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Abstract

This paper presents a fast two-stage image segmentation method for intensity inhomoge-

neous image using an energy function based on a local region-based active contour model

with exponential family. In the first stage, we preliminary segment the down-sampled images

by the local correntropy-based K-means clustering model with exponential family, which can

fast obtain a coarse result with low computational complexity. Subsequently, by taking the

up-sampled contour of the first stage as initialization, we precisely segment the original

images by the improved local correntropy-based K-means clustering model with exponential

family in the second stage. This stage can achieve accurate result rapidly as the result of the

proper initialization. Meanwhile, we converge the energy function of two-stage by the Rie-

mannian steepest descent method. Comparing with other statistical numerically methods,

which are used to solve the partial differential equations(PDEs), this method can obtain the

global minima with less iterations. Moreover, to promote regularity of energy function, we

use a popular regular method which is an inner product and applies spatial smoothing to the

gradient flow. Extensive experiments on synthetic and real images demonstrate that the pro-

posed method is more efficient than the other state-of-art methods on intensity inhomoge-

neous images.

Introduction

Image segmentation is still a popular problem in the field of image processing and computer

vision [1]. The intensity inhomogeneity exits in images, which is caused by the imperfections

of image acquisition, influence of the illumination and other factors of environment, is one of

the main issues in subject of image segmentation. The existences of intensity inhomogeneity

in images may lead to misjudgments of doctors and researchers. Therefore, the subject for seg-

menting images with intensity inhomogeneity attracts more and more researchers to study.

Recently, active contour models [2] have been a successful branch for image segmentation.

The existing active contour models can be divided into two major types: edge-based models

[3–7] and region-based models [1, 2, 8–15]. Edge-based models utilize the image gradient
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information to drive the evolution of active contours. Therefore, these models can hardly

obtain right segmentation results for images with noisy or weak edge. Alternatively, region-

based models use the statistical and curvature information inside and outside of the contour to

guide the contour evolution. Hence, the region-based models have better performance than

the edge-based models and are able to deal with noisy and blurred images.

One of the most popular region-based models is the Chan-Vese model [2], which computes

the intensity averages by using constant intensity information across the region. Thus, this

model is a global region-based model and assumes images are homogeneous. For images with

intensity inhomogeneity, many local region-based methods [10–15] have been proposed.

These models are able to handle image intensity in local region and can be used to segment the

images with intensity inhomogeneity. However, most of these region-based models are solved

by the standard gradient method [5, 7], which needs a large number of iterations to converge

and easily falls into local minima. The convergence problem for active contour models is

inherently to solve of the Euler-Lagrange differential equations. Therefore, various methods

have been proposed recently to solve the Euler-Lagrange differential equation.

These methods can be mainly categorized into three groups: the first group focuses on

investigating more sophisticated differential equations, the second group immerses in search-

ing other alternating direction method, while the third group concentrates on describing

Euler’s method as a gradient descent method and applying more advanced optimization tech-

niques. The development of the first group comes from the work of Scheuermann et al. [16]

and Badshah et al. [17]. Scheuermann et al. [16] studied the RK-2 and RK-3 order Runge-

Kutta methods and the explicit Euler method. Badshah et al. [17] proposed two related multi-

grid algorithm. The second group derives from Xie et al. [18] and Song et al. [19]. Xie et al.
[18] and Song et al. [19] considered Bregman method and Split Bregman method for image

segmentation. These methods offered another line of fast algorithms and can get global min-

ima for some active contour models. But the Bregman method and Split Bregman method are

used to solve L0 minimization directly and do not work for different types active contour

models.

As far as the optimization-based approach, Chartrand et al. [20] and Mendi et al. [21] pro-

posed the quasi-Newton method for minimizing the active contour energy function within

Chan-Vese model. Following these two works, Bar et al. [22] modified the quasi-Newton

method by adding an analytic functional Hessian and presented a generalized Newton

method. Alternatively, Sundaramoorthi et al. [23] creatively proposed the Sobelev gradient

descent method by using Sobolev metrics. The Sobelev metrics outperform the traditional

metrics for the same segmentation energy function.

Motivated by the work of Sundaramoorthi et al. [23], Pereyra et al. [24] first considered the

Riemannian steepest descent method on model’s intrinsic manifold for the Chan-Vese model,

which converged extremely fast. However, this method can only be applied to images with

Gaussian distribution. Considering that the images have other specific distributions, such as

Gamma [25], Rayleigh [26], Laplace [10] and Weibull [27]. Pereyra et al. [28] derived a general

Riemannian optimization method for active contour model with the exponential family [29].

More precisely, Pereyra et al. presented a smooth descent algorithm [30] for nonparametric

active contour models. Above all, Pereyra et al. have given appropriate mathematical develop-

ment for natural metric of the statistical manifold, which makes the computation of natural

matric possible. But in the paper [28], Pereyra et al. only demonstrated the feasibility of the

natural metric for Chan-Vese model, which still cannot achieve satisfactory segmentation

results for images with intensity inhomogeneity.

To achieve the object of fast segmentation for images with intensity inhomogeneity, we

combine the Riemannian steepest descent method with local correntropy-based K-means

An optimization active contour model

PLOS ONE | https://doi.org/10.1371/journal.pone.0214851 April 19, 2019 2 / 22

https://doi.org/10.1371/journal.pone.0214851


clustering (LCK) model [13], which could obtain ideal segmentation results for intensity inho-

mogeneous images. In addition, in order to further improve the speed of operation and

weaken the dependence of LCK model on the initial position, we divide our segmentation

algorithm into two stages. The first stage can roughly but fast obtain the coarse contour near

the object boundaries with low computational complexity in coarse space. The second stage

can easily get the accurate segmentation results with suitable initialization in original space.

