
HEAT SHOCK

When pH comes to the rescue
In starving yeast exposed to thermal stress, a transient drop in

intracellular pH helps to trigger the heat shock response.
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W
ho has never had a stressful day at

work? In crisis mode, we typically

ensure professional survival by drop-

ping everything and redirecting all our resources

to the most important tasks, even enlisting spe-

cialized support staff to get the job done. From

yeast to humans, most eukaryotic cells adopt the

same strategy. When exposed to physiological

stressors that may prevent their proteins from

folding correctly, they call on molecular chaper-

ones that can recognize damaged or misfolded

proteins and assist in their removal or repair. In

particular, events such as extreme heat, starva-

tion or toxic substances can switch on Hsf1, the

transcription factor which controls the genetic

program that coordinates the creation of chap-

erones (Verghese et al., 2012).

This program, called the heat shock response,

is shut down in the absence of stress. But how

do cells then ‘know’ when to induce it? Three

decades ago Betty Craig and Carol Gross of the

University of Wisconsin-Madison proposed that,

directly or indirectly, the trigger would involve

misfolded proteins interacting with chaperones,

in particular one known as Hsp70 (Craig and

Gross, 1991). Recent work has largely validated

this hypothesis: Hsp70 binds to Hsf1 to block its

activity, until the concentration of misfolded

proteins rises so much that they pull Hsp70 away

from Hsf1 (Zheng et al., 2016;

Krakowiak et al., 2018; Peffer et al., 2019). In

this process, juvenile proteins that are just being

translated act as the main Hsp70 trigger, as they

are exquisitely sensitive to environmental

changes and tend to misfold easily

(Masser et al., 2019). Yet, starving cells – in

which translation is strongly reduced – can still

mount a modest heat shock response, suggest-

ing that this neat and tidy model is actually

incomplete. Now, in eLife, Allan Drummond and

colleagues at the University of Chicago – includ-

ing Catherine Triandafillou as first author –

report a new, translation-independent pathway

that triggers the heat shock response in the

yeast species Saccharomyces cerevisiae

(Triandafillou et al., 2020).

This pathway relies on the fact that elevated

temperatures lead to a temporary drop in the

pH of cells (Weitzel et al., 1985). To investigate

how acidification is linked to the heat shock

response, the team developed sophisticated

and sensitive methods for monitoring ‘live’ both

the pH and products of the heat shock response

inside individual yeast cells. This was achieved

by harnessing fluorescence readouts reported

by flow cytometry (Franzmann and Alberti,

2019). In addition, the pH of the cells was

‘clamped’ at specific values.

Together, these approaches confirmed that

when yeast cells are suddenly exposed to a tem-

perature of 42 ˚C, their internal pH drops (from

approximately 7.5 to 6.8) and their heat shock

response is switched on. Under normal nutrient

conditions, preventing acidification had little

effect on the heat shock response. However,

doing so when yeast lacked glucose all but abol-

ished the response, and the same effect was
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observed in cells in which translation was

blocked. Crucially, RNA sequencing experiments

showed that a lack of acidification only stopped

the heat shock response, in particular shutting

down genes controlled by Hsf1; global transcrip-

tion was not affected, and neither was a parallel

stress response pathway governed by the Msn2/

4 transcription factors (Verghese et al., 2012).

Cellular acidification did not need to take place

at the same time as the thermal stress, as a

post-stress pH reduction rescued the potency of

the heat shock response. In addition, pH levels

needed to return to their pre-stress levels for

the heat shock response to be optimal, suggest-

ing that long-term acidification may be detri-

mental. Finally, the team explored whether

acidification was required for cell survival. Cells

that could not adjust their pH during heat shock

survived, but competitive growth assays showed

that they entered the cell cycle more slowly, and

that they were ultimately out-competed by cells

that could acidify.

The work by Triandafillou et al. uncovers a

mechanism that allows cells which are not

actively translating to respond to thermal stress,

and to persist in a population (Figure 1). While

the combination of heat shock and starvation is

rare in the laboratory, it is likely common for

wild yeast. These organisms lie mostly dormant

and starving on the surface of fruit through the

day, while they are exposed to extreme swings

in ambient temperature. This ‘secondary’ way to

induce the heat shock response may also help

yeast face the heat and starvation they

Figure 1. Two parallel pathways can induce the heat shock response in yeast. The heat shock response is

controlled by the heat shock transcription factor Hsf1; it is repressed (HSRoff) when conditions are stable, but

rapidly induced (HSRon) by a high temperature. In ‘nutrient-rich’ cells (top), translation is robust and thermal stress

(flame) causes a subset of nascent polypeptides to misfold and aggregate, ultimately activating Hsf1 and the heat

shock response. When cells are starving (and have therefore stopped translation), the heat shock response is still

induced; the trigger presumably involves mature, folded proteins assembling into phase-separated structures that

can recruit chaperones. Thermal stress leads to a drop in pH (blue arrow) in all cells, but only starving cells require

acidification to trigger the heat shock response.
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encounter when accidentally ingested by fruit-

eating birds. This would enable the cells to

spread to new geographic areas, providing yet

another means of evolutionary competitiveness

for the species.

Ironically, this discovery brings the field back

full circle, to the same type of question posed

over 30 years ago: what triggers this translation-

independent pathway? The answer may lie in the

phenomenon of phase separation, in which com-

partments that are not enclosed within a

membrane can form inside cells to host specific

biological processes. Recent work has shown

that many cytoplasmic proteins can undergo

phase separation to form transient assemblies

that are different from the aggregates normally

created by misfolding proteins (Wallace et al.,

2015; Riback et al., 2017; Franzmann and

Alberti, 2019). In particular, temperature and

pH can control the formation of these structures.

It is thus tempting to speculate that one or more

such proteins, or perhaps the assemblies them-

selves, are recognized by Hsp70 to trigger the

heat shock response. These substrates now

await identification.
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2019. Cytoplasmic protein misfolding titrates Hsp70 to
activate nuclear Hsf1. eLife 8:e47791. DOI: https://doi.
org/10.7554/eLife.47791, PMID: 31552827
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