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Abstract
A back-propagation (BP) neural network can solve complicated random nonlinear mapping

problems; therefore, it can be applied to a wide range of problems. However, as the sample

size increases, the time required to train BP neural networks becomes lengthy. Moreover,

the classification accuracy decreases as well. To improve the classification accuracy and

runtime efficiency of the BP neural network algorithm, we proposed a parallel design and

realization method for a particle swarm optimization (PSO)-optimized BP neural network

based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel

design. The PSO algorithm was used to optimize the BP neural network’s initial weights and

thresholds and improve the accuracy of the classification algorithm. The MapReduce paral-

lel programming model was utilized to achieve parallel processing of the BP algorithm,

thereby solving the problems of hardware and communication overhead when the BP neu-

ral network addresses big data. Datasets on 5 different scales were constructed using the

scene image library from the SUN Database. The classification accuracy of the parallel

PSO-BP neural network algorithm is approximately 92%, and the system efficiency is

approximately 0.85, which presents obvious advantages when processing big data. The

algorithm proposed in this study demonstrated both higher classification accuracy and

improved time efficiency, which represents a significant improvement obtained from apply-

ing parallel processing to an intelligent algorithm on big data.

Introduction
A Back-Propagation (BP) neural network is a type of multi-layered feed-forward neural net-
work that learns by constantly modifying both the connection weights between the neurons in
each layer and the neuron thresholds to make the network output continuously approximate
the desired output [1]. Because a BP neural network is robust and can realize any complex non-
linear mapping relation, this technique has been widely used in many fields [2]. In terms of
speed prediction, to better utilize wind power, Guo et al. [3] constructed a hybrid wind speed

PLOSONE | DOI:10.1371/journal.pone.0157551 June 15, 2016 1 / 17

a11111

OPEN ACCESS

Citation: Cao J, Cui H, Shi H, Jiao L (2016) Big Data:
A Parallel Particle Swarm Optimization-Back-
Propagation Neural Network Algorithm Based on
MapReduce. PLoS ONE 11(6): e0157551.
doi:10.1371/journal.pone.0157551

Editor: Quan Zou, Tianjin University, CHINA

Received: February 25, 2016

Accepted: June 1, 2016

Published: June 15, 2016

Copyright: © 2016 Cao et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This study was supported by the College
Students’ Innovative and Entrepreneurial Training
Project in universities and colleges in Shanxi
Province (2014383), the Natural Science Foundation
of Shanxi Province (2013011017-2), the key
discipline project of Xinzhou Teachers University
(XK201308, XK201404), and the Youth Foundation
Project of Xinzhou Teachers University (201209).

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0157551&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


