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Abstract: Mutations in SCN1A gene, encoding the voltage-gated sodium channel (VGSC) NaV1.1, are
widely recognized as a leading cause of genetic febrile seizures (FS), due to the decrease in the Na+

current density, mainly affecting the inhibitory neuronal transmission. Here, we generated induced
pluripotent stem cells (iPSCs)-derived neurons (idNs) from a patient belonging to a genetically well-
characterized Italian family, carrying the c.434T > C mutation in SCN1A gene (hereafter SCN1AM145T).
A side-by-side comparison of diseased and healthy idNs revealed an overall maturation delay of
SCN1AM145T cells. Membranes isolated from both diseased and control idNs were injected into
Xenopus oocytes and both GABA and AMPA currents were successfully recorded. Patch-clamp
measurements on idNs revealed depolarized action potential for SCN1AM145T, suggesting a reduced
excitability. Expression analyses of VGSCs and chloride co-transporters NKCC1 and KCC2 showed
a cellular “dysmaturity” of mutated idNs, strengthened by the high expression of SCN3A, a more
fetal-like VGSC isoform, and a high NKCC1/KCC2 ratio, in mutated cells. Overall, we provide
strong evidence for an intrinsic cellular immaturity, underscoring the role of mutant NaV1.1 in
the development of FS. Furthermore, our data are strengthening previous findings obtained using
transfected cells and recordings on human slices, demonstrating that diseased idNs represent a
powerful tool for personalized therapy and ex vivo drug screening for human epileptic disorders.

Keywords: febrile seizure; induced pluripotent stem cells; mesial temporal lobe epilepsy; voltage
gated sodium channel NaV1.1; disease model

1. Introduction

Febrile seizures (FS), i.e., seizures occurring during fever not due to a central nervous
system (CNS) infection, are convulsive events commonly affecting children [1]. Retrospec-
tive studies have linked childhood FS to the development of hippocampal sclerosis (HS)
and mesial temporal lobe epilepsy (MTLE) later in life, especially when in the presence
of a family history of febrile convulsions [2]. MTLE with HS is a drug-resistant form of
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epilepsy and often requires patients to undergo temporal lobotomy to achieve seizure
freedom [3]. Missense and nonsense mutations in the SCN1A gene, encoding the α-subunit
of the NaV1.1 VGSC, are associated in a wide range of epileptic disorders in which FS are
involved, such as Dravet syndrome [4], generalized epilepsy with febrile seizures plus
(GEFS+) [5], simple FS [6] and MTLE with HS [7]. Additionally, SCN1A mouse mutants ex-
posed to recurrent early-life FS developed an increased risk of seizures susceptibility during
adult life [8]. Although very useful, animal models fail in trying to faithfully recapitulate
the mechanisms underlying human disease, since the patient-specific genetic background
is not taken into account. For instance, remarkable differences between GEFS+ [9] and
simple FS [6] clinical phenotypes do exist among patients carrying the same mutation.
Limitations associated with animal models can be overcome by the generation of iPSCs
from a patient’s own cells [10–13]. In this study, we generated iPSCs from a patient carrying
a missense mutation in the SCN1A gene. This mutation causes the substitution of a highly
conserved methionine with a threonine in position 145 of the NaV1.1 protein (M145T). This
patient belongs to an Italian family of 13 individuals carrying the mutation and affected by
FS [6]. In addition, this patient developed MTLE with HS during adolescence, showing
severe recurrent drug-resistant seizures [14,15]. Then, neurosurgery became necessary
at the age of 27 years to remove hippocampal sclerotic tissue and achieve a control of
seizures [15]. Patch-clamp recordings in human cell lines, transfected with a plasmid
carrying the SCN1A-M145T mutant gene, revealed a loss-of-function mutation leading
to a 60% reduction in the Na+ current density and a positive shift of about 15 mV in
the voltage-dependent activation of the channel [6]. Furthermore, electrophysiological
experiments conducted on fresh hippocampal slices obtained from the same patient from
which iPSCs were generated, showed a more depolarized action potential (AP) threshold
and an impairment of GABAergic neurotransmission in interneurons [15], a hallmark of
SCN1A mutations in epileptic phenotypes [16,17]. Notably, the latter was coupled to an
increase in GABA current use-dependent desensitization in oocytes micro-transplanted
with the same hippocampal tissue [15,18].

The pivotal involvement of inhibitory interneurons in epilepsy was also shown in
studies based on iPSCs models of pathogenic SCN1A mutations [19,20]; others have instead
demonstrated the involvement of both glutamatergic and GABAergic populations in the
epileptic brain hyperexcitability [21]. In this study, we used patient-specific iPSCs-derived
neurons (idNs) to investigate the molecular and electrophysiological mechanisms underly-
ing the SCN1AM145T disease phenotype. Our results show a significant alteration in the
development and maturation processes of SCN1AM145T idNs compared to their healthy
control counterpart. Electrophysiological measurements conducted on single neurons
during their development add further knowledge to this scenario, with findings that suc-
cessfully recapitulate those previously recorded on hippocampal sclerotic tissue from the
same patient. Taken together, our results strengthen the potential of iPSCs technology for a
more comprehensive understanding of the complexity of epileptic-like human phenotypes.

