
Heliyon 6 (2020) e04811
Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon
Research article
Risk prediction in cutaneous melanoma patients from their
clinico-pathological features: superiority of clinical data over gene
expression data

Chakit Arora, Dilraj Kaur, Anjali Lathwal, Gajendra P.S. Raghava *

Department of Computational Biology, IIIT- Delhi, New-Delhi, India
A R T I C L E I N F O

Keywords:
Bioinformatics
Cancer research
Genetics
Oncology
Cancer
Prognosis
Melanoma
Survival analysis
Skin
Risk prediction
* Corresponding author.
E-mail address: raghava@iiitd.ac.in (G.P.S. Ragh

https://doi.org/10.1016/j.heliyon.2020.e04811
Received 27 May 2020; Received in revised form 1
2405-8440/© 2020 Published by Elsevier Ltd. This
A B S T R A C T

Risk assessment in cutaneous melanoma (CM) patients is one of the major challenges in the effective treatment of
CM patients. Traditionally, clinico-pathological features such as Breslow thickness, American Joint Committee on
Cancer (AJCC) tumor staging, etc. are utilized for this purpose. However, due to advancements in technology,
most of the upcoming risk prediction methods are gene-expression profile (GEP) based. In this study, we have
tried to develop new GEP and clinico-pathological features-based biomarkers and assessed their prognostic
strength in contrast to existing prognostic methods. We developed risk prediction models using the expression of
the genes associated with different cancer-related pathways and got a maximum hazard ratio (HR) of 2.52 with p-
value ~10�8 for the apoptotic pathway. Another model, based on combination of apoptotic and notch pathway
genes boosted the HR to 2.57. Next, we developed models based on individual clinical features and got a
maximum HR of 2.45 with p-value ~10�6 for Breslow thickness. We also developed models using the best features
of clinical as well as gene-expression data and obtained a maximum HR of 3.19 with p-value ~10�9. Finally, we
developed a new ensemble method using clinical variables only and got a maximum HR of 6.40 with p-value
~10�15. Based on this method, a web-based service and an android application named ‘CMcrpred’ is available at
(https://webs.iiitd.edu.in/raghava/cmcrpred/) and Google Play Store respectively to facilitate scientific com-
munity. This study reveals that our new ensemble method based on only clinico-pathological features overper-
forms methods based on GEP based profiles as well as currently used AJCC staging. It also highlights the need to
explore the full potential of clinical variables for prognostication of cancer patients.
1. Introduction

Cutaneous melanoma (CM), which accounts for less than 5% of all
skin cancers, has been reported to be the most aggressive and fatal form
of skin cancer [1]. Melanoma also referred to as malignant melanoma or
cutaneous melanoma, arises due to genetic mutations in the melanocytes.
Melanocytes are the cells that produce the pigment melanin (the pigment
responsible for skin colour) and are located in the skin, inner ear, eye,
vaginal epithelium, leptomeninges, heart and bones [2, 3, 4, 5]. In the
last 30 years, the number of deaths has increased drastically due to
melanoma. According to the estimation by The American Cancer Society,
in 2019, about 96480 new melanomas would have been diagnosed
(57220 in men and 39260 in women) in the US alone, out of which
around 7230 people were expected to die (about 4740 men and 2490
women) [6].
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Cutaneous melanomas are curable when diagnosed in the earlier
stage (~98% survival rate) but once metastasised, they are tough to cure
(~25% survival rate); thus, early identification of melanoma has been
deemed crucial for the patient's survival [7, 8]. This uncertainty between
patient's death or survival is directly affected by the choice of the therapy
given to the patients, which in turn depends on the features that were
used for prognostication. According to the present AJCC cancer staging
criterion for melanoma, features derived from biopsies and/or blood
samples, are primarily used for this purpose in CM patients [9]. There are
also demographic factors like ethnicity of a patient, which has been
associated with Melanoma occurrence [10]. While features like Breslow
thickness, Ulceration status, Metastatic staging etc. can be clinically
observed and monitored, underlying molecular factors such as alteration
of protein expression and genetic mutations are difficult to incorporate
during clinical observation of a patient, due to a huge plethora of
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genes/proteins to account for. Thus, the problem for risk prediction with
the help of minimal but relevant features in addition to the current
clinico-pathological features remains a major challenge. Identification of
these features would help in deciding better therapeutic strategies and
bridge the uncertainty gap that exists at present.