prediction model using a BP neural network that eliminates seasonal effects from actual wind
speed datasets using a seasonal exponential adjustment. They conducted a case study in Min-
qin County, Gansu Province that satisfactorily eliminated the seasonal effects from the predic-
tion results. Xu et al. [4] applied a BP neural network to debris flow control engineering and
proposed a method for predicting the average velocity of debris flow. In the medical field,
Zhang et al. [5] used a BP neural network to construct an m-order nonlinear model to describe
the complex relationships between surface electromyogram signals and the joint angles of a
human leg. The model inputs were preprocessed sEMG time series, and the outputs were the
hip, knee and ankle joint angles, with an average angle estimation root mean square error of
less than 5° for spinal cord injury patients. Cheng et al. [6] proposed a new method based on a
BP neural network to predict facial deformation following a complete denture prosthesis. By
analyzing the relationship between one third of the facial area and the completed denture, this
method accurately predicted deformation of the facial soft tissue. To solve cotton pest problems
in agricultural fields, Zhang et al. [7] designed a cotton disease and pest damage identification
method based on rough sets and a BP neural network that accurately identified 4 cotton dis-
eases. In digital image processing, Pan et al. [8] used a BP neural network to conduct automatic
recognition of woven fabric patterns by extracting fabric texture features with a black and
white co-occurrence matrix. In other areas, Hu [9] proposed a type of intrusion detection algo-
rithm that used a BP neural network to solve the relatively high false negative rate and high
false alarm rate problems with traditional intrusion detection algorithms. Liu et al. [10] applied
a BP neural network to establish a forecasting model for port throughput and achieved good
results when forecasting the port throughput in 2011 and 2012. However, the BP neural net-
work algorithm is based on the idea of an error gradient descent function; thus, it does not
have global search capability. In addition, the connection weights between the layers and the
neuron’s thresholds, which can take on random values between 0 and 1 in the initial training
stage, lead to slow convergence by the algorithm and do not necessarily lead to an optimal solu-
tion [11]. Later, researchers gradually introduced some metaheuristic optimization algorithms.
Wang et al. [12–14] presented an improved firefly algorithm, a biogeography-based krill herd
algorithm and a chaotic krill herd algorithm to solve complex optimization tasks. Chiroma H.
et al. [15] discussed the applications of a bio-inspired flower pollination algorithm, which moti-
vated other researchers in the bio-inspired algorithms research community to further improve
the effectiveness of the flower pollination algorithm as well as to apply the algorithm in other
fields to solve optimization problems in engineering and industry. Saadi et al. [16] proposed a
new metaheuristic algorithm called Ringed Seal Search that found the optimal solution. This
algorithm searched and selected the best lair by performing a random walk to find new lairs. In
recent years, optimization algorithms have usually been used to optimize the weights of neural
networks and solve practical problems in various fields. Nawi et al. [17] used the PSO algo-
rithm to optimize the weights of recurrent neural networks and conduct data classification.
Chiroma et al. [18] applied an artificial neural network optimized by the PSO algorithm to pre-
dict OPEC CO2 emissions. Chiroma H. et al. [19, 20] predicted crude oil prices using a neural
network optimized by a genetic algorithm. The optimization and application of the initial
weights and thresholds of the BP neural network have also been studied intensively. The most
widely used optimization algorithms are the genetic algorithm (GA) and the particle swarm
optimization (PSO) algorithm. Ding et al. [21] combined a GA with BP neural networks to
accelerate the training of the BP network—which to a certain extent overcomes the disadvan-
tages of the BP becoming easily stuck in a local minimum—and performed an experimental
analysis of the UCI dataset. Yu et al. [22] also used a genetic algorithm to optimize a BP neural
network. They improved the additional momentum factor and self-adaptive learning rate and
established a natural gas load forecasting model to make short-term forecasts of natural gas
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loads in Shanghai. Gao et al. [23] used the GA to optimize the initial weights and thresholds of
a BP neural network and was able to predict housing prices in Guiyang City with improved
accuracy. Wang et al. [24] applied a PSO-optimized BP neural network algorithm to estimate
the cost of plastic injection molding parts, improving both the convergence rate of the algo-
rithm and the cost estimation accuracy rate. Similar to [3], Ren et al. [25] also predicted wind
speed; however, in contrast to [3], Ren et al. first used a PSO algorithm to optimize the initial
thresholds and weights of the BP neural network and then established a forecasting model that
obtains improved accuracy compared to [3]. In addition, various other algorithms have been
combined with the BP neural network to improve its performance. To improve classification
results, Jia et al. [26] proposed a type of PLS-HCA-BP algorithm that uses partial least squares
(PLS) to reduce the feature dimensions of samples, which simplifies the network structure and
improves the speed of convergence in hierarchical cluster analysis (HCA), therein obtaining
favorable experimental results. Wang et al. [27] established a target threat estimation model
using Glowworm Swarm Optimization and the BP neural network. The above-mentioned
studies, combined with other algorithms, have optimized BP neural networks and improved
their performance. Compared with standalone BP neural networks, such combinations have
achieved good results. However, regardless of the optimization employed, BP neural networks
always show good performance when the sample size is small; however, when the sample set
size increases, the time efficiency of these algorithms sharply and intolerably declines.

With the arrival of the big data era, sample datasets are becoming increasingly large. A bot-
tleneck problem is being faced in terms of hardware capabilities for the above-mentioned tradi-
tional serial algorithm form of the BP neural network. Moreover, the training time for the
algorithm becomes very lengthy. As a result, the efficiency of the system decreases significantly.
Scholars are beginning to study parallel designs for traditional algorithms. Feng et al. [28]
achieved a parallel form of an algorithm for a BP neural network on the Sunway Blue Light
Supercomputer based on MPI techniques and made predictions of traffic flow. Zheng et al.
[29] designed a type of multi-BP neural network parallel integration model and performed
multi-semantic image classifications, therein obtaining good experimental results under the
MPI Cluster environment. Liu [30] conducted parallel processing of a large-scale matrix opera-
tion in the PVM parallel environment, effectively reducing the time required for matrix opera-
tions. Guo et al. [31] designed a parallel BP neural network based on a field programmable gate
array (FPGA) to address big data. Wang et al. [32] implemented an efficient GPU to train
large-scale recurrent neural networks and achieved a good experimental result. However, the
parallel design (based on MPI, PVM, FPGA and GPUs) requires a clear understanding of the
computer hardware architecture by the developers, and the communication between nodes is
time consuming. These factors make such systems difficult to build and apply [33].

