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Abstract

Background: Biogas production with anaerobic digestion (AD) is one of the most promising solutions for both renewable
energy production and resolving the environmental problem caused by the worldwide increase in organic waste. However,
the complex structure of the microbiome in AD is poorly understood. Findings: In this study, we constructed a microbial
gene catalog of AD (22,840,185 genes) based on 1,817 Gb metagenomic data derived from digestate samples of 56 full-scale
biogas plants fed with diverse feedstocks. Among the gene catalog, 73.63% and 2.32% of genes were taxonomically
annotated to Bacteria and Archaea, respectively, and 57.07% of genes were functionally annotated with KEGG orthologous
groups. Our results confirmed the existence of core microbiome in AD and showed that the type of feedstock (cattle,
chicken, and pig manure) has a great influence on carbohydrate hydrolysis and methanogenesis. In addition, 2,426
metagenome-assembled genomes were recovered from all digestate samples, and all genomes were estimated to be ≥80%
complete with ≤10% contamination. Conclusions: This study deepens our understanding of the microbial composition and
function in the AD process and also provides a huge number of reference genome and gene resources for analysis of
anaerobic microbiota.
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Background

In the context of global climate change, in recent years the use
of biogas as a renewable form of energy has increasingly drawn
the world’s attention. While the vast amount of organic waste
caused by population expansion, urbanization expansion, and
agriculture intensification continues to severely threaten the en-
vironment [1], at the same time, anaerobic digestion (AD) of
biomass is considered one of the most important solutions for
both producing renewable energy and resolving the problem
of organic waste, such as animal manure, crop residues, and
wastewater sludge [2, 3], and to date has been applied world-
wide.

AD includes 4 sequential metabolic steps, namely, hydrol-
ysis, acidogenesis, acetogenesis, and methanogenesis, and is
performed by a complex consortium of bacteria and archaea
[4, 5]. The first 3 steps are predominantly fulfilled synergisti-
cally by fermentative bacteria from the phyla Firmicutes, Bac-
teroidetes, and Proteobacteria, while the last step is carried out
by methanogenic archaea from the phylum Euryarchaeota [6].
However, the structure and performance of microbial commu-
nities in AD are strongly influenced by operating factors, such
as feedstock, temperature, organic loading rate, and intermedi-
ate metabolites [5, 6]. Because the microbial communities in AD
are extremely complex, the microbial compositions and interac-
tions among microbes remain largely unclear [7].

Culture-independent technologies based on high-
throughput sequencing enable the deep investigation of
microbial compositions and functions. High-throughput 16S
ribosomal RNA gene sequencing has been frequently used
to analyze the taxonomic profile of AD microbial communi-
ties [8, 9]. Metagenomic approaches alone or coupled with
metatranscriptomics, metaproteomics, and metabolomics are
increasingly applied to decipher the gene functions, enzyme
profiles, and metabolic processes of microbial communities
in AD [10, 11]. However, most of these studies have focused
only on a relatively small number of full-scale anaerobic
digesters or used a small amount of sequencing data [2, 3,
12, 13]. In this study, we collected different digestate samples
from 56 full-scale biogas plants (BGPs), which were operated
at different temperatures, fed with diverse feedstocks, and
distributed widely in geographical regions, and constructed a
microbial gene catalog of AD (MGCA) by in-depth metagenome
sequencing.

Data description

To construct an MGCA, 56 full-scale BGPs located all across
China ranging from northeast (45.462 N, 131.604 E) to southwest
(23.351 N, 103.339 E) (Supplementary Fig. S1) were investigated.
All plants were operated at ambient temperature (14–31.3◦C at
the time of sampling) or in mesophilic (35–45◦C) conditions, at
pH 7.3–9.0, and with digester volume from 12 to 8,000 m3 (Sup-
plementary Table S1).

Among these BGPs, 46 were in mono-digestion process, treat-
ing a single type of livestock manure (cattle, chicken, or pig ma-
nure), and the remaining 10 BGPs treated other animal manures
alone or a mixture of livestock manure and other substrates,
such as straw, vegetables, or sewage water (Supplementary Ta-
ble S1). According to their substrate types, these investigated
BGPs were divided into 4 groups: MCA (13 cattle manure BGPs),
MCH (6 chicken manure BGPs), MPI (27 pig manure BGPs), and
OTH (10 BGPs with other substrates) (Table 1). A total of 41 BGPs
adopted the continuous stirred tank reactor (CSTR), and other
BGPs adopted the upflow solids reactor (USR), anaerobic baffled

reactor (ABR), or black film digester (Supplementary Table S1).
Almost all of the BGPs (53 BGPs) used a single-stage process, but
3 of them used a 2-stage process (Supplementary Table S1). Over-
all, these BGPs cover the typical and prevailing types used with
AD and constitute a representative collection.

