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Background. Chronic hepatitis C virus (HCV) infection diminishes immune function through cell exhaustion and reper-
toire alteration. Direct acting antiviral (DAA)-based therapy can restore immune cell subset function and reduce exhaustion states. 
However, the extent of immune modulation following DAA-based therapy and the role that clinical and demographic factors play 
remain unknown.

Methods. We examined natural killer (NK) cell, CD4+, and CD8+ T cell subsets along with activation and exhaustion phenotypes 
across an observational study of sofosbuvir-based treatment for chronic HCV infection. Additionally, we examined the ability of clin-
ical variables and duration of infection to predict 12 weeks of sustained virologic response (SVR12) immune marker outcomes.

Results. We show that sofosbuvir-based therapy restores NK cell subset distributions and reduces chronic activation by 
SVR12. Likewise, T cell subsets, including HCV-specific CD8+ T cells, show reductions in chronic exhaustion markers by SVR12. 
Immunosuppressive CD4+ regulatory T cells decrease at 4-weeks treatment and SVR12. We observe the magnitude and direction of 
change in immune marker values from pretreatment to SVR12 varies greatly among participants. Although we observed associations 
between the estimated date of infection, HCV diagnosis date, and extent of immune marker outcome at SVR12, our regression 
analyses did not indicate any factors as strong SVR12 outcome predictors.

Conclusion. Our study lends further evidence of immune changes following sofosbuvir-based therapy. Further investigation be-
yond SVR12 and into factors that may predict posttreatment outcome is warranted.

Keywords. antiviral therapy; DAA therapy; HCV; immune system; liver disease; Sofosbuvir.

Hepatitis C virus (HCV) establishes chronic infections in 50%–
75% of individuals [1] by evading and overcoming the initial 
immune response [2, 3]. Natural killer (NK) cells represent a 
diverse class of innate immunity with central roles in HCV in-
fection clearance and regulation [2, 3]. CD4+ and CD8+ T cells 
are critical adaptive immune components to HCV infection [2, 
3]. An inadequate response by both NK and T cells facilitate 
chronic HCV (cHCV) infection development. Over time, the 

continuous immune response to cHCV infection alters NK and 
T cell composition and phenotypes.

Chronic HCV infection promotes adverse NK cell subsets expan-
sion and activation phenotypes. During cHCV infection, mature 
NK cell frequency decreases, while immature NK cells frequency 
increases [4, 5]. NK receptors (NKRs) control NK cell activation 
and inhibition through a complex balance of signaling [6]. Killer 
immunoglobulin receptors (KIR) are the most prevalent NKRs, 
serving as ligands for human leukocyte antigen (HLA) molecules 
[7]. Other NKRs include the C-type lectin receptor family, such 
as CD94/NKG2 [8], and natural cytotoxicity receptors, such as 
NKp30 and NKp46 [9]. Additionally, NK cell inhibition occurs 
through pathways involving T cell immunoglobulin and mucin-
domain containing-3 (TIM-3) and T cell immunereceptor with 
Ig and ITIM domains (TIGIT) [10]. During cHCV infection, 
NK cells exhibit a chronic activation phenotype in which CD94/
NKG2A [11, 12], NKp30, and NKp46 [11, 13] expression increases, 
while KIR+ [14] and NKG2D [15] expression decreases.

Chronic HCV infection perpetuates T cell exhaustion 
phenotypes and increases regulatory T cell (Treg) frequency. Loss 
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of function, excessive activation, high apoptosis, and decreased 
proliferation characterize the T cell exhaustion phenotype [16]. 
Exhausted T cells express higher levels of the CD28 family 
costimulatory and coinhibitory receptor, programmed cell death 
protein 1 (PD-1), TIM-3 [17], and TIGIT [18]. Additionally, 
these T cells exhibit high CD28 expression [19] and human leu-
kocyte antigen DR-isotype (HLA-DR) [20]. Circulating Tregs 
upregulate during cHCV infection suppressing CD4+ and CD8+ 
T cell responses and functions [21, 22].