The MapReduce framework is based on Hadoop and has become popular in recent years.
MapReduce is a type of parallel computing model oriented toward distributed environments.
This model provides developers with a complete programming interface, does not require
them to understand the computer architecture, and has gradually become a research hotspot
for current studies on parallel algorithm design [34]. Therefore, researchers have proposed
some algorithms for processing big data. Kim et al. [35] used a MapReduce model to design a
density-based clustering algorithm suitable for processing big data and achieved good experi-
mental results. Attribute reduction is an important research question in rough set theory.
When addressing big data, the traditional attribute reduction algorithms appear to be inade-
quate. Jin et al. [36] proposed a hierarchical attribute reduction algorithm that executed in par-
allel using MapReduce on both data and tasks, therein saving a great deal of time. Scardapane
et al. [37] proposed a decentralized training algorithm for Echo State Networks in distributed
big data applications. To fulfill the potential of artificial neural networks for big data
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applications, Liu et al. [38] used the MapReduce framework to implement parallelized neural
networks and solve existing problems faced by traditional artificial neural networks. Simulta-
neously, the applications of big data have gradually increased in various fields, especially in the
biomedical fields. Zou et al. [39] applied the MapReduce framework to bioinformatics and
used it to conduct next-generation sequencing. Subsequently, Zou et al. [40] used the MapRe-
duce model to solve bottleneck problems in massive multiple sequence alignments (MSAs) of
homologous DNA and genome sequences. Shen et al. [41] proposed a quantitative quality con-
trol method for radiotherapy and chemotherapy based on an artificial neural network to pro-
cess medical big data. Chung et al. [42] used a parallel deep neural network to train big data on
Blue Gene. Elsebakhi et al. [43] adopted functional networks based on propensity scores and
Newton-Raphson maximum-likelihood optimizations as a new large-scale machine learning
classifier to improve the classification performance when faced with biomedical big data. In
other areas, to address increasing traffic flow data efficiently, Cheng et al. [44] proposed a pre-
diction method to process distributed traffic flow using a parallel programming model based
on MapReduce. Gu et al. [45] designed a parallel computing platform to make instant messag-
ing deliveries. Stateczny et al. [46] solved the reduction problems of hydrographic big data.
These studies, using MapReduce parallel processing, all do a good job of improving the time
efficiency of their respective systems. Applications based on MapReduce are gradually increas-
ing. However, there are few studies concerning the PSO algorithm or that investigate MapRe-
duce distributed parallel processing of BP neural networks and their application to the
semantic classification of digital images.

To solve the above-mentioned problems, this study proposes a parallel PSO-BP neural net-
work algorithm and applies it to the classification of scene images. The parallel processing
mechanism of this algorithm is based on the MapReduce parallel programming model and
uses the PSO algorithm to optimize the initial weights and thresholds of the BP neural network.
Then, different multiple optimized parallel BP neural networks are used to train different sam-
ple sets, which not only ensures that the BP neural network can obtain the optimal solution but
also accelerates the convergence rate. This approach effectively reduces the impact of sample
diversity and complexity on the performance of the BP neural network and shortens the
required training time.

PSO-BP Neural Network Algorithm
The PSO algorithm, when introduced into a BP neural network to optimize its initial weights
and thresholds, is well suited for addressing some of the deficiencies caused by the randomness
of the initial weights and thresholds of BP neural networks [24].

PSO-optimized BP neural network model
The basic idea behind using the PSO algorithm to optimize the BP neural network is to com-
bine them, using the initial connection weights between BP neural network layers and the ini-
tial thresholds between neural nodes, to optimize the distribution, execute global searches
within the solution space, and find the optimal initial weights and thresholds of the BP neural
network at a rapid convergence rate. Subsequently, the initial weights and thresholds obtained
by the BP neural network can be used for training and testing the sample set. Fig 1 shows a
flowchart of this optimized model.

Steps in the PSO-optimized BP neural network algorithm
The main steps of the algorithm are as follows:

Optimization phase of PSO algorithm:
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1. Initialize PSO parameters (population size, speed and position of particles and iterations).

2. Determine the structure of the BP neural network and generate population particles.
Particles: Xi = (xi1,xi2,. . ..xiD)

T, i = 1,2,. . .,n

D ¼ RD1 þ D1D2 þ D1 þ D2 ð1Þ

where R, D1 and D2 represent the number of nodes in the input layer, hidden layer and out-
put layer of the BP neural network, respectively.

3. Design the fitness function. The BP neural network trains on the training samples in accor-
dance with Particle Xi in Eq (2) to set weights and thresholds until it generates the expected

Fig 1. PSO-BP neural network algorithmmodel.

doi:10.1371/journal.pone.0157551.g001
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output �yi The fitness function of the individual, Xi, is defined as

fiti ¼
XM�1

j¼1
ð�yj � yjÞ2 ði ¼ 1; 2; � � � ; nÞ ð2Þ

4. Calculate each particle’s fitness value and evaluate Population X. Calculate the fitness value
of each individual particle Xi.