Sample collection

Digestate samples were collected from the fermentation tank or
sampling valve. Before sampling, the reactor content was stirred
and the sampling valve was opened for 5 min to flush the sam-
pling valve and tubes. Approximately 300 mL of digestate was
sampled from each BGP and transferred into 6 sterile, gastight
tubes (50 mL) and frozen immediately in a cooler with dry ice,
and then transported to the laboratory. Frozen samples were
stored at −80◦C before DNA extraction. In total, 59 digestate
samples were collected, including 53 samples from 53 single-
stage BGPs and 6 samples from each stage of 3 different 2-stage
BGPs (JSP-03, SDP-01, and AHP-01) (Supplementary Table S1).

DNA extraction, library preparation, and sequencing

Frozen digestate samples were removed from the −80◦C freezer
and thawed at room temperature. Genomic DNA was extracted
in triplicate using the PowerSoil DNA Isolation Kit (Cat. No.
12888–100; MoBio Laboratories Inc., Carlsbad, CA, USA) accord-
ing to the manufacturer’s protocol. To increase DNA yield, an
extra physical cell disruption step of repeated freeze-thaw (4 cy-
cles of alternating between 65◦C and liquid nitrogen for 5 min)
was used prior to the standard protocol. The integrity of DNA
extracts was checked on 0.7% (w/v) agarose gel with GelRed
nucleic acid gel stain (Cat. No. 41003; Biotium, Fremont, CA,
USA). DNA samples showing obvious concentrated DNA bands
>15 kb in size were used for further analysis (Supplementary
Fig. S2). The quality and quantity of the extracted DNA were as-
sessed using Nanodrop (Thermo Fisher Scientific, Waltham, MA,
USA) and Qubit dsDNA HS assay kit (Thermo Fisher Scientific,
Waltham, MA, USA). After DNA quality checks, the 3 replicates of
high-quality DNA (band length >15 kb, A260/280 1.8–2.0, double-
stranded DNA [dsDNA] concentration >20 ng/μL) of each sample
were pooled for library construction.

Sequencing libraries were prepared for each sample us-
ing Illumina TruSeq DNA PCR-Free Library Preparation Kit (ref.
15 037 059; Illumina, San Diego, CA, USA) according to the man-
ufacturer’s instructions. In brief, a total of 1.5 μg metagenomic
DNA was sheared to 350-bp fragments using Covaris S220 (Co-
varis, Woburn, Massachusetts, USA), and the sheared DNA frag-
ments were purified, blunt-end repaired, and size selected. Sub-
sequently, a single “A” nucleotide was added to the 3′ end of
the blunt fragments, and then multiple indexing adapters were
ligated to the A-tailed fragments by a complementary pairing
single “T” nucleotide on the 3′ end. All 59 prepared sequencing
libraries were first checked for quality and quantity and then
paired-end sequenced (2 × 150 bp) using Illumina Hiseq X10
platform (Illumina, San Diego, CA, USA) by Cloud Health Ge-
nomics Ltd. (Shanghai, China). In total, 1,817 Gb of raw data were
generated with 30.80 ± 3.77 Gb per sample (Table 2).

Metagenome assembly and construction of the gene
catalog

The Illumina raw reads were cleaned by trimming the adapter
sequences and low-quality regions using 2 in-house software
packages, clean adapter and clean lowqual [14] with default pa-



Ma et al. 3

Table 1: Summary of the investigated full-scale biogas plants

Group Feedstock type Samplesa BGPs
Reactor typeb Operating conditionsc

CSTR USR Others Mesophilic Ambient

MCA Cattle manure 14 13 11 1 1 9 4
MCH Chicken manure 7 6 4 1 1 5 1
MPI Pig manure 28 27 21 3 3 8 19
OTH Other substrates 10 10 5 3 2 6 4
Total 59 56 41 8 7 28 28

a53 Samples from 53 single-stage BGPs and 6 samples from each stage of 3 2-stage BGPs (JSP-03, SDP-01, and AHP-01).
bCSTR: continuous stirred-tank reactor; USR: upflow anaerobic solid reactor; others: anaerobic baffled reactor (ABR), black film digester, and buried digester.
cOperating conditions include mesophilic conditions and ambient temperature.

