̇−1(μ0 − μ1) (13)

b := 1
2w(μ0 + μ1). (14)

This new covariance matrix Σ̇ can be understood as
a covariance matrix in which the blocks on the main
diagonal, i.e. the between-channel covariance, has been
time-decoupled. Hereinafter we refer to the LDA that uses
this way of time-decoupling to improve the pooled data
covariance matrix as LDA imp. p-cov.

Results

We first report the average performance of the tested
classification methods on all datasets and then the influence
of training dataset size on performance differences between
the methods. Finally, subject-wise results are shown for
some datasets.

Optimal Hyperparameters and Grand Average
Performance

Searching through the hyperparameter space, we found that
on average ten time intervals were optimal for all LDA-
based approaches. For kPCA preprocessing, 70 components
performed best across the datasets. The Riemannian-based
classifier obtained the best performance when using only
the target class as a template and using five xDAWN
components (see Table 5).

The grand average results using these hyperparameters
are shown as black markers in Fig. 4. Colored markers
indicate the average AUC values across subjects sepa-
rately for each dataset. The proposed new LDA method
(LDA imp. p-cov) using the time-decoupled pooled covari-
ance matrix outperformed the corresponding LDA method
(LDA p-cov) with a standard shrinkage-regularized pooled
covariance matrix by about 4% points AUC (p = 0.003).
The kPCA is supposed to handle large feature dimensionali-
ties rather well. As its performances, however, are very close
to those of the LDA p-cov, we assume that the improvement
of our proposed novel method is not merely caused by a
better handling of high-dimensional data.

The AUC improvement of our novel approach is still
around 2% AUC points on average (p = 0.036) when
comparing the proposed novel approach with the runner up,
the Riemannian method.

We observed strong discontinuities in the raw data of
the EPFL datasets, expressed by sudden step-wise voltage
offsets in the data. This seems to cause serious problems for
the LDA-based methods, whereas the Riemannian method

Table 5 Optimal hyperparameters that produced the best performance
on average across all datasets for each classification method

Method Hyperparameter Value

LDA imp. p-cov Time intervals 10

LDA p-cov Time intervals 10

LDA c-covs Time intervals 10

kPCA Time intervals 10

kPCA components 70

Riemann Template class Target

xDAWN components 5
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Fig. 4 Performances for all datasets individually (polygon markers)
and averaged (‘X’ markers), both after averaging across subjects.
Black error bars indicate two standard errors of the mean

copes better with these discontinuities. Applied to the non-
EPFL datasets, the Riemann method does not show a
clear advantage over the LDA methods (see Fig. 4). The
reported advantage of Riemannian methods on ERP data
(cf. Kolkhorst et al. 2018; Barachant and Congedo 2014)
may be more pronounced on larger training datasets. These,
however, were rare in our benchmark (median: 300 epochs,
inter-quartile range: 204 to 540 epochs).

Interestingly, kPCA increases the average performance of
the LDA with class-wise covariance matrices. However, the
effect is not very large. Figure 4 reveals that kPCA improves
performance greatly for the EPFL datasets compared to
LDA c-covs, but for most other datasets its performance
decreases slightly. This indicates kPCA’s ability to deal
well with the discontinuities in the EPFL datasets. Lower
performances on the remaining datasets indicate that
kPCA’s hyperparameters do not generalize well over all
datasets.

The effect of baseline correction on the classification per-
formance of the different classifiers is provided by Table 6.
We found that the performance of LDA classifiers tends
to decrease when using a baseline interval of -0.2 s to
0 s compared to using no baseline correction at all. A
possible explanation for this is the effect baseline cor-
rection has on the feature’s standard deviations as shown
in Fig. 2. As applying baseline correction violates assump-
tion A2 (cf. “Time-decoupled Covariance Matrices”) the
performance decay of LDA imp. p-cov is largest among
all methods. The Riemannian classification method is the
only one that benefits marginally (0.003 AUC points) from
baseline corrections. Note that we used a high-pass with

Table 6 Comparison of the grand average AUC performances across
all datasets and subjects of the evaluated classification methods

Baseline correction:

Method No Yes

LDA imp. p-cov 0.858 0.818

LDA p-cov 0.819 0.811

LDA c-covs 0.815 0.808

Riemann 0.836 0.839

kPCA 0.826 0.815

This table shows the detrimental effects of baseline corrections on
LDA classification performance

a threshold of 0.5Hz. In the case of even lower thresh-
olds, the influence of baseline correction may have to be
re-evaluated.