Meanwhile, the two minimization problems of the energy function with exponential family

[29] are iterated by natural gradient method, which is faster than other methods for solving

active contour models to find the global minima.

The remainder of this paper is structured as follows. In the next section we introduce the

classic region-based active contour modes and the frameworks of region-based active contour

models with exponential family. In Section 3 we derive a fast two-stage segmentation model.

More precisely, we develop the mathematical implement for local region-based active contour

models. In Section 4 we list the experimental results illustrating the performance of the pro-

posed method. Finally, in Section 5 we describe the conclusion and future work.

Background and theoretical foundations

Traditional region-based active contour models

Chan-Vese model. Chan and Vese [2] proposed a global region-based active contour

model for image segmentation. This model approximates the image intensities outside and

inside of contour by the average image intensities outside and inside of contour, respectively.

For the input image I:O!<2, we divide the image domainO into two regions: an object region

Oinside and a background regionOoutside =O/Oinside by a closed contour C(s): [0, 1]!<2, which

corresponding to zero level set function: C = {x: ϕ(x) = 0}. The energy function of Chan-Vese

model can be written as:

ECVðC; c1; c2Þ ¼ l1

Z

O

jIðxÞ � c1j
2H�ð�ðxÞÞ dx

þl2

Z

O

jIðxÞ � c2j
2
ð1 � H�ð�ðxÞÞÞ dx

þm

Z

O

jrH�ð�ðxÞÞj
2 dxþ n

Z

O

H�ðxÞ dx:

ð1Þ

Where μ� 0, ν� 0, λ1� 0 and λ2� 0 are fixed constants. c1 and c2 are the average image inten-

sities outside and inside contour C, respectively. H�(ϕ) is the smooth approximate of the Heavi-

side function

H�ðxÞ ¼
1

2
½1þ

1

p
arctanð

x
�
Þ� ð2Þ

and the derivative of H� is defined as

d�ðxÞ ¼ H0

�
ðxÞ ¼

�

pð�2 þ x2Þ
: ð3Þ

Chan and Vese minimized the energy function (1) by the standard gradient descent method
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[31]. The gradient descent flow corresponding to ϕ can be written as

c1ðxÞ ¼
R

O
IðxÞH�ð�ðxÞÞ dxR

O
H�ð�ðxÞÞ dx

; c2ðxÞ ¼
R

O
IðxÞð1 � H�ð�ðxÞÞÞ dxR

O
ð1 � H�ð�ðxÞÞÞ dx

@�

@t
¼ d�ð�Þð� l1ðIðxÞ � c1Þ

2
þ l2ðIðxÞ � c2Þ

2
þ mdivð

r�

jr�j
Þ � nÞ

:

8
>>>><

>>>>:

ð4Þ

As a global active contour model, the curve convolution of the CV model is only related to

global characteristic of the image region. Therefore, the CV model can achieve the satisfactory

results for images with intensity homogeneity, whereas it can not deal with the images with

intensity inhomogeneity.

Local binary fitted model. Li et al. [11] proposed the local binary fitting (LBF) model by

considering a kernel function into a local region-based model. The LBF model can deal with

intensity inhomogeneity images. The energy function of LBF model is defined as

ELBFð�Þ ¼ � l1

Z

O

Z

O

Ksðx � yÞjIðyÞ � m1ðxÞj
2Hð�ðyÞÞ dy dx

� l2

Z

O

Z

O

Ksðx � yÞjIðyÞ � m2ðxÞj
2
ð1 � Hð�ðyÞÞÞ dy dx

þn

Z

O

jrHð�ðxÞÞj dxþ m
Z

O

1

2
ðjr�ðxÞj � 1Þ

2 dx;

ð5Þ

where λ1, λ2� 0, ν� 0 and μ� 0 are fixed constants. Ksðx � yÞ ¼ 1

ð2pÞðn=2Þsn
e� jx� yj2=2s2

is Gauss-

ian kernel function with kernel width σ, which is introduced to control the spatial distance

between the x-th and the y-th; m1(x) and m2(x) are the local clusters of the x-th pixel. Mean-

while, in order to regularize the level set function ϕ, the third and the forth terms are added as

level set regularization term.

The level set function and the local clusters can be updated from Eq (5) by the standard gra-

dient descent method, which can be computed as

m1ðxÞ ¼
KsðxÞ � ½Hð�ðxÞÞIðxÞ�

KsðxÞ �Hð�ðxÞÞ
; m2ðxÞ ¼

KsðxÞ � ½ð1 � Hð�ðxÞÞÞIðxÞ�
KsðxÞ � ð1 � Hð�ðxÞÞÞ

@φ
@t
¼ � d�ð�Þðl1e1 � l2e2Þ þ nd�ð�Þdivð

r�

jr�j
Þ þ mðr2� � divð

r�

jr�j
ÞÞ:

ð6Þ

8
>>>><

>>>>:

Where e1 and e2 are

ei ¼
Z

O

Ksðy � xÞjIðxÞ � miðyÞj
2 dy: i ¼ 1; 2

The LBF model considers the Gaussian kernel function to capture the local region informa-

tion of images and can segment the images with intensity inhomogeneity. However, the Gauss-

ian kernel function is not sufficient to introduce the image information and the LBF model

cannot segment images with severe intensity inhomogeneity. Moreover, this model is very sen-

sitive to the initialization and the iterative approach of it easily falls into local minima.