2. Materials and Methods
2.1. Clinical Features and iPSCs Generation from a Patient with Missense Mutation in the
SCN1A Gene

In this study, we generated iPSCs from a male subject who carried a missense mutation
(c.434T > C in exon 3) in the SCN1A gene encoding for the α-subunit of the NaV1.1 VGSC.
The patient (referred as subject IV-3 in the pedigree described in [6,14]) belongs to a family
in which thirteen members were affected by FS during childhood, all carrying the same
c.434T > C missense mutation, which causes the substitution of a highly conserved methio-
nine residue with a threonine within the S1 segment of the domain 1 in the NaV1.1 channel
(Figure 1A). The patient of this study experienced FS lasting up to 15 min, suggesting a
clinical phenotype of complex FS, until the age of six. Seven years later, he started suffering
from focal complex seizures, compatible with MTLE. The disease progressed, and the
patient became refractory to antiepileptic drugs (AEDs). Neurological evaluation reported
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bilateral mesial temporal epileptiform spikes mostly localized (>70%) on the right side,
while brain MRI evidenced significant sclerosis in the right hippocampus, requiring right
temporal lobectomy to achieve seizure freedom (Colosimo et al., 2007). iPSCs were also gen-
erated from skin fibroblasts isolated from a healthy thirty-year-old male and were used as
a control line in our experiments. The generation and characterization of SCN1AM145T and
healthy control iPSCs is described in [22] (line identified as UNIMGi001-A) and [23] (see
line hiPSCs-3), respectively. iPSCs were cultured on Matrigel-coated dishes with mTeSR1
medium (StemCell Technologies, Vancouver, BC, Canada), in a humidified incubator at
37 ◦C at 5% CO2. Cells were split every 4–5 days (80% confluence) with the use of Gentle
Cell Dissociation Reagent (StemCell Technologies). Both cell lines were routinely tested
for Mycoplasma with the Mycoplasma PCR Detection Kit (Applied Biological Materials,
Richmond, BC, Canada).

2.2. Generation of iPSCs-Derived Neurons (idNs)

We coaxed iPSCs from both control and SCN1AM145T to differentiate into neural
stem cells (NSCs) using Gibco® PSC Neural Induction Medium (Thermo Fisher Scientific,
Waltham, MA, USA), following the manufacturer’s instructions. To obtain neurons, NSCs
were then plated at a density of 5 × 104 cells/cm2 on dishes coated with Poly-D-Lysine
(molecular weight 30,000–70,000) plus Laminin (both from Merck, Darmstadt, Germany)
and cultured in Neuronal Differentiation Medium (NDMC), composed of Neurobasal
Medium, 1× B27 supplement, 1× Glutamax, 1× CultureOne™ Supplement, 200 µM
ascorbic acid and 0.2% Penicillin/Streptomycin (all from Thermo Fisher Scientific). NDMC
was supplemented with GDNF at 10 ng/mL and BDNF at 20 ng/mL (both from PeproTech,
London, UK) at NSCs plating; the concentration of GDNF and BDNF was lowered to
5 ng/m and 10 ng/m, respectively, at the first medium change. Subsequently, NDMC
medium was supplemented with BDNF only, used at 5 ng/mL during the second medium
change and at 2.5 ng/mL during the whole culture period. Neurons were kept in culture
28–35 days until they reached full maturation for subsequent analysis.

2.3. RNA Extraction and qRT-PCR Analysis

Total RNA was obtained by phenol/chloroform extraction using TRIzol reagent
(Thermo Fisher Scientific) and 1 µg RNA was retro-transcribed in cDNA using the High-
Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific). cDNA was used for
relative quantitation of gene expression by qRT-PCR, using the SensiFAST SYBR Hi-ROX
kit (Meridian Bioscience, Cincinnati, OH, USA). Gene expression levels were normalized to
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a housekeeping gene. qRT-PCR
was performed by QuantStudio™ 7 Pro Real-Time PCR System (Thermo Fisher Scientific).
A list of primers used in this study is provided in Supplementary Table S1.

2.4. cDNA Sequencing

Primers based on the cDNA sequence of the SCN1A gene were designed to amplify the
exon 3 in which the c.434T > C mutation is found. The amplification of the target region was
obtained with the use of specific primer pairs (FW: 5′-ATTGAAAGACGCATTGCAGA-3′

and RV: 5′-TGTTCCTCCAAGGAAGCATT-3) and the following PCR program: 3 min at
95 ◦C, 30 cycles of 30 s at 95 ◦C, 30 s at 52 ◦C and 45 s at 72 ◦C, with a final extension
at 72 ◦C for 5 min. Following gel electrophoresis to confirm the amplicon size (797 bp),
PCR products were extracted from gel using the EZ-10 Spin Column DNA Gel Extraction
Kit (Bio Basic Inc., Markham, ON, Canada ) and Sanger sequenced (Eurofins Genomics,
Ebersberg, Germany).

2.5. Western Blot Analysis

For total protein extraction, cells were harvested in ice-cold phosphate-buffered saline
(PBS) and lysed in RIPA buffer (Merck) containing Halt™ Protease Inhibitor and Halt™
Phosphatase Inhibitor Cocktails (Thermo Fisher Scientific). Protein concentration was
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measured by Bradford assay. After denaturation for 10 min at 70 ◦C in Laemmli Sample
Buffer, 70 µg of proteins were resolved in acrylamide/bisacrylamide precast gels Mini-
PROTEAN TGX (Bio-Rad, Hercules, CA, USA) and transferred to nitrocellulose membrane.
The membrane was incubated overnight at 4 ◦C with the following primary antibodies:
anti-NaV1.1 (rabbit polyclonal, 0.5 µg/mL, ab24820, Abcam, Cambridge, UK) and anti-
TUBB3 (mouse monoclonal, 1:10,000, 480,011, Thermo Fisher Scientific). After washing,
horseradish peroxidase conjugated secondary antibody anti-rabbit IgG and anti-mouse IgG
(Jackson ImmunoResearch, Cambridge, UK) were added to the membrane and incubated
for 1 h at room temperature. The protein bands on the membranes were detected by
Clarity™ Western ECL Blotting Substrates (Bio-Rad) using the Alliance™ Q9-Atom (Uvitec,
Cambridge, UK). Western blot bands were quantified using the Analyze Gels tool of Fiji
Software [24].