Influence of Training Dataset Size

In the top plot in Fig. 5a the performance difference between
the proposed LDA imp. p-cov and the runner-up Riemann
is shown for each subject and dataset. The proposed method
outperforms the Riemann method especially when the
amount of training data is small but it stays marginally
superior also for most larger datasets. The EPFL datasets
deviate from this observation, which could be attributed to
the Riemann method’s ability to cope well with artifacts, as
these datasets contain strong discontinuities in the epoched
signals.

We observe, that the Riemann method performs particu-
larly bad on the relatively large WORD healthy dataset. In
this dataset, the informative ERP features tend to have larger
latencies than in datasets using less complex stimuli.

For three subjects the performance is more than 5%
points AUC worse when using the LDA imp. p-cov method.
They belong to the datasets SPELLER MIX, SPELLER LLP
and TONE healthy. Closer investigation revealed that for
some virtual data subsets in these subjects the eigenvalues
of the covariance matrix were no longer all positive after
replacing the diagonal blocks, causing the poor average
performance when employed in the LDA.

Figure 5b shows how the LDA imp. p-cov method
compares to the regular LDA p-cov method. Here, the
same trend with respect to virtual data subset sizes can
be observed. Interestingly, our proposed method seems to
handle the discontinuities present in the EPFL datasets
much better, leading to large performance differences
between these two methods. Compared to the Riemann
method, we can now see that the performances are nearly
equal for the two largest datasets positioned on the right end
of the horizontal axis.
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Fig. 5 a Separately for each subject and dataset, the mean AUC dif-
ference between the LDA using the time-decoupled pooled covariance
and the Riemannian method is provided. b Corresponding AUC dif-
ferences of the new method in comparison with an LDA using pooled
covariance matrices (bottom). In this overview, the Riemannian meth-
ods use the overall optimal hyperparameters (five xDawn components,

only target class templates) for each dataset and the LDAs use the
overall optimal number of ten time intervals for each dataset. From the
left to right the datasets are ordered by the average number of epochs
in a virtual data subset (mean and standard deviation are provided in
brackets). Colors encode the number of EEG channels in a dataset

The impact of having few training data depends on
multiple factors, such as paradigm, signal-to-noise ratio
and dimensionality. To better quantify this impact, we
additionally evaluated how the performance difference
between our proposed method and the baseline LDA p-
cov method develops depending on the amount of training
data. For three datasets, we trained both classifiers using
an increasing number of training samples per VDS from
100 up to the largest amount that was available for all
subjects in a dataset. In order to obtain standard error
estimates, we calculated the cross-validated AUC for each
VDS size 20 times on different within-class permutations.
As shown in Fig. 6, for few training samples LDA imp. p-
cov provides a better average performance for each dataset.

As expected, this improvement is reduced when more and
more training data is used. Note that for the BNCI patient
dataset (Fig. 6b), the mean drops below 0, while the median
stays close to 0. This difference is caused by only one
subject who has bad performance using the LDA imp. p-cov
with 1000 to 3000 epochs for the cross-validation.

Our proposed method estimates a more reliable version
of the between-channel covariance matrix. To determine
how the number of channels impacts our proposed method,
we evaluated on the TONE healthy dataset (as it offered
the largest number of channels) with both increasing
number of data for the VDS as well as with artificially
reduced channel subsets. The results in Fig. 7 show that
the performance improvement remains relatively stable
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Fig. 6 Impact of increasing training samples on the performance
difference between LDA imp. p-cov and LDA p-cov for the datasets a
BI b+, b BNCI patient and c BNCI healthy 2. Values above 0 indicate
a better performance of our proposed LDA imp. p-cov method. With
growing dataset sizes, both methods converge to the same performance

when using 63 or 31 channels. However, especially when
using very small channel sets of only four channels, the
performance improvement obtained by our new approach is
lower across all training data set sizes, when compared to
using the full set of channels.