Local correntropy-based K-means clustering model. Wang et al. [13] presented a more

accurate segmentation method (LCK) for images with unknown complex noise. The main dif-

ference between the LCK model and LBF model is that the LCK model utilizes the pixel-to-

cluster distance, which makes this model is more robust to unknown complex noise. The
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objective function of the LCK model is

ELCKð�Þ ¼ � l1

Z

O

Z

O

Ksðx � yÞwyjIðyÞ � m1ðxÞj
2Hð�ðyÞÞ dy dx

� l2

Z

O

Z

O

Ksðx � yÞwyjIðyÞ � m2ðxÞj
2
ð1 � Hð�ðyÞÞÞ dy dx

þn

Z

O

jrHð�ðxÞÞj dxþ m
Z

O

1

2
ðjr�ðxÞj � 1Þ

2 dx:

ð7Þ

The weight of the y-th is calculated by

wy ¼

Z

O

Hð�ðxÞÞgðkIðyÞ � m1ðxÞk2
Þ þ ð1 � Hð�ðxÞÞÞgðkIðyÞ � m2ðxÞk2

Þ: ð9Þ

Minimizing Eq (7) by using the standard gradient method, the corresponding local clusters

and level set formulation is obtained by

m1ðxÞ ¼
KsðxÞ � ½Hð�ðxÞÞIðxÞ�wx

KsðxÞ �Hð�ðxÞÞwx
; m2ðxÞ ¼

KsðxÞ � ½ð1 � Hð�ðxÞÞÞIðxÞ�wx

KsðxÞ � ð1 � Hð�ðxÞÞÞwx

@φ
@t
¼ � Hð�Þd�ð�Þwxðl1e1 � l2e2Þ þ nd�ð�Þdivð

r�

jr�j
Þ þ mðr2� � divð

r�

jr�j
ÞÞ:

8
>>>><

>>>>:

ð8Þ

The LCK model is robust to images with complex noise and intensity inhomogeneity,

whereas it is also a little bit sensitive to the initialization. Meanwhile, the iterative method of

the LCK model also easily falls into minima and needs much more times to obtain the final

segmentation results.

Region-based model with exponential family observation

Due to the fact that the energy functions of region-based active contour model does not have a

structure of a vector space, Lecellier et al. [29] proposed the exponential family observation

framework for region-based model. This framework is specifically calculated when coping

with global region-based information such as statistical image features (histogram, variance

and mean).

Exponential family. In this section, we provide the necessary mathematical concepts on

the exponential family, which covers most noise models of the image acquisition system. For

the given point x 2 <d, the image values can be distributed by

IðxÞ � f ð�jm1ðxÞÞ if x 2 Oinside; IðxÞ � f ð�jm2ðxÞÞ if x 2 Ooutside: ð9Þ

Where the m1(x) and m2(x) are the clusters of the foreground and background respectively

and the function f: <p!<+ is the probability density function with exponential family

distribution.

Definition 0.1 The family of distributions of a random variable, is called a k-parameter
canonical exponential family. If there exists canonical parameter vector η = (η1, . . ., ηk)

T and
log-normalizer A(η), and real-valued functions h, T1, . . ., Tk: <

k!<, the probability density
function f(�|m) may be written as

f ðsjmÞ ¼ hðyÞexp½ZðmÞTTðyÞ � AðmÞ�; ð10Þ

here T = (T1, . . ., Tk)
T is the sufficient statistic.

Note the Definition 0.1 gives the general distribution of exponential family that most of

them have distribution for signal and image processing. Table 1 shows some common
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canonical distributions of the exponential family, such as the Gamma, Beta, Poisson, Gaussian,

Exponential, and Rayleigh.

Region-based active contour model with exponential family observation. Following the

definition of exponential family, the region-based active contour model (this paper takes LCK

model as an example)(Eq (7)) with exponential family observation can be rewritten as

ELCKð�Þ ¼ � l1

Z

O

Z

O

Ksðx � yÞwy log f ½IðyÞjm1ðxÞ�Hð�ðyÞÞ dy dx

� l2

Z

O

Z

O

Ksðx � yÞwy log f ½IðyÞjm2ðxÞ�ð1 � Hð�ðyÞÞÞ dy dx:
ð11Þ

The functional optimization problem Eq (12) can be solved by alternative minimization

method. In this paper, we take the Gaussian distribution as an example and give the iteration

with respect to ϕ, m1(x) and m2(x) as following:

m1ðxÞ ¼
KsðxÞ � ½Hð�ðxÞÞIðxÞ�wx

KsðxÞ �Hð�ðxÞÞwx
; m2ðxÞ ¼

KsðxÞ � ½ð1 � Hð�ðxÞÞÞIðxÞ�wx

KsðxÞ � ð1 � Hð�ðxÞÞÞwx

@�

@t
¼ Ks � fdð�ðxÞÞwx½l1 log f ðIðxÞjm1ðxÞÞ � l2 log f ðIðxÞjm2ðxÞÞ�g:

8
>>><

>>>:

ð12Þ

Although we give more general distribution for LCK model, it still can not overcome its

inherent limitations. The segmentation method of the above LCK models is not convex and

the weights of the pixels wx are always decreased faster than other region pixels during the iter-

ated process. Hence, the main difficulty for the region-based active contour model is still the

solution of energy function.

Proposed model

Inspired by the work of Wang et al. [13] and Pereyra et al. [28], we proposed a novel two-stage

segmentation method, which can fast segment the intensity inhomogeneous images with accu-

racy results. In the real-world, the accuracy segmentation results for intensity inhomogeneity

images are difficult to obtain and also need to spend a large amount of time, because these

intensity inhomogeneity images are always big and complex. Due to the above factor, we split

the process of the segmentation into two stages which makes the computation with lower

computational complexity. In the first stage, we implement the segmentation model in coarse

spaces. Following it, in the accurate segmentation stage, we utilize the up-sampled coarse

results as initializations and segment the images in fine space. Finally, to get more accurate seg-

mentation results faster, we present the Riemannian steepest descent method for the two-stage

segmentation model.