2.6. Immunofluorescence

Immunofluorescence analysis was performed on poly-D-Lysine plus laminin-coated
permanox chamber slides (Thermo Fisher Scientific). Cells were fixed in 4% (vol/vol)
paraformaldehyde (PFA) and subjected to immunostaining with the following primary
antibodies: anti-TUBB3 (mouse monoclonal, 1:250, 480011, Thermo Fisher Scientific), anti-
MAP2 (mouse monoclonal, 1:1000, MA5-12826, and chicken polyclonal, 1:5000, PA1-10005,
both from Thermo Fisher Scientific), anti-NEFH (rabbit polyclonal, 1:1000, ab8135, Abcam),
anti-GAD1 (chicken polyclonal, 1:1000, AP31805PU-N, Origene, Rockville, MD, USA),
anti-SST (mouse monoclonal, 1:200, Ma5-17182, Thermo Fisher Scientific), anti-CALB2
(rabbit polyclonal, 1:100, PA5-16681, Thermo Fisher Scientific) and anti-CALB1 (Rabbit
monoclonal, 1:100, NB120-11427, Abcam), anti-NaV1.1 (rabbit polyclonal, 1:100, ab24820
Abcam) and anti-vGLUT1 (mouse monoclonal, 1:100, sc-377425, Santa Cruz Biotechnology,
Dallas, TX, USA). Incubation with primary antibodies was carried overnight at 4 ◦C. After
washing with PBS, cells were incubated with AlexaFluor-594, or -488 conjugated secondary
antibodies (all from Thermo Fisher Scientific) for 1 h at room temperature. Nuclei were
stained with DAPI (4′,6-diamidino-2-phenylindole, Thermo Fisher Scientific) and mounted
with Dako Fluorescent Mounting Medium (Agilent, Santa Clara, CA, USA). Images were
acquired with a Leica microscopy system (DMi8), using LAS X (v.3.7.4.23463) software.
For quantification of double positive cells (Figures 2D and 3D,E,F), neurons from two
different differentiation experiments were manually counted using the multipoint tool in
Fiji software in a blinded manner.

2.7. Patch-Clamp Recordings on idNs

Whole-cell patch clamp recordings were performed on idNs of WT and SCN1AM145T

mutant at day of differentiation 35 in 35 mm Petri-dishes. The measures were performed at
25 ◦C. The identification of neurons followed morphological criteria: highly birefringent
cells with small diameter processes were selected, and 100% of the WT cells exhibited
action potentials (APs). APs were recorded from neurons applying depolarizing current
steps (4–50 pA, 1 s) using glass electrodes (3–4 MΩ) filled with (in mM): 140 KCl, 10 Hepes,
5 BAPTA, 2 Mg-ATP (pH 7.3, adjusted with KOH). Membrane potentials were acquired at
50 kHz and filtered at 3 kHz with an amplifier HEKA EPC 800 (HEKA Elektronik, Reutlin-
gen, Germany) and analyzed off-line. During recordings, cells were continuously perfused
using a gravity-driven perfusion system with the following external solution: 140 mM
NaCl, 10 mM HEPES, 2.8 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 10 mM glucose, (pH 7.3
adjusted with NaOH). Membrane potentials have been corrected for junction potential.

2.8. Membrane Preparation from idNs

We isolated cellular membranes from approximately 7× 107 idNs of WT and SCN1AM145T.
The procedure was similar to that already described in [18] for human tissues. The cells
were scraped at day of differentiation 35, spun down and subsequently homogenized
in membrane buffer (200 mM glycine, 150 mM NaCl, 50 mM EGTA, 50 mM EDTA, and
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300 mM sucrose; plus 10 µL/mL of protease inhibitors, P2714 (Sigma)—pH 9 adjusted
with NaOH). Then, the vials were centrifuged for 15 min at 9500× g. Afterwards, the
supernatant was centrifuged for 2 h at 100,000× g with an ultracentrifuge. Finally, the
pellet was resuspended in glycine 5 mM and used directly or aliquoted and kept at −80 ◦C
for later usage.

2.9. Xenopus Laevis Oocytes Injection and Voltage-Clamp Recordings

Xenopus oocytes were collected and injected as previously described in [18]. The animal
protocols were approved by the Italian Ministry of Health (authorization no. 427/2020-
PR). The electrophysiology experiments were carried out from 12 to 48 h after injection,
with the technique of two-electrode voltage-clamp. The two microelectrodes were filled
with 3M KCl. The oocytes were placed in a recording chamber (0.1 mL volume) and
perfused continuously with oocyte Ringer solution (OR: NaCl 82.5 mM; KCl 2.5 mM;
CaCl2 2.5 mM; MgCl2 1 mM; Hepes 5 mM, adjusted to pH 7.4 with NaOH) at room
temperature (20–22 ◦C). The neurotransmitters (GABA or AMPA) were administered
through a gravity driven multi-valve perfusion system (9–10 mL/min) controlled by
a computer (Biologique RSC-200; Claix, France) to ensure the exact duration of each
application. AMPA currents were recorded in presence of cyclothiazide (CTZ, 20 µM) in
order to avoid receptor desensitization [18]. GABA, AMPA, CTZ, Bicuculline methochloride
and NBQX were purchased from Tocris Bioscience (Bristol, UK) and dissolved in sterile
water (GABA, AMPA and Bicuculline methochloride) or DMSO (CTZ, NBQX) before final
dilution to the desired concentration in OR. The solutions containing DMSO were always
used with a final DMSO concentration lower than 1:1000. GABA current rundown was
defined as the decrease in the current peak amplitude after six 10 s applications of GABA
at 40 s intervals, expressed as percentage of the first response [25].