Table 2: Statistics of metagenome sequencing, assembly, and non-redundant gene catalog (MGCA)

Statistic Mean ± SD per sample Totala

Raw data (Gb) 30.80 ± 3.77 1,817
Clean data (Gb) 18.03 ± 3.29 1,064
No. of contigsb 243,272 ± 74,535 18,389,093
Assembled contigs length (Gb) 0.71 ± 0.19 49.38
Contig N50 value (bp)c 4,021 ± 758 3,267
No. of predicted genesd 802,716 ± 217,466 56,953,553
No. of non-redundant genes 22,840,185
Percentage of full-length genes (%) 56.45
Mean open reading frame length (bp) 790

aTotal, calculated from all data, including the data derived from independent assembly of each sample and co-assembly of
all unmapped reads.
bContigs with length shorter than 1,000 bp were filtered out.
cContig N50 value of co-assembled contigs (1,893 bp) was obviously shorter than that of independently assembled contigs of
each sample (4,021 ± 758), and thus contig N50 value of all contigs (3,267 bp) was shorter than that of independent assembled
contigs.
dGenes with length shorter than 102 bp were filtered out.

rameters, resulting in clean reads with mean error rate <0.001
and read length ≥75 bp. In addition, unpaired reads were ex-
cluded from the clean reads. Then, we obtained a total of 1,064
Gb clean data, with a mean of 18.03 ± 3.29 Gb per sample (Ta-
ble 2). First, the clean reads of each sample were assembled sep-
arately by Megahit v1.1.3 (Megahit, RRID:SCR 018551) [15] under
paired-end mode, and the contigs with length <1,000 bp were fil-
tered out. Then, the assembled contigs were subjected to gene
prediction using Prodigal v2.6.3 (Prodigal, RRID:SCR 011936) [16]
with parameter “-p meta,” and the predicted genes with codon
sequence length <102 bp were filtered out according to a pre-
vious study [17]. As a result, we obtained a mean contig num-
ber of 243,272 ± 74,535 (with contig N50 of 4,021 ± 758 bp) and
gene number of 802,716 ± 217,466 for each sample (Table 2). To
improve the assembly quality for less abundant species, clean
reads of each sample were first mapped onto the assembled con-
tigs of the sample with BWA-MEM (BWA, RRID:SCR 010910) [18],
and then all the unmapped reads were pooled together for co-
assembly. The software and parameters used for assembly and
gene prediction of pooled unmapped reads were the same as
above, and we obtained 4,035,874 contigs (with contig N50 of
1,893 bp) and 9,593,300 genes in total.

All the obtained genes were pooled (a total of 56,953,553
genes) and then clustered to construct an initial non-redundant
gene catalog (22,844,545 genes) using CD-HIT-EST v4.6.6 (CD-HIT,
RRID:SCR 007105) [19] with parameter “-c 0.95 –n 10 –G 0 –aS 0.9,”
adopting the criteria of identity ≥95% and alignment coverage
≥90% of the shorter genes (Table 2). The clean reads of each sam-
ple were mapped onto this initial gene catalog by BWA-MEM,

and a total of 80.66% of qualified reads (with alignment length
≥50 bp and idenity >95%) could be mapped. However, there were
4,360 genes that did not have a qualified read mapped in any
sample, which may be derived from wrong assembly or extreme
low abundance, and they were removed from the gene catalog.
Finally, we got the final non-redundant MGCA of full-scale BGPs
containing a total of 22,840,185 genes, with a mean open read-
ing frame length of 790 bp and a full-length gene percentage of
56.45% (Table 2).

The relative gene abundances of the MGCA were calculated
using the qualified reads [20, 21]. Briefly, for each sample, the to-
tal number of reads mapped to all genes (TA) equals the count
of qualified reads, and the total number of reads mapped to 1
gene (TO) equals the count of qualified reads mapped to the
gene. Finally, the normalized gene abundance (NGA) for each
sample was calculated according the following formula: NGA
= TO/(GL/1,000)/(TA/10,000,000); GL indicates the length of the
gene. Rarefaction analysis was performed by counting the total
number of detected genes in a given number of samples (≤59)
after 100 random samplings with replacement. The rarefaction
curve approached saturation with the increase of sample num-
ber (Fig. 1a), suggesting that our gene catalog covered almost all
microbial genes to be found in the 56 full-scale BGPs sampled
in this study. In addition, we compared the genes assigned to
MCA (15,346,132 genes), MCH (9,707,833 genes), MPI (18,662,450
genes), and OTH (15,507,636 genes) and found that only a small
proportion of genes (<12%) were unique in each of the 4 groups
(Fig. 1b), which revealed that common microbial functions in AD
were shared among different BGPs.

https://scicrunch.org/resolver/RRID:SCR_018551
https://scicrunch.org/resolver/RRID:SCR_011936
https://scicrunch.org/resolver/RRID:SCR_010910
https://scicrunch.org/resolver/RRID:SCR_007105
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Figure 1: The constructed microbial gene catalog of anaerobic digestion (MGCA). a, Rarefaction curve of detected genes from the whole set of 59 digestate samples.