5. Update the individual’s optimal fitness value Pbest and the particles’ positions. For each par-
ticle Xi, if its current fitness value is smaller than its optimal fitness value Pbest, then use the
current fitness value to update the optimal fitness value Pbest and the position of particle Xi.

6. Update the population fitness value Gbest. For each particle Xi, if its fitness value is smaller
than the optimal fitness value Gbest for the current population, then use the fitness value of
the current particle to update the optimal fitness value Gbest.

7. Iteratively update the speed and position of particles to generate new populations. Accord-
ing to Formulas (3) and (4), constantly update the speed and position of each particle Xi, as
shown below:

Vkþ1
id ¼ oVk

id þ c1r1ðPk
id � Xk

idÞ þ c2r2ðPk
gd � Xk

idÞ ðd 2 ½1;D�; i 2 ½1; n�Þ ð3Þ

Xkþ1
id ¼ Xk

id þ Vkþ1
id ðd 2 ½1;D�; i 2 ½1; n�Þ ð4Þ

where ω is the inertia weight; k is the number of iterations; Vid is the speed of Particle Xi; c1
and c2 are acceleration factors, which are not smaller than zero; and r1 and r2 are arbitrary
numbers between 0 and 1.

8. Judge whether to halt the iteration based on whether the optimal initial weights and thresh-
olds of the BP neural network have been generated. The overall fitness variance (Formula
(5)) is used to judge whether the PSO algorithm converges. If the overall fitness variance of
the particle population is smaller than the given threshold, then the algorithm has con-
verged. The optimal solution is output as the initial weights and thresholds. Otherwise, the
iterations continue.

s2 ¼ �
Xn

i¼1
ðfi � favg

f
Þ2 ð5Þ

where n is the number of particles in the current population, fi is the fitness value of particle
Xi, and favg is the average fitness of the current population particle.

The training phases of the BP neural network are as follows:

1. Initialize the network. The network structure, expected output and learning rate are deter-
mined according to the sample characteristics. The PSO algorithm optimization is used to
derive the optimal individual solution for the initial weight value and threshold of the
network.

2. Input the training sample and calculate the output of the network layers.

3. Calculate the learning error of the network.

4. Correct the connection weight values and thresholds of the layers.

PSO-BP Neural Network Algorithm
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5. Judge whether the error satisfies the expectation requirements and whether the number of
iterations has reached the set training limit. If either condition is met, then the training
ends. Otherwise, the iterative learning process continues.

Parallel Implementation of the PSO-BP Neural Network Algorithm
The arrival of the big data era poses a challenge to traditional machine learning algorithms. In
information technology, big data is a collection of datasets so large and complex that they
become difficult to process using available database management tools or traditional data pro-
cessing applications. Big data is usually composed of datasets with sizes beyond the ability of
commonly used software tools, which are unable to capture, curate, manage, or process such
data within a reasonable elapsed time [47]. The challenges include capture, curation, storage,
search, sharing, analysis, and visualization. Therefore, both the time and space efficiency of tra-
ditional algorithms decrease dramatically when addressing big data.

Although the PSO-BP neural network algorithm improves the performance of the tradi-
tional BP neural network algorithm, as the data size increases, the BP neural network training
time increases as well, eventually raising efficiency issues. The MapReduce parallel program-
ming framework provides a type of distributed parallel calculation environment for big data
processing. Faced with booming data growth in a big data environment, there is a need to
improve the time efficiency and accuracy of BP neural networks. Therefore, this study's goals
are to solve the low time efficiency problem and the poor data classification accuracy of tradi-
tional BP neural networks optimized by the PSO algorithm as proposed in [25]. To that end,
this study conducts a parallel implementation of the PSO-BP neural network algorithm within
the MapReduce framework.

MapReduce programming model
MapReduce [47] is based on Hadoop, which is a type of distributed parallel programming
model developed by Google Inc. for processing big data. MapReduce separates the calculation
process for data into Map and Reduce stages, which correspond to the execution of a mapper()
function and a reducer() function, respectively. The process requires data to be input in the
form of key-value pairs (e.g.,<key, value>, where the key can be regarded as the data serial
number and the value can be regarded as the data value). In the Map stage, MapReduce seg-
ments data into Splits of identical sizes and processes each Split in the form of key value pairs
<k1, v1> to create the formal input. It executes the mapper() function to generate intermediate
results in the form of<k2, v2>, which are ranked according to the value of k2. The v2 values
whose k2 values are the same are combined to form a new list<k2, list(v2)> and, finally,
grouped according to the scope of k2 to form Reduce tasks. In the Reduce stage, the outputs of
the Map tasks are integrated and ranked,<k2, list(v2)> is taken as the input, and the reduce()
function is executed to obtain the key value pair<k3, v3>, which is output to the Hadoop File
System (HDFS). A flowchart of the MapReduce process is shown in Fig 2.