2.10. Statistical Analysis

For molecular biology data, the number of biological replicates used in each ex-
periment was indicated in the figure legends. Statistical analysis was performed using
two-tailed t-test or multiple unpaired t-test with Welch correction in GraphPad Prism
software, version 9.3.1. Data are represented as means of biological replicates ± SEM and
p-values ≤ 0.05 were considered significant. For patch-clamp experiments, data sampling
and analysis were performed using pClamp 10 software (Molecular devices, Sunnyvale,
CA, USA). Statistical significance was assessed with ANOVA, unless otherwise stated.

The figures of this work were created with BioRender.com.

3. Results

3.1. Generation of SCN1AM145T and Control idNs

SCN1A loss-of-function mutations are reported to affect both GABAergic and gluta-
matergic neurons [21]. Therefore, we directed WT and SCN1AM145T iPSCs differentiation
toward forebrain neurons. idNs presented a well-defined neuronal morphology (Figure 1B)
and a high expression of neuronal marker genes MAP2, NEFL, NEFM, SYP, and PSD95
with respect to their undifferentiated counterpart (iPSCs) (Figure 1C), while ALDH1L1
and OLIG2, astrocytes- and oligodendrocytes-specific markers, respectively, are expressed
at lower level compared to MAP2 expression (Supplementary Figure S1). Moreover, im-
munofluorescence analysis showed that idNs co-express the pan-neuronal marker protein
TUBB3, dendrite marker MAP2, and axonal marker NEFH (Figure 1D).
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glutamatergic marker vGLUT1 could be slightly detected in few cells only (Supplemen-
tary Figure S2). 

Figure 1. Characterization of idNs. (A) Representation of NaV1.1 channel. The star in segment 1
of domain I shows the localization of the mutated aminoacid (Met145Thr). The relative missense
mutation c.434T > C is found in the exon 3 of the translated sequence. (B) Bright-field images of
idNs from WT and SCN1AM145T-iPSCs (20× magnification). (C) Differentiated idNs show high
expression levels of neuronal specific genes such as MAP2, NEFM, NEFL, SYP and PSD95 compared
to their undifferentiated counterparts (iPSCs). GAPDH was used as a housekeeping control. Data are
presented as mean ± SEM of three biological replicates (black dots), * p < 0.05, ** p < 0.01, *** p < 0.001,
t-test has been calculated vs. expression in iPSCs. (D) Immunostaining of neuronal markers TUBB3
(neurites marker), MAP2 (cell body and dendrites marker), and NEFH (axonal marker) in WT and
SCN1AM145T idNs. DAPI nuclear counterstain is shown in all images in blue (63×magnification).

Morphological analysis of cultured idNs revealed the presence of both bipolar (in-
hibitory) and pyramidal (excitatory) populations (Figure 2A). The expression of glutamate
decarboxylase (GAD2, GABAergic marker) and vesicular glutamate transporter (vGLUT2,
glutamatergic marker) by qRT-PCR analysis revealed a slightly higher expression of the
GABAergic marker in idNs from WT and SCN1AM145T (Figure 2B). In addition, by im-
munofluorescence analysis, we found that about 90% of MAP2+ neurons indeed co-express
the GABAergic marker GAD1 (Figure 2C,D). On the other hand, the glutamatergic marker
vGLUT1 could be slightly detected in few cells only (Supplementary Figure S2).
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higher prevalence of GABAergic marker GAD2 was detected, as shown by its higher fold change 
relative to iPSCs. Data are presented as mean ± SEM of three biological replicates (dots). (C) Rep-
resentative immunofluorescence images of GABA synthesis enzyme GAD1 compared to neuronal 
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Calbindin (CALB1) (Figure 3C), and parvalbumin (PV). Results of immunofluorescence 
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SCN1AM145T in line with the observation that this protein is expressed later during neu-
ronal differentiation of iPSCs [26]. 

Figure 2. Expression of GABAergic and glutamatergic markers in idNs. (A) Generated idNs are
composed of a mixed neuronal population containing neurons with both bipolar (upper panel, white
arrow) and pyramidal (lower panel, white arrow) morphology. (B) Expression analysis of mRNAs
relative to GABAergic (inhibitory) marker glutamate decarboxylase 2 (GAD2) and glutamatergic
(excitatory) marker vesicular glutamate transporter 2 (vGLUT2) in idNs relative to undifferentiated
iPSCs. GAPDH was used as a housekeeping gene. qRT-PCR analysis did not reveal significant
differences in the expression of GAD2 and vGLUT2 between diseased and control idNs relatively to
their undifferentiated iPSCs (p-value = non-significant (ns), t-test), even though a higher prevalence
of GABAergic marker GAD2 was detected, as shown by its higher fold change relative to iPSCs. Data
are presented as mean ± SEM of three biological replicates (dots). (C) Representative immunoflu-
orescence images of GABA synthesis enzyme GAD1 compared to neuronal marker MAP2 in idNs
of WT (upper line images) and SCN1AM145T (lower line images) cells (63×magnification). (D) The
diagram shows that about 90% of MAP2+ cells co-express the GAD1 marker. For each cell line, at least
300 neurons were counted, and data are presented as mean ± SEM of two independent experiments.