Antiviral therapies, including those for HCV infections, may 
restore altered immune subsets as well as exhaustion and ac-
tivation phenotypes comparable to those found in healthy 
individuals. This “immune recovery” is a significant antiviral 
therapy measure that plays an important role in long-term 
patient outcomes. For HCV infections, direct-acting antiviral 
(DAA)-based therapy provides a sustained virologic response 
(SVR) in ≥95% of treated persons [23]; however, the immune 
system response following HCV clearance remains unclear. 
Numerous studies show a reversal in NK cell subset distribu-
tion [24, 25] and decreases in NK cell activation states [11, 
24–26], and T cell exhaustion phenotypes [26, 27] following 
therapy. However, studies also show DAA-based therapy does 
not restore NK and T cell function [15, 25, 28, 29], normalize 
NK subsets and activation states [28], or reduce Treg frequency 
[30]. Additionally, it remains unknown what clinical or dem-
ographic factors may influence the immune system after viral 
eradication and are an important aspect to consider in DAA-
based therapy use.

Here, we investigate immune cell markers within an observa-
tional, longitudinal cHCV patient cohort receiving sofosbuvir-
based DAA therapy. Our population-based cohort includes 
comprehensive demographic and clinical history information, 
which can impact immune modulation magnitude [16, 31, 32]. 
To evaluate immune recovery outcomes, we measured immune 
markers indicative of recovery in NK cells, CD4+, CD8+, and 
HCV-specific CD8+ T cells before, during, and after sofosbuvir-
based DAA therapy and analyzed clinical and demographic 
data to elucidate predictors of improved immune outcome.

METHODS

Study Participants

From the Alaska Hepatitis C longitudinal cohort study, we 
recruited 40 Alaska Native or American Indian persons sched-
uled for sofosbuvir-based therapy. All participants were enrolled 
and eligible for care at the Alaska Native Medical Center 
(ANMC; Anchorage, AK). Inclusion criteria were ≥18 years old, 
HCV genotype 1a or 1b, confirmed cHCV by presence of anti-
HCV antibodies and HCV RNA, treatment naïve, and eligible 
for sofosbuvir-based therapy. Exclusion criteria were ineligibility 
for care at ANMC; incarceration; coinfection with hepatitis B 
virus, human immunodeficiency virus, or both; decompen-
sated cirrhosis; autoimmune disease; or immunosuppressive 

therapy within six  months of treatment. This study received 
approval by the Alaska Area (Indian Health Service) and 
University of Alaska Anchorage Institutional Review Boards. 
This study also received approval from the Alaska Native Tribal 
Health Consortium and Southcentral Foundation Executive 
Committee. All participants provided written informed consent.

Sample Collection

All participants provided an additional 10mL of whole 
blood to clinically requested phlebotomy at scheduled clin-
ical appointments: pretreatment (PreT), week 4 of treatment 
(WK4), end of treatment (EOT), and 12 weeks of SVR (SVR12). 
Peripheral blood mononuclear cells (PBMCs) were isolated by 
Ficoll density gradient centrifugation [33]. Isolated PBMCs 
were cryopreserved in fetal calf serum and 5% dimethyl sulf-
oxide in liquid nitrogen until analysis.

Data Abstraction

Data abstracted from electronic health records included the fol-
lowing: age, sex, body mass index (BMI), medical conditions 
related to HCV infection comorbidities, HCV infection trans-
mission risk, and estimation of liver fibrosis using vibration-
controlled transient elastography (FibroScan, Echosens, 
Waltham, MA), AST to platelet ratio index, and fibrosis-4 score. 
Additional data abstracted included HCV RNA levels, complete 
blood count, comprehensive metabolic panel, and interleukin 
(IL)-28 genotype. Estimated date of infection (EDI) was deter-
mined using the patient interview and testing data collection 
methods described previously [34].