Table 1. Some common distribution of the exponential family.

Distribution mT η(m) S(s) A(m)

Gamma (λ, p) (−λ, p − 1) (s, logs) −(η2 + 1)log − η1 + logΓ(η2 + 1)

Beta (r,s) (r-1,s-1) (logs, log(1 − s)) −logB(η1 + 1, η2 + 1)

Poisson μ logμ s eη

Gaussian (μ, σ2) m

s2 ;
� 1

� 2s2

� �
(s, s2) 1

2
�

Z2
1

2Z2
� log � Z2

p

� �

Exponential λ −λ s −log − η
Rayleigh m2

� 1

2m2 s2 −log − 2η

https://doi.org/10.1371/journal.pone.0214851.t001
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Coarse segmentation

The LCK model is robust to images with severe intensity inhomogeneity and complex noise.

However, as a local region-based active contour, this model needs a perfect initialization to

obtain the satisfactory segmentation results. In the first stage, we propose a novel LCK model

with exponential family observation in coarse space (RDLCK), which can obtain the segmenta-

tion results fast. The energy functional of this model can be defined as

ERDLCKð�tÞ ¼

� l1

Z

Ot

Z

Ot

Ksðx � yÞwty log f ½IðyÞjmt1ðxÞ�Hð�tðyÞÞ dy dx

� l2

Z

Ot

Z

Ot

Ksðx � yÞwty log f ½IðyÞjmt2ðxÞ�ð1 � Hð�tðyÞÞÞ dy dx:

ð13Þ

Where Oτ denotes the uniform sub-space of O with the down-sampled factor τ, and function f
is exponential family function. wτy is computed by

wty ¼

Z

Ot

Hð�tðyÞÞgðkIðyÞ � mt1ðxÞk2
Þ þ ð1 � Hð�tðyÞÞÞgðkIðyÞ � mt2ðxÞk2

Þ dy;

and g(x) is Gaussian kernel function g(x) = exp(−x2/2σ2). mτ1(x) and mτ2(x) are the local clus-

ters in the coarse space, which can be calculated by gradient descent method. For f is Gaussian

distribution, then mτ1(x) and mτ2(x) can be computed by

mt1ðxÞ ¼
KsðxÞ � ½Hð�tðxÞÞIðxÞ�wtx

KsðxÞ � Hð�tðxÞÞwtx
;

mt2ðxÞ ¼
KsðxÞ � ½ð1 � Hð�tðxÞÞÞIðxÞ�wtx

KsðxÞ � ð1 � Hð�tðxÞÞÞwtx
:

ð14Þ

Most traditional region-based active contour models always converged by using the stan-

dard gradient descent method, whereas it easily falls into minima and needs a large number

of iterations. Therefore, fixing mτ1(x) and mτ2(x), we utilize the Riemannian steepest descent

method for RDLCK model. The update for level set function ϕτ is

�
tþ1

t
¼ �

t
t
� gttN t

� 1
ð�

t
t
Þr�t

ERDLCKðIðxÞ;�t
t
Þ: ð15Þ

Here γτt is a positive parameter,r�t
ERDLCKðIðxÞ;�t

t
Þ is the standard gradient flow, which is

similar to Eq (12)

r�t
ERDLCKðIðxÞ;�t

t
Þ ¼ Ks � fdð�tðxÞÞwtx½l1 log f ðIðxÞjmt1ðxÞÞ

� l2 log f ðIðxÞjmt2ðxÞÞ�g
ð16Þ

and N t

� 1
ð�

t
t
Þr�t

ERDLCKðIðxÞ;�t
t
Þ is the Riemannian steepest descent of ERDLCK on Euclidean

tangent space [30] and N tð�tÞ is

ðN tð�tÞÞðx;yÞ ¼ KsðxÞ �
fjdð�tðxÞÞjwtxBf ðmt2ðxÞjjmt1ðxÞÞg if �tðxÞ � 0

fjdð�tðxÞÞjwtxBf ðmt1ðxÞjjmt2ðxÞÞg if �tðxÞ � 0
:

8
<

:
ð17Þ

Therefore, the key to Eq (16) is that the N t is a positive definite matrix. (refer to the appendix

for a detailed computation for N ).
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This paper makes the computation of the N t

� 1
ð�

t
t
Þr�t

ERDLCKðy;�t
t
Þ possible. Moreover, the

fast image segmentation method based on natural gradient Eq (15) is applied to local region-

based active contour model successfully.

Lastly, to promote the solutions of Eq (13) smooth, we need to regularise ϕ. The traditional

region-based active contour model is regularised by adding the penalty term

l
R

O
j d½�ðxÞ� j dx, which regularises the energy function by selecting contours with minimal

length. In this paper, we promote regularity by using an increasingly popular alternative, which

applies spatial smoothing to the natural gradient flow. This method can be written as

�
tþ1

t
¼ �

t
t
þ gttHsN

� 1
�

t
t
rERDLCK

�
ðIðxÞ;�t

t
Þ: ð18Þ

Where hsðs; uÞ ¼ 1

2ps2 exp � s2þu2

2s2

� �
and the low values of σ are applied for images with low

noise, which preserves details of images.

We can obtain the coarse contour ϕτ in the down-sampled space Oτ, but the coarse contour

ϕτ is not suitable for the original image due to down-sampling process. Therefore, we need to

up-sample the coarse contour ϕτ and get the up-sampling version ϕ� of the coarse contour ϕτ.
As shown in Fig 1, we give the segmentation process of a heart CT image (the size of the image

is 152 × 128).

Accurate segmentation

The coarse segmentation can obtain the coarse contour with low cost of computation, whereas

the coarse contour is not accurate due to the loss of region information from down-sampling.