The curve approaches saturation as sample number increases. The gene number of a given number of samples was calculated after 100 random samplings with
replacement and plotted with a box plot. Box plots show the median ± interquartile range (IQR) and 1.5 IQR ranges (whiskers), with outliers denoted by circles. b, Venn
diagram of shared genes among 4 groups of non-redundant genes from MCA, MCH, MPI, and OTH. Only a small proportion of genes were unique for each group. MCA:

cattle manure BGPs; MCH: chicken manure BGPs; MPI: pig manure BGPs; OTH: BGPs with other substrates.

To assess to what extent the present MGCA could represent
the microbial genes in full-scale BGPs, a more comprehensive
microbial gene catalog of AD (C-MGCA) of full-scale BGPs was
constructed. Besides the 59 metagenomes that were generated
in this study (1,817 Gb), 39 other metagenomes (580 Gb) derived
from full-scale BGPs, which were located in Germany (22 sam-
ples), United Kingdom (12 samples), Spain (4 samples), and Swe-
den (1 sample), were downloaded from NCBI, ENA, or MGnify
database (Supplementary Table S2). All data were integrated and
processed using the same pipeline for MGCA, and 25,329,366
non-redundant genes were generated for C-MGCA. On the basis
of pairwise alignments of the 2 gene catalogs at gene level us-
ing BLAT (BLAT, RRID:SCR 011919) [22], we found that almost all
genes in MGCA (99.99%) were shared by C-MGCA (with the crite-
ria for shared genes that identity ≥95% and overlap ≥90% of the
shorter genes), although C-MGCA only has 2,489,181 more genes
than MGCA (Supplementary Fig. S3). In addition, 6 previously re-
ported datasets derived from BGPs [23–28] were processed us-
ing the same pipeline for MGCA and compared to the 2 gene
catalogs. The results showed that only 52.3 ± 9.6% of genes in
these datasets were shared by MGCA, while 99.5 ± 0.7% of genes
were shared by C-MGCA (Supplementary Table S3), consistent
with the fact that the data of the 6 datasets were used for con-
structing C-MGCA. These results indicated that although MGCA
contains a large proportion of genes in full-scale BGPs, the gene
coverage might be further improved by collecting more diversi-
fied samples, especially for those rare genes in specific types of
AD process.

Taxonomic annotation of the gene catalog

Taxonomic annotation of genes in MGCA was performed using
CARMA3 (CARMA, RRID:SCR 004999) [29] on the basis of DIA-
MOND v0.8.28.90 (DIAMOND, RRID:SCR 016071) [30] alignment
against the NCBI-NR database, according to a previously estab-
lished method [20]. Of the 22,840,185 genes, 76.73% were taxo-
nomically classified at the superkingdom level (Fig. 2a). Among
these classified genes, 95.95% were assigned to Bacteria, and
the remaining genes were assigned to Archaea (3.03%) and
Eukaryota (1.02%). Firmicutes (23.04%), Proteobacteria (11.22%),

and Bacteroidetes (9.93%) were the dominant phyla in the gene
catalog (Fig. 2a), and Euryarchaeota (1.78%) was the predomi-
nant archaeal phylum, accounting for 76.69% of the archaeal
genes. At lower taxonomic levels, only 9.62% and 0.51% of the
genes were annotated to specific genera and species, respec-
tively, highlighting the paucity of sequenced genomes of AD mi-
crobes in public databases currently. In addition, genes classified
to the methanogens in BGPs include those from Methanosarcina
(0.16%), Methanosaeta (0.14%), Methanoculleus (0.14%), Methanoreg-
ula (0.13%), and Methanobrevibacter (0.10%) (Fig. 2b). To calculate
the relative abundance of different taxonomic ranks (superking-
dom, phylum, class, order, family, genus, and species), the abun-
dances of the respective genes belonging to each category ac-
cording to the taxonomic assignments were added.

Functional annotation of the gene catalog

Functional annotation was performed by aligning all protein
sequences in the gene catalog against the KEGG [31] database
(release 79) using DIAMOND (v0.8.28.90) and taking the best
hit with the coniteria of E-value < 1e−5. As a result, 57.07%
of genes were annotated with KEGG orthologous groups (KOs),
with a total number of 13,527 KOs that were comparable to
those of the gut microbial gene catalogs of pig and chicken
[20, 32]. At the KEGG pathway level, the largest categories of
annotated genes were assigned to carbohydrate metabolism
(19.89%), amino acid metabolism (14.61%), energy metabolism
(10.52%), and metabolism of cofactors and vitamins (10.19%)
(Fig. 3). In particular, 163 KOs were identified in the methane
metabolism pathway, including all KOs involved in all the 3
methanogenic pathways of acetoclastic, hydrogenotrophic, and
methylotrophic methanogenesis (Supplementary Fig. S4). In ad-
dition, to analyze the activities of carbohydrate hydrolysis, the
genes encoding carbohydrate-active enzymes (CAZymes) were
annotated by searching against the dbCAN [33] database (re-
lease 5.0) using the hmmscan program (HMMER v3.0) (HMMER,
RRID:SCR 005305) [34] and taking the best hit with the criteria of
E-value < 1e−18 and coverage > 0.35. A total of 1,607,960 (7.04%)
genes were annotated as CAZymes. Based on the functional as-
signments, the relative abundance of CAZymes, KOs, and KEGG

