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Nature is the source of human design inspiration. In order to adapt to the

environment better, creatures in nature have formed various morphological

structures during billions of years of evolution, among which the

superhydrophobic characteristics of some animal and plant surface

structures have attracted wide attention. At present, the preparation

methods of bionic superhydrophobic surface based on the microstructure

of animal and plant body surface include vapor deposition, etching

modification, sol-gel method, template method, electrostatic spinning

method and electrostatic spraying method, etc., which have been used in

medical care, military industry, shipping, textile and other fields. Based on

nature, this paper expounds the development history of superhydrophobic

principle, summarizes the structure and wettability of superhydrophobic

surfaces in nature, and introduces the characteristics differences and

applications of different superhydrophobic surfaces in detail. Finally, the

challenge of bionic superhydrophobic surface is discussed, and the future

development direction of this field is prospected.
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1 Introduction

During the long evolution of the earth, it is not difficult to find that many

unrelated organisms, such as lotus leaves (aquatic plants) (Yu et al., 2007; Bai et al.,

2018; Han et al., 2019; Yun et al., 2020; Ghasemlou et al., 2021), roses (terrestrial

plants) (Bhushan, 2018; Chen et al., 2019; Dai et al., 2019; Zong et al., 2019; Kang

et al., 2021), butterflies (insects) (Qian et al., 1900; Saison et al., 2008; Wang and Guo,

2013; Bixler and Bhushan, 2014; Han et al., 2017), geckos (terrestrial animals) (Li

et al., 2011; Darmanin and Guittard, 2015; Stark et al., 2016; Wang et al., 2019a;

Weng et al., 2022) and sharks (fish) (Chen et al., 2018; Gose et al., 2018; Jiaqiang

et al., 2018; Bilgiç and Bilgiç, 2019; Zhao et al., 2021), have evolved

superhydrophobic properties. Researchers determine whether the surface is

super-hydrophobic according to the contact angle of water droplets on the solid

surface, that is, when the contact angle of water on the solid surface is greater than

150°, the surface is called super-hydrophobic (Huang and Guo, 2018; Shahabadi and
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Brant, 2019; Hasan and Nosonovsky, 2020; Hu et al., 2022). In

fact, due to the difference in microstructure of each

organism’s body surface, apart from superhydrophobic

properties, different structures also give them different

additional properties, such as self-cleaning (Dalawai et al.,

2020; Wang et al., 2021a), anti-icing (Lin et al., 2018; Li et al.,

2021a; Wu et al., 2021a), anti-fogging (Varshney et al., 2018;

Varshney and Mohapatra, 2018; Domke et al., 2019; Fromel

et al., 2021), resistance reduction (Li and Guo, 2018; Li et al.,

2019) and so on. In the past few decades, superhydrophobic

surfaces, as an extreme surface non-wetting state, have

attracted great attention in the scientific and technological

circles because of their potential applications in many fields,

such as self-cleaning, anti-fouling, anti-corrosion, anti-icing

and drag reduction. Inspired by these creatures, modern

researchers have prepared special superhydrophobic

surfaces suitable for different fields by using bionics

(Ahmad and Kan, 2016; Shang et al., 2019a; Shang et al.,

2019b; Wang et al., 2020a; Lin et al., 2022).

The earliest basic theory to systematically describe the

phenomenon of superhydrophobic surface wetting comes

from Young’s work (Young, 1805). However, in the real

world, few surfaces meet the assumptions of Young’s

equation, so Wenzel (uniform wetting) (Wenzel, 1949) and

Cassie–Baxter (non-uniform wetting) (Cassie, 1948)

respectively established new models to further improve and

optimize this problem. In the later period, many scientists also

put forward methods to optimize the superhydrophobic

model according to different situations (Nosonovsky and

Bhushan, 2005; Bhushan et al., 2007; Bittoun and Marmur,

2009; Xie et al., 2018; Jiang et al., 2020). As a hot spot in the

field of material research, with the development of bionic

superhydrophobic surface theory, the preparation methods of

superhydrophobic surface are gradually diversified.

Commonly used methods include sol-gel method (Yang

et al., 2018; Vidal et al., 2019; Mahadik and Mahadik,

2021), vapor deposition method (Aljumaily et al., 2018;

Pour et al., 2019; Mosayebi et al., 2020; Bayram et al., 2021;

Zheng et al., 2022), etching modification method (Zhang et al.,

2019a; Ma et al., 2020; Wei et al., 2021), electrochemical

deposition method (Zhou et al., 2018; Xue et al., 2019a;

Xue et al., 2019b; Wang et al., 2020b; Li et al., 2021b) and

template pressing method (Xu et al., 2011; Victor et al., 2012).

Among them, the template method can completely copy the

microstructure of the biological surface, while other methods

can imitate the existing structures in nature or create new

structures.

In our previous review (Ge-Zhang et al., 2022), various

preparation methods of bionic superhydrophobic surfaces,

especially etching modification methods, were compared

and described in detail. Therefore, in this mini-review, we

will follow the course of human development, from using the

primitive things of nature to imitating and transforming all

things of nature, and then to realizing self-creation. This

article focuses on the exploration and discovery of nature

by human beings before self-creation. Starting from the

essence, it introduces in detail the development process of

superhydrophobic principle and superhydrophobic of natural

organisms. This review reviews the development of

superhydrophobic principle (Part 2), summarizes the

structure and wettability of superhydrophobic surfaces of

different animals and plants in nature (Part 3), and lists

the differences and applications of different

superhydrophobic surfaces. Finally, the function and

application of bionic superhydrophobic surface are

summarized, and the next research direction of bionic

superhydrophobic surface is put forward. The current

difficulties and future development directions are

summarized and prospected (Part 4).

2 Basic principle of superhydrophobic
surface

To explore the bionic superhydrophobic surface, we must

first have a deep understanding of the principle. This chapter will

introduce the concepts and principles of various

superhydrophobic surfaces and physical models closely related

to superhydrophobic properties.

2.1 Angle

The static wetting performance of droplets on

superhydrophobic surface is usually expressed by contact

angle (Voronov et al., 2008), while the rolling angle can be

used to evaluate the dynamic performance of droplets on

superhydrophobic surface (Hao et al., 2010).