Fig. 7 Interaction between amount of training data and number of
channels. Each curve represents a different number of channels and
depicts the performance difference between LDA imp. p-cov and LDA
p-cov for the TONE healthy dataset for varying number of training
samples per VDS. For this purpose, the full channel set of 63 channels
was reduced to smaller, approximately equidistant sets. Each curve
provides the median of 20 permutations. Values above 0 indicate a
better performance of our proposed LDA imp. p-cov method

Subject-wise Results for Selected Datasets

In Fig. 8, absolute AUC performances of each subject are
provided for three selected datasets and separately for the
five classification approaches.

The SPOT dataset on top (a) has the smallest virtual data
subsets of 90 epochs each. We can see that our proposed
method outperforms all other methods for every individual
subject. Additionally, the ranking between subjects is very
stable between the five approaches and specifically between
the LDA-based methods.

In Fig. 8b, the SPELLER LLP dataset with 204 epochs
per virtual data subset is shown. A few outlier subjects
are observed with markedly decreased performances.
The left-most dark triangle in the LDA imp. p-cov
method corresponds to the data of one of the subjects,
which shows the numerical issues described previously.
However, these numerical issues do not apply to all poorly
performing subjects. The second worst subject in the
LDA imp. p-cov method (left-most dark square) for example
shows performance gains with the novel method compared
to the other methods.

Figure 8c shows the BI b+ dataset with 480 epochs per
virtual data subset. In this dataset, the overall performance
of the LDA imp. p-cov method is slightly better than that
of the runner-up LDA p-cov. Additionally, the performance
of most subjects is very similar between the two methods,
and only some subjects show a noticeable performance gain
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Fig. 8 Results for the a SPOT, the b SPELLER LLP and the c BI b+

dataset. Subjects can be matched by marker type and color brightness.
Within one classification method strip, subjects are ordered from
left to right with respect to their individual scores obtained by the
LDA imp. p-cov method. The cross marker indicates the mean AUC,
with black bars marking two standard errors of the mean

using the time-decoupled matrices. In the EEG data there
we did not find any immediate indicator, such as artifacts or
heavy noise, that indicates why that could be the case.

Discussion

In this work we considered mostly the traditional two-
class ERP oddball paradigms. As our proposed method
improves the covariance matrix, it could also be applied
to multi-class methods that require a covariance matrix
estimation, e.g. multi-class LDA, given that the assumptions
we made in “Time-decoupled Covariance Matrices” are
fulfilled. Additionally, there are other BCI paradigms using
different kind of signals. For error-related potentials (Dal
Seno et al. 2010) and slow cortical potentials (Krauledat
et al. 2004), our method should be applicable without any
additional adaptations, except choosing the relevant time
intervals. However, this needs to be confirmed in future
work.

The transfer of our proposed method to oscillatory
signals, such as steady state evoked potentials and event-
related de-/synchronization in motor imagery, is not as
straightforward. For these signals, usually the feature vector
contains only spatial data from one single time interval.
However, if features from multiple time intervals are used,
our method should be applicable, given that our assumptions
are fulfilled.

In this work, we only evaluated the classification of
brain signals. In theory, our approach should be applicable
to regression approaches. However, these have to be
covariance-based and use a spatio-temporal covariance
matrix. While these approaches exist, they typically use
a spatial covariance matrix (Dähne et al. 2014) only, or
use features in different frequency bands (Fatemi and
Daliri 2020), which can violate the assumption of feature
homoscedasticity over time.

For three subjects who were identified as negative
performance outliers, we found that numerical instability
can be caused by the proposed diagonal block replacement.
Unfortunately, so far we found no indicators in the EEG
signals, e.g. artifacts or heavy noise, which could predict
if this rare problem will occur. In future work, we aim to
determine the cause of the numerical instability from the
data and how established approaches, e.g. regularization
of the covariance matrix, can be implemented to obtain a
well-conditioned matrix after the replacement operation.