Therefore, we further segment the objects by improved LCK model with satisfactory initializa-

tion ϕ�. The improved LCK model with exponential family in original space (ROLCK) is

defined as

EROLCKð�Þ ¼ � l1

Z

O

Z

O

Ksðx � yÞwy log f ½IðyÞjm1ðxÞ�Hð�ðyÞÞ dy dx

� l2

Z

O

Z

O

Ksðx � yÞwy log f ½IðyÞjm2ðxÞ�ð1 � Hð�ðyÞÞÞ dy dx

� x

Z

O

log f ½�ðxÞj��ðxÞ� dx;

ð19Þ

where ξ is a small positive parameter and ϕ� is the up-sampling vision of the coarse contour.

The last term promise that the distance between ϕ� and accurate result is small.

Using the Riemannian steepest descent method for converging ROLCK model, the iterative

scheme for minimizing the Eq (19) is similar with the one for solving Eq (13).

m1ðxÞ ¼
KsðxÞ � ½Hð�tðxÞÞIðxÞ�wx

KsðxÞ �Hð�ðxÞÞwx
; m2ðxÞ ¼

KsðxÞ � ½ð1 � Hð�ðxÞÞÞIðxÞ�wx

KsðxÞ � ð1 � Hð�ðxÞÞÞwx

�
tþ1
¼ �

t
þ gtHsN

� 1
�

t
rEROLCK

�
ðIðxÞ;�t

Þ:

8
>><

>>:

ð20Þ

Where γt is positive constant and wx is the final weight of the x-th pixel, which is calculated by

wx =
R
OH(ϕ(y))g(kI(x) −m1(y)k2) + (1 −H(ϕ(x)))g(kI(x) −m2(y)k2), the computation of N is
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also similar to the computation of N t

ðN ð�ÞÞ
ðx;yÞ ¼ KsðxÞ �

fjdð�ðxÞÞjwxBf ðm2ðxÞjjm1ðxÞÞg if �ðxÞ � 0

fjdð�ðxÞÞjwxBf ðm1ðxÞjjm2ðxÞÞg if �ðxÞ � 0
:

8
<

:
ð21Þ

The only difference is the iteration ofr�EROLCK
�
ðIðxÞ;�t

Þ, it is computed by

r�EROLCKðIðxÞ;�t
Þ ¼ Ks � fdð�ðxÞÞwx½l1 log f ðIðxÞjm1ðxÞÞ

� l2 log f ðIðxÞjm2ðxÞÞ�g þ 2xj� � �
�
j:

ð22Þ

At the original space, there is no region information loss. Since the initialization for Eq (19) is

very close to the object, the convergence of Eq (19) is fast and the accurate segmentation stage

can obtain the final result after a few iterations.

Fig 1. The process of obtaining the initialization for accurate segmentation.

https://doi.org/10.1371/journal.pone.0214851.g001

An optimization active contour model

PLOS ONE | https://doi.org/10.1371/journal.pone.0214851 April 19, 2019 9 / 22

https://doi.org/10.1371/journal.pone.0214851.g001
https://doi.org/10.1371/journal.pone.0214851


Segmentation procedures

The procedures of the proposed method can be summarized in Algorithm. 1. The initial level

function of the coarse segmentation is defined as

�
0

t
ðyÞ ¼

r y 2 rectangle inner

0 y 2 rectangle boundary

� r y 2 rectangle outer

:

8
>>><

>>>:

ð23Þ

We provide a positive parameter for ρ in this paper.

The proposed method can be summarized in Algorithm 1.

Experimental results and comparison

In order to prove and compare the performance with the CV model [2], the GCV model [10],

the LBF model [11], the LIC model [12], the LCK model [13], the RCV model [28] and the

LGFI model [14], we apply our approach to several images with intensity inhomogeneity in

this section. All the experiments are implemented by using MATLAB R2015a and running on

a person computer with Intel core i5, 2.5GHz, and 4.00 GB RAM.

Algorithm 1 Two-stage Segmentation
Stage 1: Coarse Segmentation on Ωτ
1: Input: Ωτ
2: Initialization: �

0

t
by Eq (23)

3: for 1 to MaxIter do
4: Compute
5: Clusters mτ1(x) and mτ2(x) by Eq (14)
6: r�t

ERDLCKðIðxÞ;�t
t
Þ by Eq (16)

7: N tð�tÞ by Eq (17)
8: Updating the level set function �τ by Eq (15)
9: end for

10: Output: Coarse segmentation result �̂t,
Stage 2: Accurate Segmentation on Ω
11: Let �� be the up-sampling version of �̂t,
12: for 1 to MaxIter do
13: Compute
14: Clusters m1(x) and m2(x) by Eq (20)
15: r� EROLCK(I(x); �t) by Eq (22)
16: N ð�Þ by Eq (21)
17: Updating the level set function � by Eq (20)
18: end for

Comparisons with state-of-art methods for intensity inhomogeneity images

Comparisons with global active contour models (the CV [2] model, GCV [10] model

and RCV [28] model. In this section, we compare our method with some global active

contour models. The global active contour models assume that the intensities of images are

piecewise constant and thereby these models can not segment the images with intensity

inhomogeneity.

Fig 2 shows the segmentation results on two synthetic images (The first row is a T-shape

image and the fourth row is a synthetic image.) and two medical images (The second row is a

blood image and the third row is a CT heart image.) with intensity inhomogeneity by using

the CV model [2], the GCV model [10], the RCV model [28] and the proposed method,

respectively. The first column shows the segmentation results with CV model. The second
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column shows the segmentation results with GCV model. The third column shows the seg-

mentation results with RCV model. Finally the last column shows the segmentation results

with our method. It can be seen that the results of the CV model [2], the GCV model [10] and

the RCV model [28] are unsatisfactory because these models are global active contour models

and use the global intensity means of images to fit them. On the other hand, our method can

achieve satisfying results due to taking the local image region information into account, which

can deal with the intensity inhomogeneous images well.