2.2 Superhydrophobic model

In order to describe the relationship between the static

contact angle of droplets on solid surface and the surface

tension of liquid, solid and gas systems, T. Young established

Young’s equation of ideal smooth solid surface state, which set

a theoretical precedent for studying the wettability of

materials. After that, Wensel and Cassie summarized

Wensel model (Wenzel, 1949) and Cassie–Baxter model

(Cassie, 1948) by studying the relationship between surface

roughness and wettability, and pointed out that

superhydrophobicity increased with the decrease of surface

free energy and the increase of surface roughness. In modern

times, more models have been optimized and pointed out

(Miljkovic et al., 2013; Jiang et al., 2020; Mohseni et al., 2021;

Shen et al., 2021).
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2.2.1 Young’s equation
For an ideal solid surface which is uniform, smooth and rigid,

Young put forward Young’s equation by means of the

thermodynamic equilibrium equation in order to explain the

quantitative relationship between contact angle and solid-liquid-

gas interface (Figure 1):

cos θ � γSG − γSL
γLG

Where γSG, γSL, γLG are the surface tensions between the solid-

gas, solid-liquid and liquid-gas interfaces, respectively, then it is

easy to know that the magnitude of the contact angleθis jointly

determined by the surface tensions of solid, liquid and gas, that is,

the hydrophobic properties of solid materials increase with the

decrease of their surface free energy.

However, it is found that even the smooth surface constructed

by the lowest surface energy substance (fluoride) has a contact angle

of only 119°, which is far lower than the superhydrophobic surface

with rough surface microstructure in nature. This is because the

surface roughness will also affect the contact angle. In reality, many

surfaces often have a certain degree of roughness, which is not

completely smooth, undistorted and uniform. Therefore, Young’s

equation can only be applied to ideal surfaces, but not to realistic

rough solid surfaces (Marmur, 1983). There are manymodifications

to Young’s equation to deal with the shortcoming that the contact

angle cannot be explained and predicted for rough surfaces (White,

1977; Dobbs, 1999; Butt et al., 2007; Alizada and Sofiyev, 2011;

Makkonen, 2016; Liu et al., 2020). Starov and Velarde. (2009)

considered the influence of absorption liquid layer and liquid

vapor, and made the following modifications and improvements

to Young’s equation:

cos θ ≈ 1 + 1
γ
∫∞

e
Π(e)de

They defined the contact angle in this case as an angle

between the horizontal axis and the tangent to the droplet cap

profile at the point where it touches the absorbed layer of

molecules (also called the precursor film). Where e is the

thickness of the absorbing liquid molecules overlaid on the

solid substrate, Π(e) is the disjoining pressure. Letellier et al.

(2007) considered the influence of solid liquid vapor three-phase

line under the condition of system equilibrium, and established a

more extensive Young’s relationship. It includes a term inversely

proportional to the radius of the circle defined by the triphase

line, where σ is the line tension of the three-phase contact circle:

cos θ � γSV − γSL

γLV
− σ

γLVRSLV

In order to further expand the application range of Young’s

equation, Lin and Hong. (2019) further deduced the Young’s

equation considering the contact between oil droplets and ideal

smooth solid surface:

cosθOW(Y) � γOV cos θOV − γWV cos θWV

γOW

Among them, the underwater oil contact angle (θOW(Y)) is
related to the interfacial tension or interfacial energy of oil-steam

(θOW(Y)), water-steam (γWV) and oil-water (γOW) interfaces. The

θOV is the contact angle of oil droplets in air, and θWV is the

contact angle of water droplets in air.

2.2.2 Wenzel model
In 1936 (Wenzel, 1949), Wenzel hypothesized that

droplets in contact with a rough solid surface would

produce a complete wetting phenomenon, that is, filling the

grooves of the surface so that the actual contact area of solid-

liquid on the rough surface is larger than the apparent contact

area. Because the surface energy of rough surface is low, the

contact angle of droplets is high, while the surface energy of

smooth surface is high and the contact angle of droplets is low,

Wenzel introduced the surface roughness (i.e., the ratio of the

real surface area of the solid to the apparent geometric area,

whose value is usually greater than 1):

γ � S

S0

where denotes the actual surface area of the solid surface and

denotes the apparent surface area of the solid surface. Then the

Wenzel model can be expressed as:

cos θγ � γ cos θ

Whereθγ is the apparent contact angle of the droplet on

the rough surface, and is the intrinsic contact angle of Young’s

equation. By studying the Wenzel model, the following

conclusions can be confirmed: under the γ> 1 usual

conditions of hydrophobic surfaces, increasing the surface

roughness γ will increase the apparent contact angle θγ of

droplets under the usual hydrophobic surface conditions,

which indicates that the surface hydrophobic effect will

increase; For hydrophilic surface, increasing the surface

roughnessγ will decrease the apparent contact angle θγ of

droplets, which indicates that the hydrophilic effect of the

surface increases. This model provides a theoretical basis for

FIGURE 1
Diagram of young’s equation.
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the preparation of super hydrophobic surface materials.

However, the applicability of Wenzel model to

homogeneous solid surfaces (solid surfaces composed of

homogeneous chemical substances) is still limited, and it is

not suitable for heterogeneous solid surfaces, nor can it

explain the phenomenon that some hydrophilic surface

materials can be converted into hydrophobic surfaces after

being treated (Herminghaus, 2007; Chen et al., 2021a). At the

same time, under the assumption that the droplets are

completely wetted, the large energy barrier formed by the

chemical composition and geometry will make it difficult for

the droplets to roll. This contradicts the phenomenon that

droplets are easy to roll on the superhydrophobic surfaces

such as lotus leaves in nature (Nuraje et al., 2013; Rius-Ayra

et al., 2018).

Seo and Kim. (2015) derived the modified Wenzel equation

by considering the constant volume of droplets as an auxiliary

condition and a transverse condition:

cos θ � K
γSO − γSL

γ
� Kcos θY

where θY is the equilibrium contact angle on a smooth solid

surface and θ is an apparent.

In order to solve the problem that the Wenzel model is only

suitable for ordered arrays or uniform porous media with

uniform characteristics, Han et al. (2007) proposed a modified

Wenzel model to describe heterogeneous surfaces as follows:

cos θ � cos θ

S
∫Xmax

Xmin

W0

δ
���
2π

√ 1
X
[ − (X0 −X)2

2δ2
]dX

where W is the cumulative micropore volume, W0is the

totalmicropore volume determined from the D–R equation,

X0 is themicropore half width at the distribution curve

maximum, andδ is the dispersion parameter.