Parallel design and realization of PSO algorithm
Design and realization of PSO-Map(). Due to the data input format utilized by the

MapReduce programming model, this study first converts the data input by the PSO algorithm
into the<key, value> format, where key represents the serial number of a particle and value
represents the attribute of a particle. In the Map stage—particle initialization and fitness evalu-
ation—the optimal particles for individual populations and other operations are calculated.
The Map process for the PSO algorithm is designed as follows:

PSO-BP Neural Network Algorithm
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Input: particle id, particle attribute value
Output: key, optimal particle set
PSO-Map(particle id, particle attribute value)
{
For each particle, obtain its value;
fit-value = fit(value); //calculate the fitness value of the updated
particle
//iteratively update the position and speed of particle
if (satisfy condition)
key = new-key(key);
output key, optimal particle set;
}

Design and realization of PSO-Reduce(). In the Reduce stage, the optimal particle sets
generated by the Map tasks are received and integrated, and the position and speed of the opti-
mal particle set are globally updated. If the termination condition is satisfied, the optimal parti-
cle of the whole population is output. The Reduce process for the PSO algorithm is designed as
follows:

Input: key, optimal particle set
Output: key, optimal particles
PSO-Reduce(key, optimal particle set)
{
Obtain the fit-value of each optimal particle in the population;
//globally iteratively update population
if (the optimal solution of the problem is obtained|| and the maximum itera-
tion times are reached)
output key, optimal particle;
}

When the parallel iterations of the PSO algorithm are complete, the optimal particles
obtained are the initial weights and thresholds for the BP neural network.

Parallel design and realization of the BP neural network
To overcome the shortcomings of the BP neural network, including hardware overhead and
excessive training time, this study also conducts a parallel design for the BP neural network
based on MapReduce, therein using Map and Reduce tasks to implement automatic parallel
operations within the multi-layered BP neural network. This approach greatly reduces the

Fig 2. The MapReduce programmingmodel process.

doi:10.1371/journal.pone.0157551.g002
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training time and simultaneously improves the training precision. The model structure is
shown in Fig 3.

Design and realization of BP-Map(). In the Map stage, based on the input, the Map tasks
calculate the actual output of the network layer by layer. Then, the actual output and the
expected output are compared to calculate the network learning error. Finally, based on the
learning error, updated connection weight values in the network are calculated. The Map tasks
for the BP neural network are designed as follows:

Input: sample id, sample feature value
Output: the corresponding weights ω of the sample and the amount Δω by which
the weights were updated
BP-Map(Sample id, sample feature value)
{
//For each sample,
calculate the output of network layers;
and calculate the learning error of the network;
For each connection weight w, calculate the updated amount Δw for the weight;
Output(w, Δw);
}

Design and realization of the BP-Combine() function. In the MapReduce parallel pro-
gramming model, the Combine() function can perform local processing of the intermediate
result generated in the Map stage, thereby greatly reducing the communication overhead. As
the size of the sample data that the BP neural network uses for training gradually increases, it
becomes imperative to process the results generated by Map tasks using the Combine() func-
tion before using them as input in the Reduce tasks. In the parallel design process of the BP
neural network, the Combine() function is designed as follows:

Input: key value pair <w, Δw>
Output: key value pair <w, Δw>
BP-Combine(w, Δw)
{
Initial variable count = 0; //count the number of training samples
//resolve each training sample
and process the three-dimensional coordinate values of Δw;
count count+1;
w w;
Collect all the key value pairs whose w values are the same, and conduct local
reduction to derive Δw;
Output w w;
}

Fig 3. A parallel model of the BP neural network.

doi:10.1371/journal.pone.0157551.g003
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Design and realization of BP-Reduce(). In the Reduce stage, the output of the Combine()
function is used as input. Next, the total number of samples whose weights are the same is cal-
culated, and their weights are updated. The Reduce tasks for the BP neural network are
designed as follows:

Input: the output of the Combine function: <ω0,Δω0>

Output:< o0;
Xn

i¼1
Do0=n >

BP-Reduce (ω0,Δω0)
{

Add the Δω0 of the samples whose ω0 s are the same to obtain
Xn

i¼1
Do0;

calculate the average amount with which to update every weight; and

output ω0,
Xn

i¼1
Do0=n;

}

Experiment and Results Analysis
To validate the performance of the parallel PSO-BP neural network algorithm proposed in this
study, we tested it on a semantic classification task with a large number of scene images on the
Hadoop platform.