Mature GABAergic interneurons express specific neuropeptides and calcium binding
protein, thus we performed immunostaining of idNs at day 35 of differentiation using anti-
bodies against somatostatin (SST) (Figure 3A), Calretinin (CALB2) (Figure 3B), Calbindin
(CALB1) (Figure 3C), and parvalbumin (PV). Results of immunofluorescence analysis
indicate that 10% of MAP2+ neurons expressed SST (Figures 3D and S3A), about 9% ex-
pressed CALB2 (Figures 3D and S3B), while CALB1 is slightly present (less than 1% of
MAP2+, Figures 3D and S3C). We could not detect PV positive neurons in idNs from WT
and SCN1AM145T in line with the observation that this protein is expressed later during
neuronal differentiation of iPSCs [26].
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stained with antibodies against interneuronal subtypes markers (A) somatostatin (SST), (B) calretinin
(CALB2), and (C) calbindin (CALB1). In each group of images, WT cells are shown in the upper panel,
while SCN1AM145T idNs are shown in the lower panel. White arrows in the merged images indicate
neurons expressing the interneuronal makers indicated (63×magnification). (D–F) Quantification of
percentage of MAP2+ neurons co-expressing interneuronal markers immunostained in panels (A–C).
About 9–1% of idNs express SST and CALB2, while CALB1 is present in less than 1% percent of
neurons. At least 200 cells were counted for each bar, and data are presented as mean ± SEM of two
independent experiments.

3.2. Expression of SCN1A Gene and NaV1.1 Protein in idNs

Given that the SCN1AM145T patient is heterozygous for the mutation, we inquired
whether both SCN1A alleles are transcribed in idNs. To this purpose, we used Sanger
sequencing to analyze cDNA obtained by reverse transcription of SCN1A mRNA derived
from idNs of both WT and the SCN1AM145T. Interestingly, the results confirmed the
heterozygous status in SCN1AM145T-idNs, as demonstrated by the presence of a double
peak at the mutation site (Figure 4A). Subsequently, we performed a side-by-side analysis of
the expression of SCN1A mRNA together with others VGSCs known to be predominantly
expressed in CNS, such as SCN2A, SCN3A and SCN8A, in idNs at different time points
during differentiation (d0, which corresponds to the NSCs stage, d14, d21, and d28).
Interestingly, we found that, although the expression of SCN1A increased in both WT- and
SCN1AM145T idNs over time in culture, the expression of SCN1A channel results lower, in
all time-points tested, in patient idNs compared to control idNs (Figure 4B). We observed
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a similar trend of expression also for the SCN2A, which has the higher expression level
among all the sodium channels analyzed (Supplementary Figure S4A). On the other hand,
SCN3A, which is considered an embryonic isoform [27], progressively decreases during the
differentiation period in WT idNs, while mutated idNs show an opposite expression trend
of SCN3A, which results up-regulated over time in culture (Figure 4C). Lastly, the expression
of SCN8A channel was low in both control and mutated idNs (Supplementary Figure S4B),
in accordance with the notion that SCN8A is poorly expressed in developing neurons [27].
Based on the difference found in the expression of SCN1A at the mRNA level, we analyzed
the expression levels of NaV1.1 protein in total lysates from control and mutated idNs.
Intriguingly, immunoblot analysis showed that SCN1AM145T neurons express significantly
lower levels of NaV1.1 protein compared to healthy neurons (Figure 4D,E). Moreover, our
immunofluorescence data revealed a high expression of NaV1.1 within the soma of GAD1+

neuronal cells (Figure 4F), in line with the in vivo data showing that NaV1.1 is primarily
expressed in GABAergic neurons [17].
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Figure 4. Expression of SCN1A gene and NaV1.1 protein in idNs. (A) Sequencing of cDNA obtained
by reverse transcription of SCN1A mRNA from WT- and SCN1AM145T-idNs. In the SCN1AM145T

cells, the double peak in the mutation site (indicated by the orange arrow) demonstrates that both
alleles (one with the original nucleotide T and the other with the mutated one C) were transcribed.
(B) qRT-PCR analysis of SCN1A gene in idNs at day of differentiation 0 (NSCs), d14, d21 and d28.
SCN1AM145T cells showed a lower expression of SCN1A during differentiation compared to WT,
although in both cell lines the expression increases following idNs maturation. (C) The expression
of the embryonic isoform of sodium channel SCN3A increases with the progress of cell maturation
in SCN1AM145T idNs, while it decreases in WT idNs as the cells become more differentiated. For
both graphs, GAPDH was used as a housekeeping gene; data are mean ± SEM of three biological
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replicates (black dots), * p < 0.05, ** p < 0.01, t-test has been calculated vs. WT at the same day
of differentiation. (D) Western blot analysis of NaV1.1 protein in lysates obtained from WT- and
SCN1AM145T idNs at day 35 of differentiation. Tubulin Beta 3 Class III (TUBB3) was used as load-
ing control. (E) Quantification of NaV1.1 Western blot bands in four biological replicates (n = 4,
OD = relative optical density calculated as (NaV1.1 optical density)/(TUBB3 optical density), p-value
calculated using t-test). (F) Immunofluorescence of idNs showing that GABAergic neurons (GAD1
positive) express NaV1.1, mainly in the cell body. Immunofluorescence data show a lower expression
of the channel in the neurons differentiated from SCN1AM145T patient in respect to those of WT
(63×magnification).