2.2.3 Cassie–Baxter model
In 1944, Cassie and Baxter (Cassie, 1948) considered the

influence of surface tension, and put forward the concept of

compound contact. Because the size of the roughened surface

structural unit is smaller than that of the droplet, the droplet on

the surface can not completely penetrate into the groove on the

surface, which results in air staying in the groove. Therefore, the

Cassie–Baxter model of solid-liquid-gas three-phase composite

contact is established:

cos θc � f1 cos θ1 + f2 cos θ2

where θc is the apparent contact angle of the droplet on the rough

surface, θ1 and θ2 are the intrinsic contact angles on the two

media, f 1 and f2 are the proportional fractions of the solid-liquid

and air-liquid contact surfaces at the composite interface,

respectively, and f1 + f 2 � 1. Because the inherent contact

angle between droplet and air is 180°, the model can be

simplified as follows:

cos θc � f1 cos θ1 − f2

From this model, it can be clearly seen that the smaller the

solid-liquid contact area ratio, the larger the contact angle of

the rough surface and the better the hydrophobicity. This

model explains some phenomena, for example, droplets on

super-hydrophobic surfaces such as lotus leaves and rice

leaves show very small rolling angle and hysteresis angles,

which is difficult to be explained by Wenzel model. Figure 2

shows the difference between Wenzel model and

Cassie–Baxter model.

It is worth noting that Wenzel model and Cassie–Baxter

model have their respective applicable scopes. The Cassie–Baxter

model is applicable to the highly hydrophobic region where the

surface adhesion force is small, while the Wenzel model is

applicable to the moderately hydrophobic region where the

surface adhesion force is large. As a practical matter, if the

droplet overcomes the energy barrier between the two modes

and reaches the corresponding energy state under the action of

an external force, its wettable viscous state can be transformed

between the two models. That is, the wetting state of a droplet on

a rough solid surface may then be transformed between both

Wenzel and Cassie–Baxter.

In addition, Wang and Jiang. (2007) further refined the

existence of five superhydrophobic surfaces based on the

previous work (Figure 3): the Wenzel state (droplets are

embedded on the surface in a fully wetted state and

contact angle hysteresis can be observed), the Cassie state

(droplets are independently in contact with the surface in a

non-wetted state, with low surface adhesion and easy roll-

off), the Lotus state (Cassie state special case, similar to the

microscopic raised structure on the surface of lotus leaf,

which is important for the design and construction of

bionic superhydrophobic surfaces with self-cleaning

properties), the Wenzel- Cassie transition state (the state

that mainly exists in reality), and Gecko state (the state where

droplets on polystyrene nanotube films have extremely high

surface adhesion). Ideally, the contact angle of the droplet in

Wenzel state is close to 0°, while droplets in the Cassie state

FIGURE 2
Microscopic diagram of droplets on the Wenzel model (left)
and Cassie–Baxter model (right).
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would form perfect spheres (ignoring gravity), with the

contact angle close to 180°.

3 Nature’s biological
superhydrophobic surfaces

Through 3.7 billion years of evolution and species

selection, most of the creatures in nature have survived

with various unique biological functions and structures,

which enable them to quickly adapt to changes in the

ecosystem and surrounding environment. According to the

order of research objectives in the history of

superhydrophobic surface development, this chapter follows

the order from plants to animals, and lists many surface

structures and multifunctional applications. In addition,

according to the relationship between the multifunction of

superhydrophobic surfaces from simple to complex, the

representative examples of plants and animals are

introduced in detail.

FIGURE 3
Diagramof the existence state of droplets on five superhydrophobic surfaces:Wenzel’s state (A), Cassie state (B), Lotus state (C), Wenzel- Cassie
transition state (D), Gecko state (E).

TABLE 1 The surface structures of typical plants.

Plant surface Properties References

Lotus leaf Superhydrophobic, self-cleaning, low adhesion Cheng and Rodak. (2005); Teodorescu. (2014); Khandavalli et al. (2018); Xu et al. (2021a)

Rose petal Superhydrophobic, high surface adhesion Feng et al. (2008); Bhushan and Her. (2010); Lai et al. (2019)

Sunflower Superhydrophobic, high surface adhesion Hoefnagels et al. (2007); He et al. (2018); Liang et al. (2020)

Rice leaf Superhydrophobic, directional transport Wu et al. (2011); Lian et al. (2019)

Nepenthes Directional transport, water harvesting Wong et al. (2011); Zhang and Xu. (2021)

Purple setcreasea Double-sided superhydrophobic Guo and Liu (2007); Wolfs et al. (2013); Cai. (2019)

Watermelon leaf Single-order scale hydrophobic structure Zhang et al. (2012a); Gou and Guo. (2018); Sharma. (2021); Behera. (2022)

Peanut leaf Superhydrophobic, high surface adhesion Yang et al. (2014a); Yang et al. (2014b); Long et al. (2015)

Bamboo leaf Anti-icing, high surface adhesion Yuan et al. (2014); Zhang et al. (2019b); Gao et al. (2020)

Taro leaf Superhydrophobic, self-cleaning Verbanic et al. (2014); Kumar and Bhardwaj. (2020); Wu et al. (2020); Pieniazek et al. (2021)
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3.1 The surface structures of typical plants

Table 1 lists the superhydrophobic phenomena and

characteristics of many plants in nature. In fact, the first

study of superhydrophobic surface by human beings started

with the structure of plant surface. From dust and dirt on

lotus leaves easily taken away by dew and rain, to small water

drops firmly attached to rose petals on the surface, to water

drops on rice leaves easily rolling towards the growth

direction of leaves, natural plants have inspired us in

many aspects.

3.1.1 Lotus leaves
The lotus leaf was described by the ancient Chinese as “dirt-

free plant rising from soil”, which is the most typical super-

hydrophobic surface of plants (Latthe et al., 2014), and it is also

one of the earliest research goals of human beings, which is why

the “lotus leaf effect” is still synonymous with

TABLE 2 Bionic product with lotus leaf as template.