https://scicrunch.org/resolver/RRID:SCR_011919
https://scicrunch.org/resolver/RRID:SCR_004999
https://scicrunch.org/resolver/RRID:SCR_016071
https://scicrunch.org/resolver/RRID:SCR_005305


Ma et al. 5

Bacteria
 (73.63 %)

Firmicutes (23.04 %)

Proteobacteria
    (11.22 %)

Bacteroidetes
    (9.93 %)

Actinobacteria 
    (1.81 %)

Chloroflexi 
  (1.36 %)

Spirochaetes 
    (1.26 %)

Others (3.99 %)

Unclassified_bacteria (21.02 %)

Eukaryota
 (0.78 %)

Archaea
 (2.32 %)

 Unclassified
   (23.27 %)

a b

M
et

ha
no

ba
cte

riu
m

M
et

ha
no

br
ev

iba
cte

r

M
et

ha
no

co
rp

us
cu

lum

M
et

ha
no

cu
lle

us

M
et

ha
no

m
as

sil
iic

oc
cu

s

M
et

ha
no

m
et

hy
lov

or
an

s

M
et

ha
no

re
gu

la

M
et

ha
no

sa
et

a

M
et

ha
no

sa
rc

ina

M
et

ha
no

sp
iril

lum

senegfo
egat necr e

P
)

%(
sun eg

eht
ot

dengi ss a

0.20

0.16

0.12

0.08

0.04

0

Figure 2: Taxonomic annotation of the microbial gene catalog of anaerobic digestion (MGCA). a, Taxonomic annotation of the gene catalog at the superkingdom and
phylum levels. A total of 73.63% and 2.32% of genes in the gene catalog were assigned to Bacteria and Archaea, respectively. b, Percentage of genes assigned to the top
10 methanogenic archaea at genus level.

Figure 3: KEGG functional profile of the microbial gene catalog of anaerobic digestion (MGCA). Genes without functional annotations were excluded.

functional profiles were calculated by summing the abundance
of the respective genes belonging to each category.

Characterization of core microbial communities in
full-scale biogas plants

Identifying the core microbial populations across different full-
scale BGPs is important to elucidate the essential process in
AD, and multiple studies have sought to define the core AD
microbiome [9, 35, 36]. In the present study with the in-depth
metagenomic sequencing of diverse full-scale BGPs, we found

400 genera and 6,816 KOs were shared by all the investigated
samples (Supplementary Fig. S5), which accounted for ∼98.76%
and 99.39% of the total relative abundance of annotated genera
and KOs, respectively.

However, the majority of the common microbes were in low
abundance, and only a few abundant microbes could be consid-
ered to be core members that play important roles in AD sys-
tems. Thus, we defined core microbes by including genera that
were both abundant and prevalent (most abundant top 30 bac-
terial genera and top 5 archaeal genera that were detected in
all studied samples). As a result, only Bacteroides and Clostrid-
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ium (Fig. 4), within the order of Bacteroidales and Clostridiales,
were identified as core microbes. The result was consistent with
a previous study, which detected Bacteroidales and Clostridiales
from all 29 full-scale BGPs by 16S ribosomal RNA gene amplicon
sequencing [8]. However, we note that Bacteroides and Clostrid-
ium were also the abundant genera in cattle, chicken, and pig
gut [20, 32, 37]. In addition, only 2 core genera were detected
in all 59 samples, consistent with the phenomenon that it is
hard to detect the core microbes from a high number of inves-
tigated samples [9]. To compare the difference of the 4 groups,
group-specific core microbes were analyzed, which were defined
by the top genera that were detected in all samples of that
group. Finally, besides the genera Bacteroides and Clostridium, an
additional 3 (Corynebacterium, Treponema, and Methanosaeta), 4
(Acholeplasma, Pseudomonas, Sphaerochaeta, and Methanoculleus),
1 (Methanosarcina), and 4 (Prevotella, Ruminococcus, Sphaerochaeta,
and Treponema) genera were identified as core microbes for MCA,
MCH, MPI, and OTH, respectively (Fig. 4).