Comparisons with local active contour models (the LIC [12] model, the LCK [13] model

and the LGFI model [14]). We demonstrate the superior performance of the proposed

method to previous local active contour methods on a synthetic image (see the third row of Fig

3) and three medical images (The first and last row give two brain images, whereas the second

row gives a X-ray image.) with severe intensity inhomogeneity (see the last column of Fig 3).

Fig 3 shows the results of the LIC model [12], the LCK model [13] and the LGFI model [14]

and our method, all of which consider the local region information and fit them by local

Fig 2. Comparisons with global active contour models using two synthetic images and two medical images. From left

to right: segmentation results by the CV model, the GCV model and the RCV model.

https://doi.org/10.1371/journal.pone.0214851.g002
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intensities means. Therefore, these methods can achieve much better results for images with

intensity inhomogeneity than global active contour models. However, The LIC model [12]

only uses the local mean information and thereby it fails to segment the objects when the

intensity inhomogeneity of images are severe, which can be seen from the first column of Fig

3. Although the LCK model (see the second column of Fig 3) and LGFI model (see the third

column of Fig 3) consider the gaussian kernel function as constraint and improve the segmen-

tation results to some extent, these models still fail to discriminate the intensities of the objects.

Due to the proper initialization from the coarse segmentation, our method obtain more satis-

factory results (see the forth column of Fig 3) than other methods.

Table 2 introduces the computation complexity for Fig 3 in terms of total iterations and

CPU time. The proposed method achieves the accurate segmentation results with less CPU

time and less number of iterations. The LIC model [12], the LCK model [13] and the LGFI

model [14] are all solved by standard gradient method, which take a large number of iterations

to converge and make the level set function easily fall into local minima. In order to overcome

the drawback of the standard gradient method, our model constructs a steepest descent on the

model’s intrinsic manifold which converges extremely fast. Moreover, we split the process of

segment into two stage and the second stage can get a suitable initialization from the first

stage. This experiment proves our method can obtain the best segmentation results with the

least time.

Results on natural images with intensity inhomogeneity. In Fig 4, we have shown the

performance of our method for natural images with different types of region properties. In the

Fig 3. Comparisons with local active contour model using a synthetic image and three medical images with severe intensity inhomogeneity. From

left to right: segmentation result by LIC model, LCK model, LGFI model and our method, and the histograms of the image intensity.

https://doi.org/10.1371/journal.pone.0214851.g003
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third column of Fig 4, the images (see the first column of Fig 4) with severe intensity inhomo-

geneity see the last column of Fig 4 and some of them with complex textures are used for this

experiment. We can see that these images are well segmented into objects and backgrounds

from the middle column of Fig 4. This section demonstrates that our method can be applied to

handle different types of images.

Comparisons with the-state-of-art models on medical images with Poisson noise. Fig 5

presents the segmentation results obtained by our method for five medical images (Two brain

images are represented in column 1 and column 3, respectively. A blood image is given in col-

umn 2. Two ultrasound images are shown in column 4 and column 5.) with Poisson noise,

from which we evaluate the performance of proposed method for noise images. The results of

CV model, GCV model, RCV model are shown in first, second, third row of the Fig 5, respec-

tively. As can be seen from these segmentation results, the global active contour models can

not segment the noise images well. The results of LCK model, LGFI model and the proposed

Table 2. Iterations and running time (in seconds) for the experiments shown in Fig 3.

Methods Row1 Row2 Row3 Row4

LIC Iterations 40 50 30 30

CPU time (s) 3.577 4.081 2.099 2.322

LCK Iterations 100 400 600 200

CPU time (s) 7.315 29.193 15.929 7.827

LGFI Iterations 100 200 200 100

CPU time (s) 6.536 15.625 10.343 5.156

Proposed Iterations 15 2 10 14

CPU time (s) 3.005 0.995 1.849 3.186

https://doi.org/10.1371/journal.pone.0214851.t002

Fig 4. Segmentation results for natural images with intensity inhomogeneity. From left to right: the original images,

segmentation results using our methods and the histogram of image intensity.

https://doi.org/10.1371/journal.pone.0214851.g004
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method are shown in forth, fifth and last row of the Fig 5. These local active contour methods

all can segment objects from images, whereas the results of the proposed method are clearly

better than other local active contour models.

Comparisons of the various methods by the total iterations and CPU time (in seconds) are

listed in Table 3, from which we can see that our method converges obviously faster than other

methods. On the one hand, our method converges with the Riemannian steepest method is

much faster. On the other hand, the first stage provides the proper initialization for second

stage. Therefore, our method is also applicable to noise images.

Fig 5. Comparisons with state-of-art methods for niose images. From top to bottom: segmentation results of CV model, GCV

model, RCV model, LCK model, LGFI model and our method, respectively.

https://doi.org/10.1371/journal.pone.0214851.g005
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Quantitative comparisons with the-state-of-art models

To quantitatively analysis the performance of the proposed method, we adopt the F-score

value [13] and Jaccard similarity (JS) [32] metrics as the evaluation framework of segmentation

accuracy. The metric JS is defined as

JS ¼
A
T

B
A
S

B
; ð24Þ

where A is the computed object region and B is the ground truth region. Obviously, the closer

the value of JS is to 1, the better segmentation result is obtained. Furthermore, to evaluate the

results more precise, we also give the value of F-score, which can be calculated by

F-score ¼
2 � TP

2 � TP þ FN þ FP
: ð25Þ

Where TP = A
T
B (true positive) corresponds the correct segmented regions, FN (false nega-

tive) corresponds the false unsegmented regions, FP (false positive) corresponds the unde-

tected segmented regions. Similar to the value of JS, the higher value of F-score means the

better segmentation results.