Main materials Technologies Advantages Ref

poly-ε-caprolactone Needle-free electrospray Adhesion resistance Klicova et al.
(2022)Hexamethyldisiloxane Electrospinning

Plasma-assisted chemical vapor
deposition

Zinc oxide Chemical vapor deposition No need for metal catalysts Li et al. (2008)

Porous anodic

Alumina

Perchloric acid

Ethanol

Acetone

Aniline Favorable surface-to-volume ratio

4.4- diaminodiphenylamine sulfate hydrate Nano casting technology Excellent anticorrosion performance Chang et al. (2013)

4’-(4.4′- isopropylidene-diphenoxy) bis (phthalic
anhydride)

Good electrical activity, mechanical properties and high
temperature stability

N,N- dimethylacetamide

Ammonium persulfate

Dimethyl silicone polymer

Rubber sponge Ultrasonic treatment High temperature stability Wang et al. (2021b)

Tetrahydrofuran Stable conductivity, high compression ratio and linear
working range

MWCNTs Excellent sensing stability and durability

Self-cleaning

Copper foil Chemical deposition method Adhesion resistance Wu et al. (2014)

Silver nitrate Strong mechanical properties

Octadecyl mercaptan

Fresh lotus leaves

Polymethylhydrosiloxane

Phenyl substituted silica Casting method Multi-purpose Nagappan et al.
(2013)Ammonium hydroxide solution Dip coating method Environmentally friendly

Oxalic acid Solvent evaporation method Low price

Polyvinylidene fluoride Good thermal stability and mesoporous structure

Polytetrafluoroethylene

Medical gauze Physical deposition Good blood compatibility Li et al. (2020a)

Dopamine Chemical deposition Adhesion resistance

Perfluorocarbon Antibacterial

Silver nanoparticles

Alumina film — Good blood compatibility Mao et al. (2009)

Sodium hydroxide Anti-platelet

Anti-blood cell adhesion
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superhydrophobic characteristics. Later, Jiang et al. (Barthlott

and Neinhuis, 1997) determined that the surface of lotus leaves

is a hierarchical structure formed by micron-sized papillae and

nanoscale wax crystals covering the surface, and they also

explained the relationship between superhydrophobicity and

self-cleaning. It is worth mentioning that in the water

condensation experiment, water is hydrophilic on lotus

leaves that have experienced water condensation, which

shows that lotus leaves can be hydrophobic or hydrophilic,

depending on how the water reaches their surface (Cheng and

Rodak, 2005). Considering the characteristics of the lotus leaf

and the bionic means of scientists, it has a rich and broad

application prospect in production and life (Table 2).

One of the more common is the application of lotus leaf in

the medical field (Lim et al., 2013; Yang et al., 2014c; Wu et al.,

2021b; Huang et al., 2022). Klicova et al., (2022) developed a

biocompatible nanofiber pad with anti-adhesion surface by

imitating the nanostructure on the lotus leaf by using needle-

free electrospraying and polycaprolactone electrospinning

technology, which not only shortens the operation time but

also greatly reduces the postoperative risk. At the same time,

inspired by the self-cleaning characteristics of lotus leaves, Li

et al. (2020a) developed a new type of anti-adhesion and

antibacterial gauze through three simple dipping steps. With

its excellent anti-adhesion and bactericidal activity, it can

promote infectious wound regeneration and meet clinical

needs. Due to the increasing demand for blood compatibility

of biomaterials, Mao et al. (2009) focused on the preparation of

an anticoagulant biomaterial-polystyrene nanotube film, which

can prevent thrombosis and tissue capsule, and is of great

significance in organ transplantation. In addition, the

application of super hydrophobicity of biomimetic lotus leaf is

also involved in the field of gas sensors (Li et al., 2008) and

meteorology (Wang et al., 2021b).

TABLE 3 Bionic product with rose petals as template.

Main materials Technologies Advantages Ref

Polyurethane A combination of replica molding and
hydrophobic particle deposition

Reversibly transformed between
Cassie–Baxter state and Cassie immersion
state

Shao et al. (2020)

Polycaprolactone glycol-400; 4-butanediol

Triethylamine

Dimethylformamide

4-diphenylmethane diisocyanate; Nano-fumed
hydrophobic silica; Glycerol

Dimethylol propionic acid Template method Real-time wetting and adhesion behavior
changes in response to magnetism

Drotlef et al. (2014);
Chen et al. (2021b)PDMS

NdFeB

CIPs

Red rose petals One-step solvothermal method Strong mechanical properties Yang et al. (2019)

Acetone Nanoimprint lithography method High thermal stability

Polyvinyl butyral High buoyancy

Polydimethylsiloxane

Curing agent

Octadecyl trichlorosilane

Anhydrous ethanol

Ethyl silicate

GO

Latex balloon; (heptadecafluoro-1.1,2,2-
tetrahydrodecyl) trichlorosilane

3D shrinking method Tunable adhesion (39.2–129.4 µN) Tan et al. (2019)

Ultralarge liquid capacity

Cuprum Chemical etching method Simple, fast, cheap Bahrami et al. (2017)

FeCl3 Controllable adhesion

Stearic acid Two-step molding process Controllable adhesion Bhushan and Her,
(2010)Rose petals Wax evaporation method

Chloroform; n-hexadecane

Cuprum Electrodeposition method Excellent stability and corrosion resistance Liu et al. (2014)

Hydrochloric acid Fast and easy

Sodium hydroxide Low cost

Cerium myristate
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3.1.2 Rose petals
In contrast to the lotus leaf, the rose petal is the canonical

example in the Wenzel model. As its petal fibers have a micro-

nano double-order structure scale larger than that of the lotus leaf

surface, the droplets tend to completely wet the larger scale

surface grooves, resulting in increased surface roughness, high

surface adhesion, and strong contact angle hysteresis. This shows

that even if the petals are inverted, the droplets on the surface will

not fall off. Jiang et al. first discovered this phenomenon in

2008 and called it the “petal effect” (Feng et al., 2008).

Subsequently, Zheng et al. (2019) studied the dynamic wetting

law of viscous superhydrophobic substrates for the first time by

comparing and analyzing simple artificial petal-like substrates

and superhydrophobic substrates. As shown in Table 3 is bionic

product with rose petals as template.