PBMC Staining

Cryopreserved PBMCs were thawed, washed, and resuspended 
in staining buffer (1X Dulbecco’s phosphate-buffered saline/2% 
FCS) at 5.0 x 106 cells/ml. Antibodies were purchased from 
Biolegend (San Diego, CA). Staining panels were constructed 
as follows. For T cells, αCD3-APC700, αCD4-PerCP/Cy5.5, 
and αCD8-APC-750 Fire. For Tregs, αCD25-APC and 
αCD127-BV421. For NK cells, αCD56-PE/CY7, αCD16-FITC, 
αCD94-APC, αNKp46-BV421, αNKp30-PE, αKIR3DL1-APC, 
and αKIR2DL1-PE. For memory phenotypes, αCD45RA-FITC 
and αCCR7-APC. For cell exhaustion and senescence, αPD-1-PE 
(T cell only), αTIGIT-APC, αTIM-3-BV421, αCD28-BV660 (T 
cell only), αHLA-DR-BV660, and αCD57-PE. Stained PBMCs 
were acquired on a Beckman Coulter 13-color Cytoflex flow 
cytometer utilizing the CytExpert 2.0 software (Beckman Coulter, 
San Diego, CA). Background and isotype controls were included 
where appropriate. Raw data were analyzed using CytExpert 2.0 
and FCS Express v6.06.0014 (DeNovo Software, San Jose, CA).

HLA-A24:02 Pentamer Staining

To determine HLA-A typing, DNA was extracted from whole 
blood at the PreT sample point and sent to ProImmune Inc. 
(Oxford, UK). HLA-A24:02-1031 (AYSQQTRGL; HCV NS3 
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ProImmune) was the most prevalent HLA-A (n = 17) and only 
those participants were included in the HCV-specific CD8+ T 
cell analysis. Cell and pentamer staining were done per manu-
facturer protocol and 100 000 events were recorded. Antibodies 
used to identify HCV-specific CD8+ T cells included αCD3-
APC700, αCD8-APC750 Fire, and α24:02-APC. To eliminate 
nonspecific staining, αCD19-BV660 and αCD4-PerCP/Cy5.5 
were used in an exclusion channel. Antibodies αPD-1-FITC, 
αTIGIT-PE, and αTIM-3-BV421 then were applied to deter-
mine exhaustion phenotype.

Statistical Analysis

For all antibody data, significant differences among PreT and 
all other sample points (ie, PreT vs WK4, EOT, or SVR12) were 
assessed via paired t tests. We examined correlations between 
both clinical and immune marker data graphically as well as via 
Pearson correlation coefficients. To examine factors influencing 
immune marker outcome at SVR12, beta regression was utilized 
for immune markers reported as proportions, and simple linear 
regressions for those markers with outcomes measured as mean 
fluorescence intensity. An example of simple linear regression 
is as follows:

SVR outcome ∼ PreT + EDI or HCV Diagnosis Date

Covariates examined in our multivariable models of SVR out-
come are indicated by the following equation:

SVR Outcome ∼ PreT + Age + BMI

+ HCV Diagnosis Date or EDI

+ PreT Fibrosis Score + PreT Viral load

Per participant, differences from PreT to SVR12 values (or SVR12 
outcome) for exhaustion and activation markers were classified 
into four heat map groups defined by immune cell type: (1) Tregs, 
(2) NK, (3) CD4+ and CD8+ T cells, and (4) HCV-specific CD8+ T 
cells. Values were normalized (both pre- and postmeasurements, 
centered and scaled to PreT values), and the mean difference in 
pre- and postnormalized values across all markers for a participant 
served as a marker group score for the participant. These scores 
then were used to create a color scale defined to a range between 
+/- one unit of these standardized averaged scores. Values in green 
indicate exhaustion or activation markers that decrease from PreT 
to SVR12, whereas values in red indicate exhaustion and activation 
markers that increase from PreT to SVR12. Heat maps with all ex-
haustion or activation markers were constructed for all groups. All 
analyses were performed using R version 3.4.3 (Vienna, Austria).

RESULTS

Cohort Description

Of the 40 participants, all 40 achieved SVR. One participant 
stopped therapy at WK4 of treatment. Twenty-nine participants 
(73%) were women. The mean age was 53.5 ± 12.4 years, and 

mean BMI was 27.1 ± 4.8 kg/m2 (Table 1). The mean EDI was 
23.6 ± 13.4 years with a range of 3–51 years. The mean HCV 
diagnosis date was 10.3 ± 6.9 years. Mean PreT viral load was 
4.0 x 106 IU/ml and ranged from 431–24.9 x 107 IU/ml. No par-
ticipant had a detectable viral load after WK4. Treatment dura-
tion was 8 (n = 6) or 12 weeks (n = 33) (Table 1). No significant 
differences in immune marker results were detected among 
participants differing in length of treatment or medication 
combination used (data not shown).