Experimental environment and data
The experimental environment was a Hadoop cluster composed of five computers in an intra-
net. One computer acted as the master node, and the other four computers acted as slave
nodes. All the nodes were equipped with 4G dual-core processors, 1 TB hard disks, and the
Ubuntu operating system. Configured as described, the system can obtain the desired results
even when dealing with tens of thousands of images. As the size of the image database
increases, additional processing power can be added by increasing the number of slave nodes
in the Hadoop cluster [48].

The experimental data stemmed from the SUN Database image library (http://groups.csail.
mit.edu/vision/SUN/), which consists of 131,067 images in 908 categories freely available to
researchers. At present, the Sun database is available as a free big data image set. This study
constructed 5 datasets (using a combination of random selection by a computer and artificial
selection) and named them sequentially as “Data1” through “Data5.”Data1 contained 300
scene images in 3 categories, Data2 contained 800 scene images in 5 categories, Data3 con-
tained 2,000 scene images in 8 categories, Data4 contained 5,000 scene images in 12 categories,
and Data5 contained 15,000 scene images in 15 categories. For processing convenience, we
convert all experiment images into images of 300 pixels × 300 pixels, and the size of each image
is approximately 265 KB. Thus, the size of the 15,000 images used in this paper is approxi-
mately 3.98 GB.

Because the color feature is the main characteristic reflecting the implied semantics of scene
images [2], in the preprocessing stage for the sample data in this study, 60-dimensional color
feature vectors were selected in the HSV color space in the OpenCV environment. In this
paper, 60-dimensional color feature vectors are used as the input, and the image category is the
output. Therefore, for the BP neural network, after the individual PSO was conducted, the
number of input nodes ni was set to 60, and the number of output nodes was no to 1. The num-
ber of hidden nodes nh was determined to be 8 through repeated experiments according to For-
mula (6). Then, the structure of an individual BP neural network was 60-8-1. Ten BP neural
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networks with the same structures and all optimized using the PSO algorithm were used in the
study to perform parallel categorizations of the scene images.

nh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ no

p þ a a 2 ½0; 1� ð6Þ

where α is an arbitrary decimal value between 0 and 1.

Experimental results and analysis
To validate the performance of the algorithm proposed in this study, we conducted experimental
comparisons by evaluating aspects such as classification accuracy, speedup ratio, and efficiency.

Classification accuracy. Under different image scales, and using training samples to test
sample ratios of 3:2, 2:1, 3:1 and 5:1, the traditional serial BP neural network algorithm, the
PSO-BP neural network algorithm and the parallel PSO-BP neural network algorithm pro-
posed in this study were compared in terms of their classification precision ratios and recall
rates. The experimental results are shown in Table 1.

As shown in Table 1, under different data scales and data partition ratios, the classification
effect of the algorithm proposed in this study is preferable to the algorithm of the traditional
BP neural network and the PSO-BP neural network, showing that the accuracy improvement
did not occur by chance. Furthermore, because the efficiency of the traditional BP and PSO-BP
algorithms is dramatically reduced as the sample data size increases rapidly [44], the parallel
PSO-BP algorithm exhibits the fewest sample fluctuations according to the statistical standard
deviation results and achieves the best classification performance. In addition, as the data scale
increases, although the classification accuracy rates of all algorithms decreased, the parallel
PSO-BP neural network algorithm decreased only slightly, which indicates that the parallel
programming model based on MapReduce achieves an excellent performance level, particu-
larly with big data.

Speedup ratio and efficiency. For the parallel programming model based on MapReduce,
two important indicators for measuring algorithmic performance are the speedup ratio and
efficiency. The former refers to the ratio of the time required to run a task on a single calculat-
ing node to the time required to run that same task on multiple calculating nodes, while the lat-
ter refers to the ratio of the speedup to the number of calculating nodes [48]. Under ideal
conditions, the speedup ratio increases linearly as the number of calculating nodes increases,
and the efficiency remains constant at 1. However, because conditions can be affected by load
balancing, communication overhead and other factors, the ratio does not increase linearly, and
it is impossible for the efficiency to reach 1. Nevertheless, the study shows that when the effi-
ciency reached 0.5, the system obtained very good performance [48]. Figs 4 and 5 present
experimental comparisons of the speedup ratios and of the efficiencies of the algorithm pro-
posed in this study, respectively, using datasets of different scales.