It can be predicted that the self-cleaning functional surface

with the “lotus leaf effect” has played an important role in drag

reduction, cell culture, dust control (Nosonovsky and Bhushan,

2009; Ueda and Levkin, 2013), while the application prospect of

“petal effect” is much broader for non-destructive fluid transfer

and biotechnology (Sun et al., 2005; Lai et al., 2013; Yue et al.,

2020).

It is worth noting that because the super-hydrophobic rose

petals have different surface microstructure and

nanostructure, the adhesion of different petals is also

different. On the basis of studying two kinds of super-

hydrophobic rose petals with high and low adhesion,

Bhushan and Her. (2010) prepared artificial super-

hydrophobic surfaces with high and low adhesion by wax

evaporation, in which the droplets with high adhesion will not

fall when the substrate is vertically inclined or inverted.

In addition, since rose petals and lotus leaves are natural

examples of the Wenzel-Cassie transition state and the

Cassie–Baxter model, respectively, an increasing number of

scholars have compared the two with the intention of

exploring the relationship and transition between them

(Zhang et al., 2012b). The researchers realized the reversible

transition between the Cassie–Baxter state and the Cassie

impregnation state of the superhydrophobic surface by

adjusting the micro/nanostructure of the shape memory

polymer SMP. This surface controls the adhesion behavior of

liquids and has an important impact on rewritable patterns and

the transport and collection of controlled droplets (Shao et al.,

2020). In order to apply the superhydrophobic surface to droplet

microfluidic chip and microfluidic transmission, Drotlef et al.

(2014) Chen et al., 2021b) focused on the magnetic response

surface, and proposed a magneto rheological elastomer

superhydrophobic surface with magnetic response, which can

be quickly and reversibly replaced between “lotus effect” and

“rose petal effect”. For large general conductor materials, Liu

TABLE 4 Bionic product with rice leaves as template.

Main materials Technologies Advantages Ref

poly [6-(4-methoxy-4′-oxyazobenzene)hexyl methacrylate] Reverse Breath Figure Effective and convenient water
collection

Gao et al. (2018)

Gold nanoparticles Self-assembly

1H,1H,2H,2H-perfluorodecanethiol

Aluminum Femtosecond laser grating scanning Fast Yang et al. (2021)

Anisotropic superhydrophobic

Self-cleaning

TiO2 3D printing technology of
stereolithography

Drag reduction Barraza et al. (2022)

Hexadeciltrimethylsiloxane Anisotropy

Samples of each of the rice leaf, butterfly wing, rainbow trout fish scales,
and Mako shark skin

Template method Self-cleaning Bixler and Bhushan,
(2012)

Liquid platinum silicon Drag reduction

Isopropanol

Liquid carbamate polymer

Green rice leaf

Polydimethylsiloxane Femtosecond laser method Three-dimensional anisotropy Fang et al. (2018)

Fluoroalkyl silane

Silicon substrate

Dimethyl siloxane

Heptafluorodecyl trimethoxysilane Laser etching method Switchable isotropy-anisotropy Cheng et al. (2018)

Bisphenol A diglycidyl ether Chemical etching method

N-octylamine Template method

M-xylylenediamine
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et al. (2014) developed a one-step electrodeposition method to

prepare controllable superhydrophobic surface with excellent

stability and corrosion resistance.

3.1.3 Rice leaves
Compared with the former two, rice leaves show another

interesting new feature: by macroscopic observation, droplets on

rice leaves are easier to slide down in the growth direction of rice leaf

(from the stem to the petiole or from the stem to the tip).

Microscopically, the surface of rice leaves is also a super

hydrophobic surface suitable for the Cassie–Baxter model, but

the arrangement of its surface structure is quite different from

that of lotus leaves and rose petals. Micro-nano double-stage

structures are arranged orderly along the growth direction of rice

leaves, but randomly in the vertical direction (Bhushan et al., 2009;

Wu et al., 2011), just like the roof tile structure in ancient China. The

geometric structure of micro-grooves arranged in order along the

same directionmakes the energy barrier overcome by liquid droplets

rolling along the parallel direction of leaves and stems much smaller

than the energy barrier perpendicular to the direction of leaves and

stems, resulting in anisotropy of surface adhesion. The rolling angles

measured by experiments are 3°–5° along the direction parallel to

leaves and stems and 9°–15° in the vertical direction (Feng et al.,

2002). As shown in Table 4 is bionic product with rice leaves as

template.

With the intensive study of the unique anisotropic (also

called liquid-oriented) superhydrophobicity of rice leaves, once

again, the field of liquid-oriented drag reduction, water collection

and transport has been promoted (Gleiche et al., 2000; Higgins

and Jones, 2000; Chen et al., 2005).

Therefore, the researchers are committed to constructing an

anisotropic hierarchical structure based on the unidirectional

sliding of water droplets in rice leaves (Zhang et al., 2012b; Gao

et al., 2018; Xu et al., 2020). Yang et al. (2021) transformed the

bionic superhydrophobic surface from isotropic to anisotropic by

laser grating scanning, and obtained an anisotropic

superhydrophobic aluminum surface with rice leaf shape.

Inspired by the microstructure of lotus leaf and rice leaf,

Cheng et al. (2018) proposed a new functional material. By

repeatedly controlling the surface microstructure shape

between lotus leaf structure and rice leaf structure, the

reversible transition between isotropic and anisotropic wetting

state of superhydrophobic was realized. In addition, the

superhydrophobic surface has good stability, even after

1 month, intelligent transformation can be observed, and it is

widely used in controlled droplet transportation. In order to

highly reproduce the surface structure of rice leaves, Fang et al.

Fang et al. (2018) used two-step soft transfer to develop the

structure of artificial rice leaves. The structure has the sliding

characteristic of anisotropy clearly. The systematic measurement

shows that the sliding angles of the structure parallel to the vein

direction and perpendicular to the vein direction are 25° and 40°

respectively, which can be used for the rapid fabrication of large

area artificial rice leaf surface without expensive instruments and

complex techniques.