Observed Decreased NK Cell Activation and Immature NK Cell Frequency 
Following Treatment Completion

Overall, NK cells demonstrated decreased activation states and 
suggested a restoration of altered cell subsets by SVR12. Total 
NK cells increased at EOT compared to PreT (P = .02), but not at 
WK4 or SVR12 (Figure 1A and B). Immature NK cells decreased 
by WK4 (P = .01), and this pattern maintained through SVR12 
compared to PreT (Figure 1C). We found no significant 

Table 1. Characteristics of the Patient Cohort Upon Study Enrollment

Characteristics n (%)

Completed therapy 39 (98%)

Previously treated 0 (0%)

Treatment length, 8 weeks 6 (15%)

Treatment length, 12 weeks 33 (85%)

Ledipasvir-Sofosbuvir 
treatment regimen

37 (92%)

Sofosbuvir-Velpatasvir 
treatment regimen

3 (8%)

Ribavirin 0 (0%)

HCV genotype 1a 37 (92%)

HCV genotype 1b 3 (8%)

Female 29 (73%)

IL-28b CCa 18 (46%)

IL-28b TTa 0 (0%)

IL-28b CTa 21 (54%)

Body mass index ≥ 30 (kg/m2) 7 (17.5)

Advanced fibrosis (FibroScan 
Score > 9.5 kPa)

6 (15%)

Cirrhosis (FibroScan Score 
> 12.5 kPa)

3 (8%)

HCV RNA > 6.0 × 106 (IU/ml) 8 (20%)

HCV RNA viral load at WK4 2 (5%)

Characteristics Mean (SD) Range (min,max)

Age (years) 53.5 (12.4) 23,70

Body mass index (kg/m2) 27.1 (4.8) 17.0,48.2

Estimated duration of 
infection (years)

23.6 (13.4) 3.0,51.0

HCV diagnosis date (years) 9.0 (6.9) 1.0,23.0

FibroScan Score at PreT 5.5 (4.1) 3.0,26.3

FibroScan Score at SVR12 4.8 (2.2) 2.8,15.1

Pretreatment HCV RNA 
(IU/ml)

1.4 × 106 (6.0 × 106) 4.3 × 102,2.5 × 107

Abbreviations: CC, TT, CT, genotypes; HCV, Hepatitis C virus; PreT, pretreatment; SVR12, 12 
weeks of sustained virologic response.
aIL - 28 genotype known for 39 persons.
bFibroScan, utilizing vibration-controlled transient elastography, was used to measure liver 
fibrosis; values are reported as FibroScan Score.



4 • ofid • Stevenson et al

differences in mature NK cells at any sample point compared to 
PreT, although mean and median mature NK values increased 
from WK4–SVR12 compared to PreT (Figure 1D). Only ma-
ture NK cells were examined for activation and exhaustion 
phenotypes. NKp30 and NKp46  expression, both decreased 
from PreT to SVR12 (P = .03 and <.01 respectively). Additionally, 
CD94 expression decreased at WK4 through SVR12 compared 
to PreT (P = .02 to <.01; Supplementary Figure S1). Further ac-
tivation and exhaustion state analyses saw TIM-3 expression 
decreased at EOT through SVR compared to PreT (P = .01 and 
<.01 respectively; Supplementary Figure S1). TIGIT expression 
also decreased at SVR, and additionally at WK4, compared to 
PreT (P < .01 and .03 respectively; Supplementary Figure S1) but 
not at EOT. For KIR receptors, KIR3DL1 expression increased 
from PreT to SVR12 (P = .01), and KIR2DL1 did not differ sig-
nificantly at any time point (Supplementary Figure S1).