Microbial functional differentiation among BGPs with
different feedstocks

Feedstock is an essential factor that drives microbial commu-
nity variation in anaerobic digesters [38]. Principal coordinate
analysis based on Bray-Curtis dissimilarity at the species level
was performed by the R package PHYLOSEQ, revealing that di-
gestate samples were generally separated into 3 clusters (MCA,
MCH, and MPI), corresponding to the types of livestock manure
(Fig. 5a). Microbial diversity (Shannon index) at the genus level
also showed distinct differences among the groups, and the mi-
crobial diversity of MPI was significantly (Wilcox rank sum test P
< 0.05) higher than those of MCA and MCH (Supplementary Fig.
S6).

To find the functional differences among the 4 groups, the
relative abundances of genes involved in carbohydrate hydrol-
ysis, protein hydrolysis, volatile fatty acid (VFA) oxidation, and
methanogenesis were compared. For genes involved in carbo-
hydrate hydrolysis, we selected the CAZyme families involved
in lignocellulose and starch hydrolysis and categorized them in
accordance with the CAZy database and previous studies [39–43]
(Supplementary Table S4). The genes involved in protein hydrol-
ysis (with Enzyme Commission No. EC 3.4.x.x) and methanogen-
esis were selected on the basis of the KO annotation. The genes
involved in the acetate, propionate, and butyrate oxidation path-
ways were selected according to the KEGG database and a previ-
ous study [44] (Supplementary Table S5).

As a result, for lignocellulose (cellulose, hemicelluloses, and
lignin) degradation, the relative gene abundances were higher
in MCA than in MCH (significantly higher for cellulose degrada-
tion; Wilcoxon rank-sum test, P < 0.05), and significantly (Wilcox
rank sum test, P < 0.05) higher in MCA than in MPI (Fig. 5b),
which is consistent with the higher content of lignocellulose in
cattle manure [45]. In contrast, genes involved in starch hydrol-
ysis have higher relative abundance in MCH and MPI (Fig. 5b).
Besides, the relative abundance of genes involved in the hydrol-
ysis of proteins was much higher in MCH (Fig. 5c), which is as-
sociated with the relatively high protein content of chicken ma-
nure [45–47]. These results are consistent with the fact that the
manures of the various animals are rich in these substances be-
cause their feed is different from each other. VFAs such as ac-
etate, propionate, and butyrate are intermediates in the anaero-
bic digestion process, and the accumulation of VFAs may cause
acidification and result in reduced performance of the AD pro-
cess. The results showed that MCH had the highest relative gene

abundance involved in acetate oxidation, while MCA had signif-
icantly (Wilcoxon rank-sum test, P < 0.05) higher relative gene
abundance involved in acetate, propionate, and butyrate oxi-
dation than those of MPI (Fig. 5d). In addition, as one of the
most important steps of biogas production, the genes involved
in methanogenesis were compared, which revealed that MCH
had the lowest relative gene abundance, and MCA was signifi-
cantly (Wilcoxon rank-sum test, P < 0.05) higher than MCH and
MPI (Fig. 5e). In summary, the feedstock components have great
influence on the process of carbohydrate and protein hydrolysis,
VFA oxidation, and methanogenesis in BGPs.

In addition, various parameters in AD also have important
effects on shaping microbial communities. Several process pa-
rameters (operation temperature, pH, hydraulic retention time,
and reactor volume), physicochemical characteristics of feed-
stock (total nitrogen, total carbon, and total solid), and interme-
diate metabolites (total ammonia nitrogen and VFAs) for all BGPs
(Supplementary Table S1) from the groups MCA, MCH, MPI, and
OTH were analyzed. Redundancy analysis at the genus level re-
vealed that operation temperature and total ammonia nitrogen
were primarily determinant parameters that influenced the mi-
crobial composition, followed by total solid, acetate, total VFAs,
total nitrogren, and pH (Supplementary Fig. S7). The result was
in agreement with a previous finding that total ammonia nitro-
gen and digester temperature were identified as the main con-
tributing factors to cluster formation [8].

Construction of metagenome-assembled genomes

To reconstruct the metagenome-assembled genomes (MAGs),
all 59 digestate samples were included. Metagenome binning
was applied to single-sample assemblies, which were performed
in the “Metagenome assembly” step, and the contigs with
length <1,000 bp were filtered out. BBmap v38.50 (BBmap, RR
ID:SCR 016965) [48] was used to map reads of each sample
back to the filtered assembly with default parameters. Sam-
tools v1.9 (Samtools, RRID:SCR 002105) [49] was used to con-
vert SAM files to BAM format and sort the resulting BAM files.
Genomes were independently recovered from each sample us-
ing MetaBAT2 v2.12.1 (MetaBAT, RRID:SCR 019134) [50], with the
option –minContig 2000, and a total of 11,781 MAGs were gen-
erated from all 59 samples. The completeness (Cp) and contam-
ination (Ct) of all MAGs were estimated using the “Lineage wf”
workflow of CheckM v1.0.7 (CheckM, RRID:SCR 016646) [51] with
options lineage wf -t 20 -x fa. After filtering for Cp ≥ 80% and Ct
≤ 10%, 3,601 MAGs were left for further de-replication.