Over the past decades, protein and gene-based biomarkers have
provided valuable prognostic information about patient outcome and
aided in the design of therapy. Several of these gene/protein based bio-
markers have been utilized in the case of prognosis and risk prediction for
various diseases such as breast cancer, colon cancer, prostate cancer, lung
cancer, leukemia, and melanoma [11, 12, 13, 14]. Along with these
biomarkers and due to the modern techniques used for purifying RNA
from formalin-fixed paraffin-embedded (FFPE) tumour samples, there
have also been efforts to identify/develop multiple protein and multiple
genes-based biomarkers associated with prognostication of SNL (sentinel
lymph node status), locoregional recurrences, distant metastases, and
survival [15]. In the case of melanoma, several protein candidates have
been significantly associated with prognostication, including lactate de-
hydrogenase (LDH), C-reactive protein and S100B [16, 17, 18, 19]. Out
of these, only LDH has been included in the AJCC staging system for
categorizing metastasis. However, it is shown to function well only in
Stage IV patients. NCOA3, SPP1, and RGS1 is another known example of
multiple protein-based biomarker [20] that has been shown to be a sig-
nificant predictor of SLN status and disease-specific survival as compared
to other clinical features. Though validated [21], this 3-protein marker
was also not included in the AJCC staging criteria. Amongst single and
multiple-gene expression profile (GEP) based markers, TRPM1 expres-
sion [22], NRAS mutation status [23], BRAF mutation status [24],
circulating miRNA biomarkers [25], DecisionDx-Melanoma (31 GEP)
[26, 27, 28, 29], Melagenix (9 GEP), ITLP group [30] and 53-gene im-
mune GEP [31] are a few mainstream examples in the scientific com-
munity. The prognostic marker Melagenix (9 GEP) was able to
differentiate high and low risk patients on the basis of overall survival,
DecisionDx-Melanoma segregated patients on the basis of RFS (relapse
free survival), DMFS (distant metastasis-free survival) and MSS (micro-
satellite instability) while models such as 53-gene immune GEP and ITLP
group are prediction models for metastasis progression and SLN posi-
tivity respectively. While almost all of these models compare their results
with the clinical factors (mainly by employing multivariate Cox-PH
analysis), only a few of these models incorporate the combined effect
of clinical factors with gene expression. However, unlike other cancers,
none of the independent gene based or GEP based prognostic biomarkers
for melanoma have been included in the AJCC staging system so far.

In the present study, we make a systematic attempt to identify/
develop new prognostic markers based on the overall survival (OS) of CM
patients to predict risk. For this purpose, we utilized the TCGA-SKCM
RNAseq expression dataset to build machine learning-based regression
(MLR) and prognostic index (PI) models based on GEP and clinical fac-
tors. GEP based models were constructed based on genes involved in
different cancer related pathways, most of which have been related to
melanoma carcinogenesis in the past while others have been attributed a
role in other cancers. Models were also developed using best genes
associated with survival as obtained via rfSRC feature selection method.
Combinations of GEP models and clinical features were also analyzed.
Briefly, we present here a comparative assessment between these various
models and show that a newmodel based on clinico-pathological features
alone outperforms GEP based models.

2. Materials and Methods

2.1. Dataset and pre-processing

The original dataset consisted of RNAseq expression values for 458
Skin Cutaneous Melanoma (SKCM) patients that was obtained from The
Cancer Genome Atlas (TCGA) using TCGA Assembler 2 [32]. Out of
which, information about OS time and censoring was available for 449
2

patients. Thus, the final dataset was reduced to 449 samples constituting
RNAseq values for 20530 genes. Following the approach similar to [33],
genes with ‘NA’ or zero expression data for more than 50% of the samples
were removed. Table 1 presents a summary of clinicopathological fea-
tures in the final TCGA-SKCM cohort. Further, the final dataset was
normalized by quantile normalization method, which has been exten-
sively used in the past for similar studies [34, 35, 36].