CD4+ T Cells Exhibit Reduced Treg Cell Frequency, Exhaustion, and 
Activation Phenotypes

Total (CD3+CD4+CD25+CD127–) Treg frequency decreased and 
total CD4+ T cells exhibited decreased exhaustion and activation 

states by EOT and SVR12. Compared to PreT, Tregs decreased as 
early as WK4 (P < .01), and at SVR12 (P = .02; Figure 2A and B). 
Although, Treg frequencies at EOT did not significantly differ, the 
mean and median values remained below PreT values (Figure 2C). 
Additionally, CD3+ lymphocytes did not significantly differ at any 
sample point compared to PreT (data not shown). Total CD4+ T 
cell PD-1 expression significantly decreased at EOT, but not SVR, 
compared to PreT (P = .04 and .06 respectively). For Total CD4+ 
T cells TIGIT expression, significant decreases were only observed 
at SVR12 compared to PreT (P < .01; Supplementary Figure S2). 
Total CD4+ T cell TIM-3 expression showed no significant changes 
at any sample point compared to PreT. For total CD4+ T cell acti-
vation markers, HLA-DR and CD28 expression both significantly 
decreased at SVR12 compared to PreT (P <  .01 and P =  .03 re-
spectively; Supplementary Figure S2). No significant changes were 
detected in total CD4+ T cell memory subsets (date not shown).

Total and HCV-specific CD8+ T Cells Exhibited Reduced Exhaustion and 
Activation Phenotypes

Although outcomes varied, we observed a reduction in exhaus-
tion and activation states within total and HCV-specific CD8+ 
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T cells. PD-1 expression in total and HCV-specific CD8+ T cell 
populations decreased at SVR12 compared to PreT (P  =  .01 
[Figure 3A and B] and <.01 [Figure 4A and B]). Total CD8+ 
T cells additionally had decreased TIM-3 frequencies between 
PreT and SVR12 (P = .04; Figure 3C). For HCV-specific CD8+ 
T cells, TIM-3 expression did not significantly differ at any time 
point compared to PreT (Figure 4C). However, 13 individuals 
with decreased TIM-3 expression in HCV-specific CD8+ T cell 
at SVR12 also had decreased PD-1 frequencies (Figure 5B). 
Neither CD8+ T cell populations showed significant changes 
in TIGIT expression (Figure 3D and 4D). Additionally, no sig-
nificant difference in HCV-specific CD8+ T cell percentages 
were detected (Supplementary Figure S3). Among activation 
markers, total CD8+ T cells showed decreased HLA-DR at 
SVR12 compared to PreT (P < .01; Supplementary Figure S4). 
Additionally, CD28 expression  decreased at WK4 (P  =  .03) 
through SVR12 (P < .01; Supplementary Figure S3). No signif-
icant differences were detected in total CD8+ T cell memory 
subsets (data not shown).

General Decrease in Exhaustion and Activation Marker Outcomes 
Observed From Pretreatment to SVR12 in the Majority of Patients

To summarize individual immune outcomes from PreT to 
SVR by exhaustion and activation phenotype markers, we 
utilized heat maps (Figure 5, Supplementary Figure S5). 
The heat map summaries revealed SVR12 immune marker 
outcomes (magnitude and direction of change compared to 
PreT values) varied highly among participants, but the ma-
jority of participants had multiple immune marker values 
indicative of decreased exhaustion and activation cell 
phenotypes. Frequently, the magnitude of immune markers 
changes from PreT to SVR12 were within 1 standard devi-
ation of normalized values, indicating a minimal change. 
Interestingly, we observed many individuals, who had more 
recent HCV diagnoses, exhibiting no change or increased 
exhaustion or activation markers at SVR12 (Supplementary 
Figure 4A). Additionally, individuals with shorter EDI dis-
played a similar pattern within the evaluated HCV-specific 
CD8+ T cells (Supplementary Figure 4B).
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Examining the Impact of Clinical and Demographic Variables on 
Posttherapy Immune State

From the clinical data, we next explored if EDI, age, BMI, PreT 
fibrosis score, HCV diagnosis date, and PreT viral load were as-
sociated with SVR12 outcomes. We developed univariable and 
multivariable regression models using these clinical indicators 
to predict SVR12 immune outcome. Neither EDI nor HCV 
diagnosis date (or any other variable)  were a significant pre-
dictor of any marker tested (Supplementary Table S1 and S2). 
Additional logistic regression analysis and other multivariate 
analyses (eg, principle components analysis and mixed-effect 
modeling) provided no further insight into clinical variables 
that predicted SVR12 immune outcome (data not shown).