3.3. Expression of Chloride Cotransporters in idNs

The functionality of GABA neurons during development is intimately correlated
with the expression of the chloride co-transporters, the Na-K-2Cl cotransporter isoform 1
(NKCC1) and the K-Cl cotransporter isoform 2 (KCC2) [28] and a high NKCC1/KCC2 ratio
indicates neuronal immaturity [29,30]. We analyzed the expression of the two chloride
co-transporters transcripts in idNs from WT and SCN1AM145T at day 0 of differentiation
(neural stem cells), d14, d21, d28, and d60. In accordance with data reported in the human
brain transcriptome database [31], we observed that KCC2 undergoes strong physiological
increase in idNs from WT during development, while its expression remained at low levels
in idNs from SCN1AM145T during the whole experimental culture period (Figure 5A). The
expression of NKCC1 was instead similar between the two groups during the first phases of
neuronal development (from d0 to d28) but became significantly over-expressed at day 60
of differentiation in SCN1AM145T idNs only (Figure 5B). Additionally, the NKCC1/KCC2
mRNA expression ratio was higher in mutated neurons at all differentiation time points
tested (Figure 5C). Altogether, these findings provide strong evidence that an imbalanced
NKCC1/KCC2 expression shift occurs in idNs derived from the patient carrying the M145T
mutation in the SCN1A gene, suggesting that this mutation may promote the persistence of
an immature phenotype.
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3.4. Recording of GABA and AMPA Currents by Injection of idNs Membranes in Xenopus Oo-
cytes 

Here, we recorded for the first time neurotransmitter-evoked currents from Xenopus 
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evoked GABA and AMPA responses both from SCN1AM145T-injected oocytes and control 
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Figure 5. Expression of chloride co-transporters in idNs. (A,B) qRT-PCR analysis of chloride
co-transporters KCC2 and NKCC1 in neurons from WT and SCN1AM145T tested at day of dif-
ferentiation 0 (NSCs), d14, d21, d28 and d60. (C) NKCC1/KCC2 mRNA ratio in idNs at dif-
ferent days of differentiation. The ratio was calculated as the inverse of ∆CtNKCC1/∆CtKCC2:
(∆Ct = CtGene_Of_Interest − CtGAPDH). For all graphs, the mean ± SEM of three biological replicates is
shown; ** p < 0.01, *** p < 0.001, t-test has been calculated vs. WT at the same day of differentiation.

3.4. Recording of GABA and AMPA Currents by Injection of idNs Membranes in Xenopus Oocytes

Here, we recorded for the first time neurotransmitter-evoked currents from Xenopus
oocytes injected with membranes obtained from idNs (Figure 6). First, we successfully
evoked GABA and AMPA responses both from SCN1AM145T-injected oocytes and control
(WT)-injected oocytes. We obtained responses that ranged from to 3.1 nA to 75.0 nA for
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GABA (500 µM, 4 s, mean = 18.2 ± 2.5 nA; N = 44) and from 6.3 to 43.2 nA to for AMPA
(20 µM, 10 s with a short 20 s pretreatment with CTZ 20 µM, mean = 16.4 ± 1.6; n = 27). In
order to verify that currents we recorded were genuine, we blocked the evoked current with
the respective specific blockers (Figure 6A,B). As expected, GABA currents (500 µM) were
totally blocked by co-application of bicuculline, a competitive antagonist of GABAARs,
(100 µM; n = 6) and AMPA currents (20 µM) were totally blocked by the specific AMPA
receptor blocker NBQX, a competitive antagonist of AMPARs (50 µM; n = 6). Both GABA
(Figure 6A) and AMPA (Figure 6B) currents recovered their original amplitude after the
washout of the blocker. In another set of experiments, we measured the GABA current run-
down, a GABAergic dysfunction associated with drug-resistant epilepsy [25,32,33], from
SCN1AM145T-injected oocytes and WT-injected oocytes. Not surprisingly, we measured
a value of current rundown in WT-injected oocytes that was similar to that recorded in
previous studies [34] using cortical tissue samples from individuals without any neuro-
logical disorder (71.0 ± 2.7%; n = 8; Figure 6C). On the other hand, interestingly, we did
not measure a significant increase in current rundown in SCN1AM145T-injected oocytes
(65.7 ± 3.2%; n = 10; Figure 6C).
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Figure 6. Xenopus oocytes injected with membranes from idNs incorporated functional neurotrans-
mitter receptors. (A) Sample currents evoked by 500 µM GABA or (B) 20 µM AMPA on oocytes
microinjected with membranes extracted from cultured idNs obtained from a patient carrying the
M145T mutation of the SCN1A gene. (A) GABA currents were completely inhibited by a brief pre-
incubation (30 s) with bicuculline (100 µM) and subsequently recovered following the washout of
the inhibitor. (B) AMPA currents were completely inhibited by co-administration of NBQX (50 µM),
and they recovered to the original amplitude once NBQX administration was interrupted. AMPA
currents were recorded in presence of CTZ (20 µM). Black bars = GABA; gray bars = AMPA; white
bars in (A) bicuculline; in (B) NBQX. (C) Time course of the GABA current rundown evoked by six
consecutive GABA applications (500 µM, 10 s) interspaced by a 40 s washout, in oocytes injected with
membranes from control (black dots; •) and M145T idNs (magenta; •; p > 0.05). The dots represent
GABA currents expressed as a percentage of the first evoked response (• = 16.6 ± 1.0 nA, n = 8;
• = 23.7 ± 1.1 nA, n = 10).