3.1.4 Chapter summary
By comparing the superhydrophobicity of plant surface, it

can be easily found that small differences in surface morphology

or characteristic size will lead to great differences in surface

wetting behavior. For example, the microstructure of rose petals

has a larger distance than lotus leaves, which brings a completely

different phenomenon, and the micro-morphology of rice leaves

arranged regularly will limit the rolling direction of droplets, and

so on. Therefore, when constructing and preparing

superhydrophobic biomimetic materials, researchers often not

only take one organism as a reference, but also combine different

structures of various organisms according to the target field to

achieve the purpose of meeting the application requirements.

3.2 The surface structures of typical
animals

Plants are not the only creatures with superhydrophobic

properties. Superhydrophobicity can also be found in different

animals, some of which are listed in Table 5, and typical ones will

be selected to be elaborated in more detail.

3.2.1 Gecko feet
Gecko has the ability to crawl on smooth vertical walls, which

has aroused researchers’ interest. With the strengthening of

research in the past century, the description of the gecko

crawling instincts has expanded from macroscopic grasping

and suction cup to microscopic Van der Waals forces, which

is more and more correct and rigorous. As shown in Table 6 is

bionic product with gecko feet as template.

Different from the self-cleaning ability of lotus leaf in wet

environment, gecko foot has good hydrophobicity, but also has

high surface adhesion and self-cleaning performance in dry

environment, which provides a direction for the research of

dry self-cleaning materials.

Its microscopic state applies to the Gecko state among the

five superhydrophobic surface existence states, due to the growth

of about half a million micron-level extremely fine bristles on the

gecko foot, each bristle end also exists a large number of

nanoscale villi branches, which makes the distance between

the micro-nano double-order array and the contact surface

further reduced and the contact area further increased, so that

the sum of the weak Van derWaals forces is sufficient to generate

a strong surface adhesion force. The energy barrier for droplet

movement increases, so it has the ability to climb walls (Autumn

et al., 2000; Autumn et al., 2002; Wang et al., 2012).

As for the mechanism of drying self-cleaning,Xu et al. (2015)

showed that geckos used a unique toe-off action in rapid

movement, and this dynamic process resulted in a very large
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TABLE 5 The surface structures of typical animals.

Animal surface Properties References

Gecko foot High surface adhesion, self-cleaning Wang et al. (2012); Darmanin and Guittard. (2015); Watson et al. (2015); Sethi et al. (2019)

Cicada wing Self-cleaning, anti-reflective Zhang et al. (2006); Xie et al. (2017); Teisala and Butt. (2018); Oh et al. (2019); Román Kustas
et al. (2020)

Shark skin Self-cleaning, underwater drag reduction, self-
reparing

Walsh. (1983); Liu et al. (2019); Monfared et al. (2019); Xiang and Liu. (2021)

Penguin feather Anti-icing, liquid guidance Wang et al. (2016); Ma et al. (2017); Alizadeh-Birjandi et al. (2020)

Butterfly wings Self-cleaning, liquid-directed Zheng et al., 2007; Fang et al., 2008; Tuo et al., 2019)

Spider silk Water collector Zheng et al. (2010); Wang et al. (2017); Gustafsson et al. (2018); Si et al. (2018)

Earthworm Drag reduction, lubrication Zhao et al. (2018); Xu et al. (2021b); Carmichael. (2021)

Mosquito
compound eye

Superhydrophobic, anti-fog Gao et al. (2007); Wang et al. (2019b); Liu et al. (2021)

Dragonfly wings Self-cleaning,Superhydrophobic Nguyen et al. (2013); Nguyen et al. (2014a); Cheeseman et al. (2018)

TABLE 6 Bionic product with gecko feet as template.

Main materials Technologies Advantages Ref

Choline chloride Template-free electrodeposition High adhesion Li et al. (2020b)

Ethylene glycol

ZnCl2

Stearic acid

1H, 1H, 2H, 2 H-perfluorooctane triethoxy silane Two-step template method Switching adhesion Zhang et al. (2021)

Hydrogen peroxide

Sulfuric acid

Silicone template

Castor oil

Diphenylmethane diisocyanate; Bisphenol An epoxy resin

Diglycidyl ether

Dodecylamine

M- dimethylamine

N- polyethylene terephthalate

O- Polyurethane

Acrylate

Adhesive

Polystyrene Hot pressing Strong adhesion Sauer. (2010); Tan et al. (2020)

Aluminum plate Shear pressing technology

Oxygen plasma treatment

Anodic alumina — Strong adhesion Liu et al. (2012)

4.4′-Oxydianiline
N,N-dimethylacetamide

Pyromellitic dianhydride powder; hydrochloric acid

Fluoroalkylsilane ethanol solution

Polystyrene

Alumina membrane Tmplate-wetting method Strong adhesion Jin et al. (2005)

Xylene

Sodium hydroxide

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Ge-Zhang et al. 10.3389/fbioe.2022.1033514

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1033514


instantaneous separation rate of their bristles and contact

surfaces. Due to the bristle and shovel-like tentacle system

with micro-nano dual-stage structure, the surface adhesion

between the foot walls has little to do with the detachment

speed, while the detachment force of the microsphere

increases with the increase of detachment speed. It is this

subtle difference that makes it easy to achieve dry self-

cleaning effect during the rapid movement of the gecko. The

research results not only provide new design ideas for the long-

standing industrial particle manipulation, but also provide a new

research direction for the preparation of functional surfaces that

can be used repeatedly and have self-cleaning and particle

manipulation properties (Kamperman et al., 2010; Liu et al.,

2010; Darmanin and Guittard, 2015).

TABLE 7 Bionic product with cicada wings as template.

Main materials Technologies Advantages Ref

Cicada wings — Antibacterial Ivanova et al.
(2012)

Polydimethylsiloxane Template method Anti-reflection Liu et al. (2016)

Ethyl orthosilicate Self-cleaning

Silicon wafer Deep reactive ion etching Self-cleaning Hasan et al. (2015)

C4F8 Antibacterial

SF6

O2

Cicada wing High speed wire electrical discharge
machining

Simple, low cost Liang et al. (2017)

7075 aluminum alloy Strong mechanical
properties

Molybdenum wire Environmental friendliness

Silica microspheres; (Tridecafluoro-1.1,2,2-tetrahydrooctyl)-
trichlorosilane;

Self-assembly method Broadband anti-reflection Chen et al. (2015)

PET Chemical etching method

Ethoxylated trimethylolpropane triacrylate monomer

Photoinitiator

TABLE 8 Bionic product with penguin feathers as template.