DISCUSSION

Multiple studies have established that cHCV infection disrupts 
the immune system. High efficacy DAA-based therapies 
have been groundbreaking for HCV infection treatment. 
We investigated changes in cell populations and phenotype 

markers by a convenience sample of cHCV-infected patients 
from a longitudinal, observational cohort scheduled to un-
dergo sofosbuvir-based therapy. Most studies to date have in-
cluded these analyses from clinical trial, where clinical history, 
including EDI, cannot be examined. Our study evaluated base-
line (PreT) NK and T cell profiles compared to within (WK4, 
EOT) and posttreatment (SVR12) profiles. Our cohort allowed 
the examination of relationships between immune phenotype 
markers, clinical history, and demographic data. Ultimately, 
this knowledge could help providers to assess and understand 
posttreatment patient care and health risks.

Our NK cell analysis supports the premise that sofosbuvir-
based therapy reduces chronic activation and exhaustion states, 
while partially restoring healthy cell subsets. Our findings follow 
a similar trend to other sofosbuvir-based [25] and early DAA-
based clinical studies [11, 26, 35]. Immature NK cell reductions 
correspond with HCV RNA disappearance at WK4 (Figure 1C). 
Reductions in NK activation and exhaustion states appear to 
lag by several weeks after viral eradication, suggesting a delay 
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in NK cell recovery kinetics. Our finding of increasing mature 
NK percentages at WK4–SVR12 in comparison to PreT sug-
gest restoration of this subset may not occur until after SVR12. 
Spaan et  al. observed increases in mature NK cells following 
daclatasvir ± asunaprevir therapy [35]. Overall, changes in NK 
cell subsets and activation phenotypes are evident following 
sofosbuvir-based therapy.

Similar to NK cells, T cell exhaustion and activation states 
decrease following sofosbuvir-based therapy. Our observations 
are consistent with Burchill et  al. (daclatasvir ± asunaprevir) 
that T cell exhaustion decreases following DAA-based therapy 
[26]; however, our findings suggest the involvement of differing 
coinhibitory pathways. For total CD8+ T cells, DAA-based 
therapy decreased exhaustion phenotypes as evidenced by 

reductions in PD-1 and TIM-3, but not TIGIT (Figure 3). PD-1 
and TIM-3 coexpress on T cells with the highest dysfunction 
and exhaustion during cHCV infection [20] and blockading 
both pathways restores proliferation and function [17, 20]. For 
the HCV-specific CD8+ T cells evaluated, only PD-1 reduction 
posttreatment was observed. These findings support previous 
studies [26, 27]. Our data also support previous studies that 
TIGIT could play an important role in CD4+ T cell exhaustion 
during cHCV infection [30] (Supplementary Figure S1). We 
should also note that although the trend did not persist through 
SVR12, the PD-1 decrease at EOT is suggestive of a role in CD4+ 
T cell exhaustion (data not shown). Additionally, decreases in 
HLA-DR and CD28 following treatment indicate a reduction in 
T cell activation during and following treatment for both T cell 
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subsets (Supplementary Figure S2 and S3). Similar to NK cells, 
reduction in activation markers occurs several weeks after HCV 
RNA disappearance. Collectively, these data support a reversal 
in T cell exhaustion and activation markers irrespective of type 
of DAA-based therapy.

We observed a decrease in overall Treg frequency post 
therapy. Our findings contradict earlier reports that suggest 

no reductions occur during or posttreatment [30, 36]. These 
differences could be attributed to cohort size or DAA-based 
regimens. Additionally, our analysis did not investigate Foxp3+-
expressing Tregs. Therefore, our findings may be unique to 
CD3+CD4+CD25+CD127– Tregs. For some participants, PreT 
to SVR12 changes were minor (<1 SD; Figure 2B). The question 
of biological significance in minor Treg decreases indicate that 
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long-term monitoring of our cohort and further Treg studies 
should occur. Overall, our findings are unique and provide evi-
dence that reduction in Treg frequency can be observed during 
sofosbuvir-based therapies.