Note that so far we only inspected the impact on
LDA performance of the time-decoupling of the covariance
matrix. While we can observe improved performances, it
still is unclear whether this new covariance matrix is closer
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to the true underlying covariance matrix. In future work,
we plan to run simulation studies to evaluate which matrix
estimation technique, i.e. time-decoupling, shrinkage or
the sample covariance matrix, is closer to the actual data
generating covariance matrix.

We observed a performance benefit not only in these
small datasets, but in most tested datasets of varying
dimensionality and SNR level. Thus we are optimistic,
that the applicability of our proposed novel method is
not restricted to the domain of BCI. Instead, it could be
valuable to apply it also to other data. Generally, any data
which also has a spatio-temporal structure, and in which the
spatial noise can be assumed to be constant with respect
to time could profit from the proposed approach. Specific
candidates are MEG and multi-electrode EMG recordings.
Another possible application could be spatially distributed
sensor networks that make use of identically constructed
sensors.

We also found that using a linear kernel principal
component analysis does not improve the performance of an
LDA classifier for most datasets. This indicates that large
dimensionality is not a primary issue in these datasets.

In ERP paradigms, the concrete ratio of target and
non-target stimuli within chronological virtual data subsets
depends on the used stimulus sequence. As in this work we
focused on method development, we chose to use a stratified
cross-validation scheme rather than a chronological cross-
validation scheme which typically is preferred in the BCI
domain. While the latter would have been closer to the
final application, it could not guarantee that all folds have
the same class ratios. This would have been a disadvantage
for the comparison of methods, as we introduce another
challenge into the benchmark, i.e. how well does a method
handle differing class ratios in training and validation.
In fact, for datasets recorded in our lab in which the
generated stimulus sequence guarantees stratified folds, we
observed, that the relative performance differences between
the methods were nearly identical (data not shown), but the
overall performance across methods dropped by up to 5%
points AUC, depending on the dataset.

Our proposed novel time-decoupling of the covariance
has merit when using it to enhance the feature covariance
matrix of an LDA classifier. We think our approach
improves the usability of ERP-based BCIs due to several
arguments, for which we found clear evidence in our
extensive evaluation on multiple datasets.

First, our approach offers a simple, yet effective, way
to improve the classification performance for very small
datasets—a problem identified by multiple authors in the
field of BCI, who emphasized the need for decoding
algorithms to be able to handle the training with few data
points.

Second, the new methods allows to shorten the required
calibration time while still keeping the same classification
performance—a quality that improves usability specifically
for patient studies.

Third, our approach yields classification performances
well above chance level even when using tiny (72
epochs) amounts of training data. This characteristic can
make experimental parameter optimization feasible, as the
classification performance can be estimated reliably even on
very short EEG recordings.

Fourth, with increasing training data, the classification
performance of our method converges to the performance
of the regular LDA. Therefore, there is no harm done using
our approach even when abundant training data is available
or when it is unclear, if the size of the training data set
is in the right range for profiting from the time-decoupled
covariances.

Due to the aforementioned arguments, we would
recommend BCI practitioners to use the proposed time-
decoupled covariances for LDA as a first shot method, as it
shows clear benefits over an ordinary shrinkage-regularized
LDA for most ERP-classification scenarios.

Conclusion

Using domain knowledge and exploiting the specific
structure of the feature vectors in ERP classification
paradigms, we propose a new way to estimate a covariance
matrix that outperforms a shrinkage based covariance
matrix, especially on small datasets. Our results could
enable fast-adapting BCIs that require short calibration
times. A possible application for our method is the tuning
of stimulation parameters to an individual subject. Here,
long recordings are not feasible and the information content
of short recordings should be maximized to determine the
optimal parameters.

Information Sharing Statement

Results and most figures for the public datasets we used
can be reproduced using the code available at https://github.
com/jsosulski/time-decoupled-lda. The detailed instruc-
tions make it easy to obtain the results, especially when
using the same system we used, i.e. Ubuntu 18.04 and
python 3.6.9. The proposed improved classifier makes use
of the widely used sklearn API and can be used as a drop-
in replacement for other sklearn classifiers. The classifier
is also available in the aforementioned repository. Public
datasets used in this work are automatically downloaded
using the provided code.
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