Main materials Technologies Advantages Ref

Steel One step precipitation
polymerization

Effectively delay the icing process Yang et al. (2016); Latthe et al.
(2019)Hydrogen peroxide Durable

Strong acid

Heptadecafluorodecyl tripropoxy
silane

Body hair of Humboldt cocktail

1.2,4,5-benzenetetracarboxylic
anhydride

Electrospinning Excellent mechanical strength at low temperature Wang et al. (2016)

4.4′-diaminodiphenyl ether

Polyvinylidene fluoride Electrospinning Excellent mechanical strength, thermal stability and excellent
corrosion resistance

Vicente et al. (2021)

Dimethyl formamide

Acetone

Silicon substrate

Nickel chloride hexahydrate

Nickel sulfamate tetrahydrate Lithography Ice-proof; Wear-resistant Li et al. (2021c)

Boric acid

2- ethylhexyl sodium sulfate

Saccharin sodium hydrate

Chemical etching method
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According to the characteristics of geckos, researchers have

produced various adhesive materials with high surface adhesion

(Li et al., 2011; Liu et al., 2012). In order to design a new type of

adhesive film, Zhang et al. (2021) proposed a shape memory film

with adhesion to solids and liquids. With high water repellency

and low adhesion (about 51 N), this film provides a new idea for

the design of different adhesives. Sauer et al. (Tan et al., 2020)

prepared nanotube arrays (Eiof~3 GP) with similar size to gecko

bristles from hydrophobic polystyrene, which provided guidance

for adhesives designed in wet or underwater environments. In

addition, the researchers also used AAO template to prepare

multi-scale structure of gecko-like polyimide film. On the basis of

stable superhydrophobicity, the film has a high adhesion to water

(about 66 μN), and can be used as a manipulator to capture water

droplets from a low-adhesion superhydrophobic surface (Liu

et al., 2012).

3.2.2 Cicada wings
Compared with the century-old research of gecko, the

discovery of super-hydrophobic cicada wings is much later.

The Chinese idiom “as thin as a cicada’s wing” is used to

describe the extremely small thickness of an object. The

scanning electron microscope shows that the thickness of a

cicada’s wing is only 8–10 μm, but the self-cleaning and anti-

reflection characteristics of cicada’s wings provide another way to

discover the superhydrophobic characteristics (Zhang et al.,

2006; Dellieu et al., 2014). As shown in Table 7 is bionic

product with cicada wings as template.

Similar to the liquid thin layer at the mouth of pitcher plant,

the regular hexagonal micro-nano two-level structure on the

surface of cicada wings makes cicada wings have better

superhydrophobic performance and self-cleaning ability,

especially the micro-nano structure composed of three-

dimensional waxy structure is easier to adsorb the air thin

layer (Lee et al., 2004; Nguyen et al., 2014b).

Because of its different characteristics, cicada wing is widely used

inmedical treatment, optoelectronic devices and other fields, mainly

due to its antibacterial and anti-reflection properties.

First of all, there are some similarities between cicada wings

and lotus leaves in antimicrobial activity (Hasan et al., 2013;

Kelleher et al., 2016). In order to limit the spread of infection

without antibiotics, Ivanova et al. (2012) used anodization,

lithography, micellar lithography and self-assembly to simulate

the penetration of nanotube arrays on the surface of cicada wings.

They solved the huge losses caused by antibiotic resistance and

antibiotic action of pathogens by preparing antibacterial surfaces.

The researchers prepared a nanostructured ‘hypersurface’ based

on the deep reactive ion etching of silicon wafers. The surface is

sustainably antibacterial, kills mammalian cells (mouse

osteoblasts), and is used in surgical instruments (Hasan et al.,

2015).

In addition, Watson and Watson. (2004) found that

compared with plants such as lotus leaves, the hexagonal

array of cicada wings has a circular tip extending outward

about 150–350 nm. To some extent, this unique structure can

be regarded as a kind of gradient refractive index material, which

leads to the change of photoimpedance, the decrease of light

reflection and the enhancement of antireflectivity (Stoddart et al.,

2006; Xie et al., 2017). Inspired by the cicada wing structure, the

researchers successfully prepared antireflective films with an

average transmittance of 98% and nano-solar cells with strong

absorptivity in a wide spectral range. Similarly, Liu et al. (2016)

used PDMS to replicate the nano-cone structure of cicada wings

to prepare the multi-functional surface of artificial cicada wings.

Not only the antireflection effect is outstanding, but also the

contact angle of the forward PDMS replica can reach 152°. It has a

broad application prospect in many optical equipment.

3.2.3 Penguin feathers
Penguins living in the Antarctic often go to sea to feed, but their

feathers do not get wet and are extremely difficult to freeze, which

has aroused the interest of researchers. Penguin feathers, as a super

hydrophobic material with high ice resistance, which has aroused

the interest of researchers and become a hot research object in recent

years. In view of the waterproof and ice resistance of penguins,

Alizadeh-Birjandi explained the main mechanism of delayed

solidification of waterproof materials by developing a heat

transfer model, which was extended to general superhydrophobic

surfaces (Alizadeh-Birjandi et al., 2020). As shown in Table 8 is

bionic product with penguin feathers as template.

(Bormashenko et al. (2012) found that hook-like structures

with a diameter of about 3 μm and a spacing of about 20 μm are

arranged in an orderly manner on the feather branches parallel to

penguin micro-scale and sub-micron feathers. The micro-nano

double-stage structure has good hydrophobicity and liquid

guiding property, so that the droplets falling on it slide down

along the growth direction of the feather.

Further research byWang et al. (2016) found that the surfaces of

feather twigs and feather hooks are not smooth, but lined with

grooves with a depth of about 100 nm. These grooves can save air, so

that droplets cannot be completely wetted, but exist in Cassie state

among five super-hydrophobic surface states, that is, droplets can be

regarded as spherical on feather surface, which is easier to slide down

and slower in heat dissipation. Thismulti-stage structure reduces the

adhesion between ice and makes penguin feathers have excellent

anti-icing performance. In addition, the penguin tail evolved a gland

that can secrete oil. Penguin use their beaks to spread oil on feathers,

which can play a role in waterproof.