2.2. Survival analysis

Hazard ratios were computed to predict the risks of death associated
with high-risk and low-risk groups based on overall survival time of
patients. These were stratified on the basis of mean and median values of
various factors, using the univariate unadjusted Cox-Proportional Hazard
(Cox-PH) regression models. Kaplan-Meier (KM) plots were used to
compare survival curves of high risk and low risk groups. Survival ana-
lyses on these datasets were performed using ‘survival’ and ‘survminer’
packages (V.2.42–6) in R (V.3.4.4, The R Foundation). Statistical sig-
nificance between the survival curves was estimated using log-rank tests.
Wald tests were performed to estimate the significance of the explanatory
variables used for HR calculations. Concordance index (C) provided the
strength of predictive ability of the model [37, 38, 39]. p-values less than
0.05 were considered as significant.

2.3. Prognostic genes

Cox-Proportional Hazard models were used to find the genes that are
related to CM patient survival. A cutoff of HR > 1.2 and p-value<0.05
was used. Univariate Cox-PH analysis, at median expression cutoffs,
revealed a total of 1343 good prognostic marker (GPM) genes and 1294
bad prognostic marker (BPM) genes. GPM genes are defined as genes
whose expression is positively correlated with patient OS time and vice-
versa for BPM. For a GPM gene, patients with GPM gene expression <

median (GPM gene expression) are at high risk and for a BPM gene,
patients with BPM gene expression >median (GPM gene expression) are
at high risk. Supplementary S1 TableA shows the survival associated
parameters such as HR, p-value, C, and Cox regression coefficient-Beta
(β) corresponding to each gene. The distribution of the GPM and BPM
genes based on Hazard Ratio (HR > 1.2 and p < 0.05) is represented in
Supplementary S2 Figure S1.

2.4. Machine learning based regression (MLR) models

Regression models from ‘caret’ package (V.3.4.4, The R Foundation)
were implemented to fit the gene expression values against the OS time.
Various regressors such as Support vector machine (SVR), Decision-tree
(DT), Random-forest (RF), K-nearest neighbors (KNN), Ridge, Lasso
and Elastic-Net were used. The fitting and test evaluations were carried
using a five-fold cross-validation scheme. Combination of all five evalu-
ated test datasets (predicted OS) was then used to classify the actual
patient survival time (OS) at mean and median cutoffs to estimate HR, CI
and p-values. Hyperparameter optimization and regularization was
achieved using the in-built function ‘expand.grid’.

2.5. Five-fold cross-validation

The dataset is shuffled randomly and divided into 5 subsets. After
these groups are prepared, an iterative process begins. During each
iteration, a unique group is taken as a test dataset and combination of
remaining groups as a training dataset. Model is fitted on the training
dataset and evaluated on the test dataset. Model's performance is eval-
uated using standard parameters viz. RMSE (root mean squared error)
and MAE (mean absolute error). The process is repeated five times and
each sample is processed once as a testing data point and four times as
training data point. Five-fold cross-validation has been successfully
implemented in previous studies [40, 41, 42, 43, 44, 45, 46].



Table 1. Summary of TCGA-SKCM cohort used in this study.

Factor Value Percentage

Age (at diagnosis), in years

Mean 58.006

Median 58

Range 15–90

Gender

Male 280 62.36

Female 169 37.63

Ethnicity

Non-Hispanic/Non-Latino 426 94.88

Hispanic/Latino 10 2.23

Unknown 13 2.90

Race

White 426 94.88

Black/African American 1 0.22

Asian 12 2.67

Unknown 10 2.23

Known primary melanoma tumor

Yes 402 89.53

No 47 10.47

Location of primary melanoma

Head and Neck 35 7.80

Trunk 155 34.52

Extremity 194 43.21

Other 13 2.90

Unknown 52 11.58

Breslow thickness (mm)

Mean 5.49

Median 3

Unknown 105 23.39

Clark level

I–III 98 21.83

IV–V 211 46.99

Unknown 140 31.18

Ulceration status

Yes 159 35.41

No 141 31.40

Unknown 149 33.18

Mitotic rate

<1 19 4.23

� 1 151 33.63

Unknown 279 62.14

T stage

Tis 7 1.56

T0 23 5.12

T1 10 2.23

T1a 22 4.90

T1b 10 2.23

T2 30 6.68

T2a 31 6.90

T2b 15 3.34

T3 14 3.12

T3a 37 8.24

T3b 37 8.24

T4 15 3.34

T4a 23 5.12

T4b 104 23.16

TX 44 9.80

Unknown 27 6.01

(continued on next page)
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Table 1 (continued )