Robustness to the severe intensity inhomogeneity. Fig 6 shows the results of competing

method segmentation on five synthetic images with changed intensity inhomogeneity. The

first row of Fig 6 shows the five original images with initial contour. As can be seen, the object

of each image is gradual difficult to be segmented from top to bottom. The segmentation

results obtained by CV model are presented in the second row, GCV model are presented in

the third row, RCV model are presented in the forth row, LBF model are presented in fifth

row, LCK model are presented in the sixth row and the proposed model are presented in the

last row, respectively. We can see that our method provides the best segmentation results, espe-

cially when the strength of the intensity inhomogeneity for objects is strong, which proves that

the proposed method is more robust to image intensity inhomogeneity. The corresponding F-

score values and JS values are shown in Fig 7, all the models can achieve high F-score values

and JS values, when the strength of intensity inhomogeneity is slow (see the first column and

second column of Fig 6). Meanwhile, the total iterations and CPU time of all the models,

which are shown in Table 4, are close. Whereas, when the strength of intensity inhomogeneity

becomes strong, the F-score values and JS values of the proposed method are still close to 1

Table 3. Iterations and running time (in seconds) for the experiments shown in Fig 5.

Methods Row1 Row2 Row3 Row4 Row5

CV Iterations 100 200 200 100 100

CPU time (s) 5.000 11.118 12.018 4.605 5.858

GCV Iterations 100 100 100 100 150

CPU time (s) 4.451 3.779 4.337 3.203 7.258

RCV Iterations 20 30 20 20 20

CPU time (s) 3.051 1.953 1.75 1.873 1.825

LCK Iterations 30 500 2000 500 500

CPU time (s) 2.322 22.510 261.119 77.802 77.280

LGFI Iterations 100 600 600 100 200

CPU time (s) 5.156 29.234 87.422 4.718 18.078

Proposed Iterations 14 3 10 12 8

CPU time (s) 1.186 0.576 1.275 1.000 1.525

https://doi.org/10.1371/journal.pone.0214851.t003
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and higher than other models. Furthermore, our method converges with 2 steps for all images,

even the object of image is difficult to be segmented (see the last column of Fig 6). The main

difference between our method and other local active contour is the proper initialization and

iterative method.

Robustness to different types of noises. To quantitative illustrate the robustness of our

method for different types of noises, we also evaluate the segmentation results by the F-score

values and JS values. On the top row of the Fig 8, we show the segmentation results of the pro-

posed method for images with different level of Gaussian noises. And on the bottom row of

Fig 6. Quantitative comparisons among CV model, GCV model, RCV model, LBF model, LCK model and our

method for the images, which the intensity inhomogeneity is gradually increased from left to right.

https://doi.org/10.1371/journal.pone.0214851.g006
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the Fig 8, we present the segmentation results of the proposed method for images with differ-

ent level of speckle noise. As can be seen, the proposed method can achieve the satisfactory

results even the noise is very strong. Furthermore, the F-score values and JS values for pro-

posed method, which are shown in Fig 9, are also higher than 0.9, so the accuracy of the pro-

posed method is ideal.

Conclusion

In this paper, we propose a fast two-stage segmentation method for the segmentation problem

of synthetic and real-world (including medical) images with complex noise and severe inten-

sity information. The first stage obtains coarse segmentation results in coarse space with low

calculation complexity. Following it, the second stage takes the up-sampled contour of the first

stage as the initialization and achieves accurate segmentation results in original space quickly.

To minimize the energy function with low time complex, we propose a method measuring

intensity under the framework of exponential family and converge the model by Riemannian

Fig 7. The corresponding F-score value and JS value yields for Fig 6.

https://doi.org/10.1371/journal.pone.0214851.g007

Table 4. Iterations and CPU time (in seconds) for the experiments shown in Fig 6.

Methods Row1 Row2 Row3 Row4 Row5

CV Iterations 5 10 60 60 60

CPU time (s) 0.847 1.086 3.122 3.035 3.099

GCV Iterations 10 40 60 80 100

CPU time (s) 0.568 1.987 2.338 3.011 3.254

RCV Iterations 2 10 20 20 15

CPU time (s) 0.522 0.719 0.908 0.876 0.867

LBF Iterations 200 280 200 400 600

CPU time (s) 4.192 5.464 4.923 8.814 13.682

LCK Iterations 300 580 640 1400 1300

CPU time (s) 10.646 22.854 25.619 55.328 55.302

Proposed Iterations 2 2 2 2 2

CPU time (s) 1.142 0.180 0.299 0.325 0.394

https://doi.org/10.1371/journal.pone.0214851.t004
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steepest method. Finally, a smooth operator, which is Toeplitz and separable, is used to regu-

larize the level set function to preserve more image details.

The main contribution of this paper is the formulation of two-stage energy function based

on LCK model with exponential family for acquiring the intensity information and solving the

two-stage method by smooth natural gradient method. Qualitative and quantitative analysis

showed that the performance of the proposed method is superior to the LCK model and other

state-of-art methods for intensity inhomogeneity images.

There are still some limitations for the proposed method, such as model still depends on

the initializations to some extent and model is difficult to segment images with wispy and

clutter targets. In the future, we plan to add shape constraints to optimization model and

focus on developing the application of the proposed methodology for more types real-life

images.