3.5. Patch-clamp recordings of WT and SCN1AM145T idNs

WT- and SCN1AM145T idNs at day of differentiation 35 were analyzed to compare
their functional properties. Resting membrane potential and cell capacitance values were
similar in WT and SCN1AM145T: −48 ± 2 mV vs. −44 ± 2 mV, and 28 ± 3 pF vs. 35 ± 2 pF,
respectively. All WT neurons tested fired APs upon current injection (Figure 7A, 15 out
15 cells), while responsive SCN1AM145T idNs were the 62% of the total (Figure 7A inset,
20 out 34 cells; p = 0.004, Fisher Exact test). Although at this stage AP threshold is not
expected to be at the full maturation level, WT neurons exhibited a more hyperpolarized
mean AP threshold value than SCN1AM145T (−37 ± 1 mV vs. −31 ± 1 mV, p = 0.003;
Figure 7A–C, [35]). Furthermore, AP amplitudes were larger in WT than in SCN1AM145T
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idNs (57 ± 3 mV vs. 45 ± 2 mV, p = 0.006; Figure 7D), while no differences were observed
in AP kinetics.
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4. Discussion

NaV1.1 sodium channel, encoded by SCN1A gene, belongs to the family of VGSCs and
allows the sodium influx from extracellular space into the cytosol during depolarization.
NaV1.1 is highly expressed in the CNS and peripheral nervous system (PNS) and mainly
localizes in the cell bodies and proximal processes of neurons, where it is involved in the
generation of action potential [36,37]. Mutations in the SCN1A gene are responsible for a
plethora of diseases, collectively known as channelopathies affecting the entire nervous
system [38,39]. In particular, pathogenic variants in SCN1A/NaV1.1 are responsible for
several epilepsy syndromes including Dravet Syndrome (DS), a severe childhood form of
epilepsy characterized by beginning with complex FS. Genetically caused FS are associated
with missense loss-of-function mutations in SCN1A. These mutations are often function-
ally linked to hypoexcitability of at least some type of γ-aminobutyric acid (GABA)ergic
neurons, due to decrease in Na+ current density [16,40–43], even if the exact mechanisms re-
sponsible for the disease are still unknown. Given that, additional approaches are necessary
to unravel further physiopathological features that can be targeted by novel therapeutic
strategies. In this study, we took advantage of the iPSCs technology to investigate the
function underlying the clinical phenotype of a patient belonging to a well characterized
Italian family with FS due to genetic defect in SCN1A gene [6]. Particularly, the patient
described here harbors a c.434T > C missense mutation in the SCN1A gene (SCN1AM145T),
responsible for the substitution of a highly conserved methionine residue with a threonine
within the S1 segment of the domain 1 in the NaV1.1. Clinically, the patient was character-
ized by a complex pathophysiology with FS lasting up to 15 min [14] and developed MTLE
with HS which in the end required neurosurgery. A similar condition affects a significant
number of people suffering from drug-resistant epileptic seizures and, notwithstanding the



Biomedicines 2022, 10, 1075 13 of 18

recent advances that constantly improve the outcomes of surgical interventions [44], this
invasive procedure is not yet completely free from complications [45]. This is mostly due
to the failure of the available ASM which may effectively decrease frequency and severity
of seizures without tackling the pathophysiological mechanisms, still partly unknown,
that underlie their generation and recurrence [46]. It is for this reason that the search for
new models and research approaches is currently one of the main topics in the field of
drug-resistant epilepsy [47,48], since it may open new perspectives towards alternative
therapeutic strategies.

Here, our main purpose was to build a comprehensive model of the disease by per-
forming a side-by-side comparison of neurons differentiated from diseased (SCN1AM145T

idNs) and healthy control iPSCs (WT idNs). Our study allowed us to draw the follow-
ing major conclusions: (i) SCN1AM145T idNs show an overall immature phenotype, as
demonstrated by the altered expression of the chloride co-transporters, NKCC1 and KCC2,
and VGSC isoforms; (ii) SCN1AM145T idNs show a depolarized action potential thresh-
old compared to the WT counterpart measured by patch-clamp, suggesting a reduced
excitability; (iii) we were able, for the first time to our knowledge, to record AMPA and
GABA currents from both SCN1AM145T- and control-idNs membranes micro-transplanted
into Xenopus oocytes. Concerning chloride co-transporters, we could detect an increase
in NKCC1/KCC2 ratio for SCN1AM145T idNs, that well fits with an overall immaturity of
diseased neurons [49]. Furthermore, this observation is in line with our previous study of
a patient affected by Dravet syndrome [50]. Indeed, previous studies have reported that
GABAA receptors (Rs) function is strongly dependent on chloride homeostasis ensured
by the chloride co-transporters NKCC1 and KCC2 both in physiological and pathological
conditions [49]. The action of NKCC1 was shown to prevail during the first phases of
neuronal development, where it is involved in the depolarizing, or “less hyperpolariz-
ing”, current through GABAARs [29] and later during development this equilibrium is
shifted in favor of KCC2 [51]. Interestingly, our findings indicate that SCN1AM145T shows
a persistent increase in NKCC1/KCC2 mRNA ratio, which supports the hypothesis that
other physiopathological mechanisms, beyond the complexity of sodium channel muta-
tions, deserve further investigation for a comprehensive understanding of channelopathies
complexity [52].