According to the excellent anti-icing and anti-condensation

properties of penguin feathers, many applications in heavy

industries such as aerospace and ships have been derived.

Inspired by the three-dimensional microstructure network of

penguin body hair, Wang et al. fabricated a novel polyimide

nanofiber film on asymmetric electrodes by electrospinning. The

film has good mechanical strength at low temperature (no brittle

fracture in liquid nitrogen), which prevents the accumulation of
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pinning droplets and realizes hydrophobicity. It can be used in

the aerospace field to avoid the great danger caused by aircraft

icing during flight in extreme weather (Wang et al., 2016).

Vicente et al. (2021) used electrospinning technology to

prepare functional polyvinylidene fluoride (PVDF) fibers for

the excellent hydrophobicity and anti-stickiness of penguin

feathers. It can not only prevent the aircraft from drift and

resistance caused by atmospheric icing caused by supercooled

droplets, but also has excellent mechanical strength, thermal

stability and very good corrosion resistance. In the field of ship

navigation, researchers used a sprayable mixture of hydrophobic

silica nanoparticles embedded in a silica gel matrix to create a

bionic superhydrophobic surface that can be used for turbulent

drag reduction, thus solving the problem that ships consume a lot

of energy to overcome underwater resistance (Golovin et al.,

2016). In addition, (Li et al. (2021c) using a simple and

potentially low-cost method, a flexible hydrophobic surface

was prepared by combining a mechanical durable nickel

skeleton with an interconnected microwall array filled with

hydrophobic polytetrafluoroethylene (PTFE). Even under the

pressure of 0.12 MPa, the prepared surface can remain

hydrophobic after more than 1,000 times of linear wear.

Compared with the inherent hydrophilic metal surface, the

good hydrophobicity also enhances the anti-ice function, and

can be used as a multi-functional environmental protection

coating in navigation engineering.

3.2.5 Chapter summary
Different super-hydrophobic characteristics of animals are

closely related to their living environment. For example, the

hydrophobic and anti-icing characteristics of warm feathers are

of great significance to the survival of animals in cold regions,

while underwater fish have evolved to reduce underwater

resistance. People use these different properties and structures

to design and manufacture many engineering materials, which

provide a reliable guarantee for people’s medical health,

aerospace and many other fields.

4 Summary and outlook

The hierarchical structure formed by micron-scale papillae

and nanoscale wax crystals covering the surface of a lotus leaf, the

larger micro-nano double-ordered structure and grooves of rose

petal fibres, the geometry of micro-grooves ordered along the same

direction in a rice leaf, the bristles and spatula-like tentacle system

of the micro-nano double-ordered structure of a gecko foot, the

micro-nano structure consisting of regular hexagonal micro-nano

two-stage structures and three-dimensional wax structures on the

surface of a cicada wing, the micron-scale and The ordered

arrangement of the feather branches of sub-micron feathers. All

these excellent structures and functions in nature are achieved

through multi-level and multi-scale assembly from simple to

complex and from disorder to order, which also provides good

inspiration for intelligent bionanism in humans. The rich diversity

of nature and the adaptive changes of organisms inspire us to think

endlessly, and the inventions using the surface hydrophobicity of

animals and plants are unique and diverse. From daily necessities

to heavy equipment, superhydrophobic materials have attracted

people’s unremitting pursuit and exploration for their high

performance, low cost and simple preparation process. Based

on the principle and concept of superhydrophobic surfaces, this

paper mainly introduces the superhydrophobic properties of

various animals and plants in nature and their great practical

application value, and summarizes the differences and application

fields of different superhydrophobic surfaces. Finally, we will put

forward a reasonable assumption and plan for the future

development prospect of bionic superhydrophobic technology.

In view of the achievements and efforts made by our

predecessors in constantly exploring the principles and methods

of bionic superhydrophobicity, it has laid a solid foundation for us

to further develop bionic superhydrophobic materials with

simpler, more environmentally friendly materials and lower

cost. At present, part of the bionic superhydrophobic

technology is gradually changing from the laboratory scale to

large-scale industrial production, which has a broad prospect, but

the existing problems and shortcomings are also gradually

emerging, such as low production efficiency, high production

cost, unfriendly to the environment and so on. In this paper,

the following ideas are put forward for the future bionic

superhydrophobic from natural organism to artificial functional

surface:

1) Green, environmentally friendly and sustainable materials make

what we are looking for. At present, the Main materials used in

the manufacture of superhydrophobic materials are mainly

harmful reagents, such as fluorinated superhydrophobic

materials, which successfully reduce the surface free energy,

but are challenging to the growing environmental and human

health problems. We should further develop biodegradable,

nontoxic and environmentally friendly new materials into the

process of preparing superhydrophobic surfaces, so as to avoid

biological pollution and environmental pollution, resulting in

irreversible consequences.

2) In light of the fact that the structure and function of these

excellent superhydrophobic properties of natural organisms

are achieved through multi-level and multi-scale assemblies

from simple to complex and from disordered to ordered.

Therefore, the development of novel high-performance

nanocomposite structures and materials can be achieved by

drawing on multiple structures and models.

3) How to make the application materials have sustainable

durability has become a big problem. At present, the

durability of nanostructure coating on mechanical wear and

impact caused by flowing fluid is lower than expected. On the

one hand, we need to make some exquisite surface structures,
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such as micro-nano hierarchical structures or nanostructures, in

order to obtain the final superhydrophobic properties. On the

other hand, we require the surface to have good surface

mechanical properties to meet the requirements of the

application. The two are opposing in nature. Therefore, it will

be an important research direction in the future that how to

achieve a balance or improve its surface mechanical properties

on the premise of keeping its surface super-hydrophobic.

4) Compared with the traditional micro-nano processing methods

(ion etching, chemical vapor deposition, template method, etc.),

femtosecond laser technology has the advantages of high

precision, good controllability and applicability to different

materials. Therefore, intelligent bionic design with the help of

advanced manufacturing technologies and tools such as

femtosecond laser machining is also a focus of future research

(Yong et al., 2015; Zhang et al., 2020; Fang et al., 2022; Yong et al.,

2022; Zhang et al., 2022).

5) The structural and functional design can be coherent and

consistent, and the functional design can be considered in

conjunction with the natural optical properties of the

creature, thus imparting a more aesthetic character.
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