Fig 8. Segmentation results by the proposed method for images with different types of noise. The first row: images

with Gaussian white noise (zero means and different variances (σ = 0.01, 0.02, 0.03, 0.04)). The second row: images

with speckle noise (zeros means and different variances (σ = 0.01, 0.02, 0.03, 0.04)).

https://doi.org/10.1371/journal.pone.0214851.g008

Fig 9. The F-score values and JS values for images shown by Fig 8.

https://doi.org/10.1371/journal.pone.0214851.g009
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Appendix

The computation for N .

Theorem 0.1 Suppose that Eq (10) holds. Then the matrix N tð�tÞÞ is diagonal with elements

ðN tð�tÞÞðx;yÞ ¼

R

Ot
Ksðx � yÞfjdð�ðyÞÞjBf ðm2ðxÞjjm1ðxÞÞg dy if �ðyÞ � 0

R

Ot
Ksðx � yÞfjdð�ðyÞÞjBf ðm1ðxÞjjm2ðxÞÞg dy if �ðyÞ � 0

;

8
<

:

where the Kσ(x − y) is a Gaussian kernel function with width σ, wτy is the final weight of the y-th
pixel. we rearrange the above equation by using convolution method

ðN tð�tÞÞðx;yÞ ¼ KsðxÞ �
fjdð�tðxÞÞjwtxBf ðmt2ðxÞjjmt1ðxÞÞg if �tðxÞ � 0

fjdð�tðxÞÞjwtxBf ðmt1ðxÞjjmt2ðxÞÞg if �tðxÞ � 0
;

8
<

:
ð26Þ

as i = j and ðN tð�tÞÞðx;yÞ ¼ 0 otherwise, the Bf (m�||m) is the f − Bregman divergence

Bf ðm�jjmÞ ≜ Aðm�Þ � AðmÞ � hZðm�Þ � ZðmÞ;rZAðmÞi; ð27Þ

In above equations, A(�) denotes the logarithm of the normalising constant of f andrη A(m) is
the gradient of A(�) with respect to the canonical constant vector η = η(θ). Furthermore, δ0(u) is
evaluated by a regularised approximation d

0

�
ðuÞ ¼ � 2�

p
signðuÞmax ðu; �Þ=ð�2 þ u2Þ

2
, which is

bounded away from zero, then matrix N tð�tÞ is positive definite.
Proof. To prove these results we first give the definition of the Fisher information matrix

(FIM) [33]

ðGð�ÞÞ
ði;jÞ ≜ � EIj�f

@
2

@�i@�j
log ½f ðIj�Þ�g ; ð28Þ

where EI|ϕ represents the expectation operator of the function f(I(x)|ϕ) and f(I(x)|ϕ(x)) =
R

{x:ϕ(x)>0} f(I(x)|m1(x)) dx +
R

{x:ϕ(x)<0} f(I(x)|m2(x)) dx. Following above definition, we

develop the derivatives of Fisher information matrix (FIM)

ðGð�ÞÞ
ðx;yÞ ¼ � dð�ðyÞÞE½log f ðIðyÞjm1ðxÞÞj�ðyÞ�

� dð� �ðyÞÞE½log f ðIðyÞjm2ðxÞÞj�ðyÞ�
ð29Þ

and then the N tð�tÞ is

ðN tð�tÞÞðx;yÞ ¼ KsðxÞ � f� dð�tðxÞÞwtxE½log f ðIðxÞjmt1ðxÞÞj�tðxÞ�

� dð� �tðxÞÞwtxE½log f ðIðxÞjmt2ðxÞÞj�tðxÞ�g:
ð30Þ

if x = y and (G(ϕ))(x,y) = 0, then N tð�tÞ ¼ 0. Otherwise, we need to prove the diagonal ele-

ments of matrix N tð�tÞ are strictly positive.

In Eq (30), the E(. . .|ϕτ(x)) is the expectation with respect to the marginal likelihood

f ðIðyÞ;�ðxÞÞ ¼
f ðIðyÞ;mt1ðxÞÞ if �tðxÞ � 0

f ðIðyÞ;mt2ðxÞÞ if �tðxÞ < 0:

(

ð31Þ

According to the fact that δ0(−x) = −δ0(x) and the Eq (30) can be rewritten as

ðN ð�tÞÞðx;yÞ ¼ KsðxÞ � f� d
0

ð�tðxÞÞwtxE½log ð
f ðIðxÞjmt1ðxÞÞ
f ðIðxÞjmt2ðxÞÞ

Þ�j�tðxÞg : ð32Þ
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In terms of Kullback-Leibler divergences [34], we obtain

ðN tð�tÞÞðx;yÞ ¼ KsðxÞ �
fjd

0

�tðxÞwtxjKLf ðmt1ðxÞjjmt2ðxÞÞg if �tðxÞ � 0

fjd
0

�tðxÞwtxjKLf ðmt2ðxÞjjmt1ðxÞÞg if �tðxÞ < 0

;

8
<

:
ð33Þ

In above equation, the Kullback-Leibler divergence is

KLðmt1ðxÞjjmt2ðxÞÞ ≜
Z

<p
logð

f ðs;mt1ðxÞÞ
f ðs;mt2ðxÞÞ

Þf ðs;mt1ðxÞÞ ds:

Finally, in this paper the function f belongs to exponential family and we can rewritten (33) in

terms of Bregman divergences [34]

ðN tð�tÞÞðx;yÞ ¼ KsðxÞ �
fjd

0
�tðxÞwtxjBf ðmt1ðxÞjjmt2ðxÞÞg if �tðxÞ � 0

fjd
0
�tðxÞwtxjBf ðmt2ðxÞjjmt1ðxÞÞg if �tðxÞ < 0

;

(

Due to the fact that the terms Bf(mτ1(x)||mτ2(x))} and Bf(mτ2(x)||mτ1(x))} are strictly positive,

and then the diagonal elements of matrix N tð�tÞ are strictly positive.
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