Our immune marker data provide further evidence of 
changes for both NK and T cells following sofosbuvir-based 
therapy; however, our additional objective was to explore the 
predictive value of clinical data to determine SVR12 immune 
marker outcomes. These data reflect diverse participant im-
mune outcomes that vary greatly (Figure 5A and B). A host 
of environmental and genetic factors influences immune 
system variation [37, 38]. Despite high variation, the majority 
of participants exhibit immune marker data aligned with 
decreased exhaustion and activation phenotypes. However, 
our simple and multivariable regression analyses provide no 
clinical or demographic factors predictive of SVR12 outcome 
for the immune markers used in this study. Our heat map 
groups suggested EDI and known HCV diagnosis date affect 
SVR12 outcome of HCV-specific CD8+ T cells and NK cells, 
respectively. However, within our cohort of 40 patients, regres-
sion analyses did not identify significant associations between 
SVR outcome and EDI or HCV diagnosis date. The estimated 
effect size of PreT values on the change in markers from PreT 
to SVR12 was relatively low in all markers, indicating a min-
imal effect of baseline status on immune recovery. Although 
our results indicate larger sample sizes or different clinical 
variables may be necessary to identify predictors of immune 
outcome, these findings merit further, more expansive explo-
ration with expanded observation timeframes and utilizing 
the unique depth of clinical information of the AKHepC 
cohort.

A number of limitations in this study must be taken into ac-
count. First, our analysis includes general markers of immune 
cell function, but it does not include functional assays nor an 
in-depth examination of HCV-specific T cells. The scope of 
the project and blood sample availability limited our ability to 
perform functional assays, but we recognize their importance 
in evaluating the immune system. Sofosbuvir and early DAA-
based studies contradict whether functional restoration occurs 
following DAA-based therapy [11, 15, 25, 28, 29]. HLA-A24:02 
was the most common HLA type in our cohort and was used 
to maximize our HCV-specific T cell analysis, but other HLA 
types and epitopes should be considered in future studies. 
However, neither limitation changes the interpretation of our 
results. Additionally, our analysis was limited to circulating NK 
and T cell populations. Known cell populations accumulate in 
the liver during cHCV infection [19, 35, 36]. We cannot make 
inferences regarding intrahepatic cell populations in this study. 
The small changes we observe in NK and T cell populations 
could be due to decreased liver inflammation and redistribution 
of immune cells from the liver to blood. Finally, our study did 
not include a HCV-negative Alaska Native/American Indian 

cohort. Including a HCV-negative control was not feasible with 
regards to recruitment given sensitivities to research within the 
Alaska Native/American Indian population. This study design 
included a pretreatment time point to establish a baseline with 
which to compare changes over time and post-DAA therapy.

Our findings support that changes in the immune system 
occur following cHCV treatment [11, 24–27]. Our study 
benefits from extensive clinical and laboratory information al-
ready available, and we have completed a preliminary examina-
tion of the impact of sofosbuvir-based therapy on the immune 
system and clinical factors that predict posttreatment immune 
outcomes. Moving forward, our focus will be on expanding these 
analyses, conducting functional cellular assays, and monitoring 
participants to determine if the immune system changes observed 
persist beyond SVR12. A  larger inclusion of individuals from 
the AKHepC cohort and additional analysis of clinical data may 
provide further insight to clinical predictors of sofosbuvir-based 
treatment outcome, including immune recovery. We continue to 
see persons within the AKHepC cohort who completed DAA-
based  treatment to monitor liver health and clinical labs. This 
long-term monitoring provides a unique opportunity to conduct 
in-depth evaluations of the DAA effects posttreatment on the 
immune system with a prospective clinical outcome, including 
monitoring for higher HCC incidence rates post-DAA treatment 
that are emerging in the current literature [39].
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