MAG de-replication was performed using Mash v2.2 (Mash,
RRID:SCR 019135) [52] on the entire genome sequences with
very permissive parameters dist -d 0.05 [53], and MAGs were
clustered into different groups. To determine the representative
MAGs of each group, a more precise analysis was performed ap-
plying the genome-wide average nucleotide identity [54]. MAGs
were considered to belong to the same species when they
showed average nucleotide identity value >95% and genome
coverage >50% for both strains, and the MAG with the highest
CC3 value (CC3 = Cp − Ct ∗ 3) was selected as the representative
one [53]. As a result, a total of 2,426 representative MAGs were
obtained, including 1,205 MAGs (49.7%) with completeness ≥90%
and contamination ≤5% (Supplementary Table S6).

To estimate the degree of novelty of our study, we performed
a comparison with 1,401 MAGs (Cp ≥ 70% and Ct < 10%) recov-
ered from a previous study [53], which used 134 publicly avail-
able metagenomes derived from various biogas reactors. How-
ever, the results showed that only 108 MAGs in our study were

https://scicrunch.org/resolver/RRID:SCR_016965
https://scicrunch.org/resolver/RRID:SCR_002105
https://scicrunch.org/resolver/RRID:SCR_019134
https://scicrunch.org/resolver/RRID:SCR_016646
https://scicrunch.org/resolver/RRID:SCR_019135
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Figure 4: Distributions of feedstock-associated core genera among the 4 groups, MCA, MCH, MPI, and OTH. The area of each circle represents the median value of
relative abundance of the corresponding genus in each group, and the non-core genera are not shown. “Core microbes” were defined as the genera most abundantly
(top 30 bacterial genera and top 5 archaeal genera) detected in all studied samples. MCA: cattle manure BGPs; MCH: chicken manure BGPs; MPI: pig manure BGPs; OTH:

BGPs with other substrates.

the same species as those among the 1,401 MAGs, which could
be explained by the fact that most metagenomes were derived
from laboratory-scale biogas reactors and batch tests in the cited
study, while all metagenomes were derived from full-scale di-
gesters in our study. Taxonomic annotation of MAGs was per-
formed using the GTDB-Tk v1.3.0 (GTDB-Tk, RRID:SCR 019136)
[55], and 96.08% and 3.92% of MAGs were assigned to Bacteria
and Archaea, respectively. In addition, Firmicutes (38.25%), Bac-
teroidetes (21.89%), and Proteobacteria (5.03%) were the domi-
nant phyla in these MAGs, which was consistent with the mi-
crobial compositions at phylum level derived from the gene cat-
alog. In summary, our study provides a huge number of MAGs
for full-scale BGPs.

Conclusions

Here, we present a microbial gene catalog of AD, by using in-
depth sequencing of the digestate samples from 56 full-scale
BGPs treating diverse feedstocks, and provide >22.8 million tax-
onomically and functionally annotated genes. Our results con-
firmed the existence of core microbiome in AD and showed that
the type of feedstock (cattle, chicken, and pig manure) has a
great influence on carbohydrate hydrolysis, VFAs oxidation, and
methanogenesis. Additionally, we also provided 2,426 MAGs de-
rived from full-scale BGPs. Compared to previously published
microbial gene catalogs of different ecosystems such as soil,
ocean, and animal gut and rumen [20, 32, 56–59], BGPs are man-
made extremely anaerobic ecosystems where AD is performed
by a complex consortium of anaerobic microbes. Hence, our
gene catalog will not only serve as a useful reference database
for quick analyses of AD microbiome data but also provide a
huge number of microbial gene resources for the study and uti-
lization of anaerobic microbiota.

Data Availability

All raw sequencing data generated during the present
study have been deposited at DDBJ/ENA/GenBank under
project accession PRJNA533495. For details, see SRR8925713–
SRR8925730, SRR8925732–SRR8925742, SRR8925747–
SRR8925748, SRR8925751–SRR8925758, SRR8925797–
SRR8925806, SRR8925817–SRR8925824, and SRR8925826–

SRR8925827 for metagenome sequencing data of 59 digestate
samples. Other supporting data, including the files of gene
sequences, taxonomic and functional annotations, the abun-
dance profile tables of the 2 gene catalogs (MGCA and C-MGCA),
and metagenome-assembled genomes (MAGs) generated in this
study are available in the GigaScience GigaDB repository [60].