For the proposed algorithm in this paper, the training samples are assigned to a few proces-
sors from different slave nodes of the Hadoop cluster, and each processor trains the same BP
neural network optimized by PSO and updates the network by counting all the training results.
Consequently, on larger datasets, the algorithm's speedup ratio and efficiency performance are
improved with increasing number of nodes [45].

In Fig 4, the speedup ratio follows an increasing trend as the number of calculating nodes
increases, and increased data size results in an increased magnitude of the speedup ratio. For
the same dataset, the processing speed of the system improves as the number of computing
nodes increases. In other words, the system consumes less processing time; therefore, the
speedup ratio follows an increasing trend. For the different datasets, the multi-computing
nodes' performance increases with increasing amount of data [49]. Compared to a single-node
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Table 1. Comparison of the classification performance of different algorithms under different data scales and data partition ratios.

Dataset Classification algorithm Accuracy (%) Data partition ratio Max Min Mean Standard deviation

3:2 2:1 3:1 5:1

Data1

BP

Precision ratio 84.5 87.6 90.4 92.6 92.6 84.5 88.8 3.04

Recall rate 89.6 92.2 94.7 95.1 95.1 89.6 92.9 2.21

PSO-BP

Precision ratio 91.9 93.4 95.1 96.3 96.3 91.9 94.2 1.67

Recall rate 93.8 95.4 97.0 98.5 98.5 93.8 96.2 1.76

Parallel PSO-BP

Precision ratio 95.2 95.9 96.6 97.1 97.1 95.2 96.2 0.72

Recall rate 97.2 98.0 98.7 99.3 99.3 97.2 98.3 0.78

Data2

BP

Precision ratio 81.5 84.4 87.2 89.8 89.8 81.5 85.7 3.10

Recall rate 84.2 87.0 89.7 92.3 92.3 84.2 88.3 3.02

PSO-BP

Precision ratio 90.3 92.0 93.6 94.0 94.0 90.3 92.5 1.46

Recall rate 91.0 92.8 94.5 96.0 96.0 91.0 93.6 1.87

Parallel PSO-BP

Precision ratio 93.4 95.2 96.0 96.7 96.7 93.4 95.3 1.23

Recall rate 96.4 97.1 97.9 98.5 98.5 96.4 97.5 0.79

Data3

BP

Precision ratio 76.2 79.3 82.3 85.2 85.2 76.2 80.8 3.35

Recall rate 78.7 82.0 84.9 87.9 87.9 78.7 83.4 3.41

PSO-BP

Precision ratio 84.1 86.4 88.5 90.3 90.3 84.1 87.3 2.32

Recall rate 86.3 88.5 90.7 92.6 92.6 86.3 89.5 2.36

Parallel PSO-BP

Precision ratio 92.2 93.3 94.3 95.2 95.2 92.2 93.8 1.12

Recall rate 94.1 95.3 96.3 97.1 97.1 94.1 95.7 1.12

Data4

BP

Precision ratio 69.6 73.2 76.7 80.1 80.1 69.6 74.9 3.91

Recall rate 74.2 77.4 80.2 83.0 83.0 74.2 78.7 3.27

PSO-BP

Precision ratio 79.0 81.3 83.5 85.6 85.6 79.0 82.4 2.46

Recall rate 81.9 84.1 86.2 88.0 88.0 81.9 85.1 2.28

Parallel PSO-BP

Precision ratio 90.0 91.3 92.3 93.5 93.5 90.0 91.8 1.29

Recall rate 91.0 92.3 94.4 95.5 95.5 91.0 93.3 1.76

Data5

BP

Precision ratio 59.5 63.9 68.1 72.2 72.2 59.5 65.9 4.73

Recall rate 62.0 66.8 71.1 75.4 75.4 62.0 68.8 4.98

PSO-BP

Precision ratio 68.9 72.3 75.5 78.4 78.4 68.9 73.8 3.55

(Continued)
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computer, the processing speed is much higher. This result further indicates that larger datasets
better demonstrate the performance of multiple calculating nodes.

Fig 5 validates the parallel system’s efficiency. Its efficiency on smaller datasets is lower than
its efficiency on larger datasets. As the number of calculating nodes increases, the system effi-
ciency decreases more rapidly than when the dataset is smaller. As the size of the dataset gradu-
ally increases, the increase in calculating nodes results in a reduced system efficiency although
with a smaller magnitude. The main reason for the reduction in system efficiency is that the
increase in data size causes the system processing time to increase. In contrast, as the number
of calculating nodes increases, the communication overhead between nodes also increases.