Additionally, we observed a high expression of SCN3A, the fetal isoform of VGSCs
slightly detectable in mature cells [53], and a lower expression of SCN1A and SCN2A
in SCN1AM145T idNs over time in culture, while WT idNs display a VGSCs expression
pattern that mirrors the changes observed during normal developmental and maturation
processes [27]. The progressive up-regulation of SCN3A in diseased neurons may reflect a
sort of compensatory effect, as previously reported in mice carrying loss-of-function muta-
tions in SCN1A and where the increased NaV1.3 expression was observed [16]. Overall,
our findings, using the most common glial and neuronal markers, are in accordance with
those by other authors providing evidence that differentiation of pluripotent stem cells
mainly produce interneurons [21,54]. In addition, we found that SCN1AM145T neurons
express significantly lower levels of NaV1.1 protein compared to healthy neurons, even
if this protein co-localizes with GAD1. Therefore, we may hypothesize that the loss of
function of the mutated protein expressed on interneurons is contributing to their decreased
excitability, leading to a reduced GABA release on synaptic targets. This “interneurons hy-
pothesis” [55] contributes, at least in part, to defining a pathophysiological substrate for the
generation and recurrence of seizures in these patients [15,50]. Indeed, to further support
this hypothesis, here we found a depolarized action potential threshold in SCN1AM145T

neurons compared to WT, although in both situations we could not record a fully developed
AP threshold value as expected in these experimental conditions [35]. Interestingly, the
patient from which we differentiated idNs was also suffering from drug-resistant MTLE,
which prompted us to measure GABA current rundown, a GABAergic dysfunction which
is a hallmark of this condition [25,32,56,57], in idNs membranes-injected oocytes. Indeed,
we could not measure a significant increase in current rundown in SCN1AM145T-injected
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oocytes, in contrast to what was observed measuring this electrophysiological parameter
from surgically resected brain tissue of patients with drug-resistant MTLE, including the
patient of this study [15,34]. This is an important point since functional impairment of
GABAergic neurons and GABA current-rundown tightly correlate with MTLE phenotype.
A reasonable explanation for this discrepancy could lie in the fact that GABA rundown
might arise as a part of the cascade of pathological events eventually leading to gener-
ation and recurrence of seizures [58,59]. As such, it is unlikely to detect a high GABA
rundown in iPSCs-derived neurons, since these cells have never undergone continuous
insults such as seizures or hippocampal sclerosis occurrence. This result offers an additional
and intriguing perspective for the analysis of our results. Indeed, previous studies support
the idea that GABA current rundown emerges in the “chronic” stages of the epileptic
disorder, after the first spontaneous seizure [56,58]. Unfortunately, this means that there
would be scarce therapeutic opportunity to prevent the consolidation of this aberration of
GABAergic synaptic transmission since patients usually require medical attention after the
appearance of spontaneous seizures [60]. On the other hand, there are patients that clearly
carry additional “risk factors” for developing epilepsy, such as genetic mutations. Here and
in previous studies [61], we clearly hypothesize that the aforementioned channelopathies
can induce other synaptic dysfunctions [50,62], thus an early therapeutic intervention may
be possible in conditions where a definite risk factor can be identified. Moreover, we can
hypothesize that preventing the appearance of synaptic dysfunctions may have an impact
on the evolution of the disease [63,64]. Clearly, additional experiments will be designed
to further develop this hypothesis. For instance, future studies using the methodologies
described here will allow the evaluation of the effect of candidate pharmacological agents
on key pathophysiological alterations, such as those reported above. Moreover, an inter-
esting outlook would be the implementation of our methodology with innovative and
dynamic techniques of cell culture [65–68]. Additional future investigations will focus
on transcriptomic and proteomic profiling for a comprehensive understanding of how
genes and proteins are expressed and interconnected in the complex disease phenotype.
Overall, our results, albeit limited by the fact that the data are obtained from cells generated
from a single patient, are characterized by a high robustness and contribute by shedding
light on the molecular mechanisms responsible for this particular form of FS, opening new
stimulating perspectives on the ex vivo precision medicine approaches for a better manage-
ment of patients with FS and MTLE, and for the prevention of potential development of
drug resistance.

5. Conclusions

We report the generation and characterization of idNs from a patient belonging to a
genetically well-characterized Italian family, carrying the c.434T > C mutation in SCN1A
gene, responsible for FS and MTLE. Notably, electrophysiological experiments mirror the
profile recorded from hippocampal tissue resected from the same patient, strengthening the
validity of iPSCs technology for disease modeling. Moreover, our functional data clearly
show that this channelopathy induces additional synaptic dysfunctions that may be a conse-
quence of seizures or hippocampal sclerosis which may be prevented by early and targeted
interventions. Using a multidisciplinary approach, our results reveal an aberrant matura-
tion and altered electrophysiological features in neurons derived from the SCN1AM145T

patient and set the ground for future use of this approach for personalized medicine.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10051075/s1, Figure S1: expression of astrocyte and
oligodendrocyte markers in idNs culture; Figure S2: expression of vGLUT1 in idNs; Figure S3:
expression of interneuronal subtype markers in idNs; Figure S4: expression of SCN2A and SCN8A in
idNs. Table S1: List of primers.
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