Additional Files

Supplementary Figure S1: Geographic distribution of 56 full-
scale biogas plants (BGPs) from which the digestate samples
were collected. The sampling BGPs ranged in location from
the northeast (45.462 N, 131.604 E) to the southwest (23.351 N,
103.339 E) of China, including cattle manure BGPs (MCA), chicken
manure BGPs (MCH), pig manure BGPs (MPI), and BGPs with
other feedstocks (OTH).
Supplementary Table S1: Background information of the inves-
tigated 56 full-scale biogas plants (BGPs).
Supplementary Figure S2: Electrophoresis graph of DNA sam-
ples.
Supplementary Table S2: Information of the sequencing data
downloaded from public database.
Supplementary Figure S3: Rarefaction analysis of gene catalogs
MGCA and C-MGCA. The gene number of a given number of sam-
ples was calculated after 100 random samplings with replace-
ment.
Supplementary Table S3: Overlap of genes between gene sets of
public metagenome sequencing data and MGCA and C-MGCA.
Supplementary Figure S4: The KEGG methane metabolism path-
way. The enzymes present in 100% of digestate samples (59 sam-
ples) are highlighted in red, the enzymes present in >90% of di-
gestate samples are highlighted in light blue, and other enzymes
annotated in the gene catalog are shown in green. The enzymes
were analyzed on the basis of the KO annotation.
Supplementary Figure S5: The number of shared genera and KOs
among biogas plants (BGPs) at different frequency thresholds.
Supplementary Figure S6: Shannon index of MCA, MCH, and
MPI at the genus level. MCA: cattle manure biogas plants (BGPs);
MCH: chicken manure BGPs; MPI: pig manure BGPs. Box plots
show median ± interquartile range (IQR) and 1.5 IQR ranges
(whiskers), with outliers denoted by circles. Wilcoxon rank-sum

https://scicrunch.org/resolver/RRID:SCR_019136
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Figure 5: Comparisons of taxonomic and functional profiles among different biogas plants (BGPs). a, Principal coordinate analysis (PCoA) based on Bray-Curtis dissim-
ilarity at the species level. The digestate samples were separated into 3 clusters (MCA, MCH, and MPI). MCA: cattle manure BGPs; MCH: chicken manure BGPs; MPI: pig

manure BGPs; OTH: BGPs with other substrates. b, Relative abundance of genes involved in the hydrolysis of starch, oligosaccharide, polysaccharide, and lignocellulose
(lignin, hemicellulose, and cellulose). c, Relative abundance of genes involved in protein hydrolysis. d, Relative abundance of genes involved in acetate, propionate, and
butyrate oxidation. e, Relative abundance of genes involved in methanogenesis. Box plots show the median ± interquartile range (IQR) and 1.5 IQR ranges (whiskers),
with outliers denoted by circles. Wilcoxon rank-sum test among different groups was performed. ∗P < 0.05.

test among different groups was performed. ∗P < 0.05 between
the 2 groups.
Supplementary Table S4: Categories of CAZyme families.
Supplementary Table S5: Genes selected for the analysis of the
acetate, propionate, and butyrate oxidation pathways.
Supplementary Figure S7: Redundancy analysis (RDA) of mi-
crobial communities and operational parameters. Red arrows
indicate the influence of process parameters (operation tem-
perature, pH, hydraulic retention time [HRT], and reactor vol-
ume), physicochemical characteristics of feedstock (total nitro-
gen [TN], total carbon [TC], and total solid [TS]), and interme-
diate metabolites (total ammonia nitrogen [TAN] and VFAs) on
microbial communities. Colored dots indicate samples of differ-
ent groups of BGPs.
Supplementary Table S6: Statistics and taxonomic annotation
of metagenome-assembled genomes (MAGs).

Abbreviations

ABR: anaerobic baffled reactor; AD: anaerobic digestion; BGP:
biogas plant; bp: base pairs; BWA: Burrows-Wheeler Aligner;
CAZyme: carbohydrate-active enzyme; C-MGCA: comprehen-
sive microbial gene catalog of AD; Cp: completeness; CSTR: con-
tinuous stirred tank reactor; Ct: contamination; DDBJ: DNA Data
Bank of Japan; Gb: gigabase pairs; kb: kilobase pairs; KEGG: Ky-
oto Encyclopedia of Genes and Genomes; KO: KEGG orthologous
group; MAG: metagenome-assembled genome; MCA: cattle ma-
nure biogas plants; MCH: chicken manure biogas plants; MGCA:
microbial gene catalog of AD; MPI: pig manure biogas plants;
NCBI: National Center for Biotechnology Information; OTH: bio-
gas plants with other feedstocks; USR: upflow solids reactor;
VFA: volatile fatty acid.
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