Table 1. (Continued)

Dataset Classification algorithm Accuracy (%) Data partition ratio Max Min Mean Standard deviation

3:2 2:1 3:1 5:1

Recall rate 70.2 74.5 77.4 80.1 80.1 70.2 75.6 3.67

Parallel PSO-BP

Precision ratio 88.0 89.4 90.5 91.8 91.8 88.0 89.9 1.40

Recall rate 90.1 91.3 92.5 93.8 93.8 90.1 91.9 1.38

doi:10.1371/journal.pone.0157551.t001

Fig 4. Comparison of speedup ratios with varying numbers of nodes.

doi:10.1371/journal.pone.0157551.g004

Fig 5. Comparison of system efficiency with varying numbers of nodes.

doi:10.1371/journal.pone.0157551.g005
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However, the system efficiency is always greater than 0.5, which indicates that the algorithm
has excellent parallel performance and expandability.

In addition, to validate the effectiveness of the proposed algorithm, this study performed
image classification prediction on 10,000 randomly selected images from the SUN Database
using the proposed algorithm and the algorithm presented in reference [25]. From an accuracy
point of view, the average precision ratio and recall rate for the proposed algorithm reached
90.9% and 92.3%, respectively, when there were 4 slave nodes in the Hadoop cluster; however,
when using the algorithm presented in [25], the average precision ratio and recall rate reached
only 77.8% and 80.2%, respectively. Compared with the approach in [25], the average predic-
tion precision ratio and recall rate based on our method increased by 13.1% and 12.1%, respec-
tively. From the perspective of time overhead, the speedup ratio of the system reached 3.2 for
the configuration of the Hadoop cluster in this paper. In other words, for the dataset including
the randomly selected 10,000 images, the time cost of the proposed algorithm in [25] is 3.2
times that of our proposed algorithm. Moreover, the time efficiency of our approach has been
greatly improved. These experimental results are presumably the result of the following. On
the one hand, from a hardware perspective, this study adopted multiple computers to consti-
tute a master-slave mode under a network environment and adopted a multiprocessor, parallel
computing strategy to greatly increase the efficiency. On the other hand, from a software tech-
nology perspective, this paper uses not only the MapReduce parallel programming framework
but also distributed data processing techniques. When the amount of processed data becomes
very large, the running time of the traditional algorithm proposed in [25] would be excessive,
and the classification accuracy would decrease sharply. These big data conditions reflect the
superiority of the proposed algorithm in this paper even more clearly.

Conclusions
Image classification is a complicated and time-consuming process. It requires more space and
time to select, extract, and express features and to use the BP neural network to establish a clas-
sification model and classify images. In particular, when the image database size increases
sharply, a single-machine environment cannot satisfy the time and space requirements of
image classification. As an open-source and distributed computing platform, Hadoop has been
widely used because it is convenient and cheap to create clusters and has a simple and easy-to-
use computing model. The academic world and the industrial world are continuously studying
how to adapt the traditional algorithms and applications developed under single-machine or
mainframe environments to a Hadoop cluster environment.

This study conducted an in-depth exploration and analysis of the parallel design and imple-
mentation of a PSO-BP neural network algorithm. The study investigated the following three
topics: optimizing the initial weights and thresholds for the BP neural network using the PSO
algorithm, the PSO algorithm itself, and a parallel design and implementation of the BP neural
network. The completed implementation was tested using image data from the SUN Database
scene image library. The results verified the performance of the algorithm based on several
aspects. The experimental results show that the algorithm proposed in this study achieves a
good parallelization that can fully use distributed system resources and improve the algorithm’s
classification effectiveness. Furthermore, the distributed parallel system based on MapReduce
greatly improved the performance compared with the serial version of the framework and fully
demonstrates the powerful calculating capacity of parallel processing.

With the development of parallel technology, parallel computing plays an increasingly
important role in addressing the complex problems involved in performing enormous amounts
of calculations. The purpose of this study was to apply the MapReduce parallel programming
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framework to the BP neural network optimized by the PSO algorithm to improve the training
speed of the BP neural network by creating a version of the algorithm that runs upon the paral-
lel processing technology of Hadoop clusters. In the field of digital image analysis, using the
powerful data processing ability of parallel computing to mine and analyze massive data is
helpful for obtaining more accurate image information. This technique is important for image
annotation, classification and retrieval and is of great significance in improving machine intel-
ligence in understanding digital images.

As big data and cloud computing continue their rapid development, the processing and
analysis of big data will remain a research hotspot for quite some time. The future goals of this
study include (1) changing the number of nodes in the Hadoop distributed platform and
adjusting related parameters to further improve the algorithm’s efficiency; (2) improving the
PSO algorithm to find the global optimal solution in a simpler and faster manner; and (3) opti-
mizing the design of the Map and Reduce tasks for the algorithm to improve its classification
accuracy.
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