Factor Value Percentage

N stage

N0 223 49.67

N1 16 3.56

N1a 18 4.01

N1b 38 8.46

N2 6 1.34

N2a 13 2.90

N2b 20 4.45

N2c 9 2.00

N3 53 11.80

NX 34 7.57

Unknown 19 4.23

M stage

M0 400 89.09

M1 5 1.11

M1a 4 0.89

M1b 5 1.11

M1c 9 2.00

Unknown 26 5.79

Pathological Stage

Stage 0 6 1.34

Stage I 30 6.68

Stage IA 18 4.01

Stage IB 29 6.46

Stage II 30 6.68

Stage IIA 17 3.79

Stage IIB 27 6.01

Stage IIC 58 12.92

Stage III 40 8.91

Stage III A 15 3.34

Stage III B 45 10.02

Stage III C 66 14.70

Stage IV 22 4.90

I/II NOS 10 2.23

Unknown 36 8.02

Anatomic site

Primary Tumor 91 20.27

Regional Lymph Node 218 48.55

Regional Cutaneous or Subcutaneous tissue 73 16.26

Distant Metastasis 64 14.25

Unknown 3 0.67

Overall Survival (months)

Mean 52.96

Median 29.5

Range 0–362.33

Vital Status

Alive 295 65.70

Dead 154 34.30
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2.6. Prognostic index (PI)

As implemented in [33, 47, 48], PI for a set of n genes was evaluated
as:

PI¼ β1g1 þ β2g2 þ :::þ βngn

where β represents regression coefficient obtained for a gene g from a
univariate Cox-PH model. PI for different set of genes was used for
stratifying risk groups and standard metrics such as HR, p-value etc. were
estimated.
4

3. Results

3.1. Multiple gene expression profile (GEP) based risk prediction

3.1.1. Models based on genes associated with cancer pathways
Several signaling pathways have been attributed a role in cancer

progression and development in the past. We collected the list of 11
cancer-related pathways and the genes associated with those pathways
from a recent study [49]. These are namely Apoptosis, MYC, NRF2,
NOTCH, P53, WNT, HIPPO, CELL CYCLE, PI3K-AKT, RAS and TGF-BETA
pathways. Amongst these pathways, many have been associated with
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melanoma tumorigenesis. Table 2 shows the PMIDs of the studies which
have explored the role of these pathways in CM progression and/or
development. Table 2 also shows the original gene-count in the pathway,
number of GPM and number of BPM genes as a result of univariate
analysis. Combined gene count is the sum of GPM and BPM genes.
Supplementary S2 Figure S2 shows the upset plot representing gene
overlaps between different pathways in the original gene set. MLR and PI
based models were built using the GPM, BPM and combined (i.e. GPM þ
BPM) genes in these pathways, as explained in the following sections.
The information regarding genes involved in original gene set and the
three filtered gene sets is provided in Supplementary S1 TableB.

Machine learning based regression (MLR) models: MLR models
were built using GPM, BPM and combined gene sets for each pathway.
Various regressors were used to predict OS time by employing the
expression data for the genes in the corresponding gene set (Materials
and Methods). Similar models have also been used in the past with
protein concentrations as independent variables [45].

Table 3 provides detailed results for each gene-set and the corre-
sponding best model. The Lasso regression model that predicts the sur-
vival time on the basis of the combination of GPM and BPM genes (7
genes) of the NOTCH pathway shows the best results, where patients
with pred OS �median (pred OS) are at 2.34 times higher risk than pa-
tients with pred OS > median (pred OS) with a p-value of the order of
10�7 and C ¼ 0.62. Second best results are seen in the case of the RF
model built using GPM genes of the apoptotic pathway (29 genes), where
HR is 2.24 with a significant p-value (~10�6) and C ¼ 0.59, at median
cutoff. However, it should be noted that the combination of the apoptotic
GPM geneset and NOTCH combined geneset (36 genes) improves the risk
stratification further with HR ¼ 2.54 and p~10�8. For mean cutoff, see
Supplementary S1 TableC.

Prognostic Index (PI) based models: PI was evaluated for the three
types of gene-sets corresponding to each pathway. Based on PI, the pa-
tients were stratified into high and low risk groups such that patients
with PI �median (PI) were at higher risk than patients with PI <median
(PI) (similarly with mean in Supplementary S1 TableD). Results for each
pathway are shown in Table 4. As evident from the results, PI for
apoptotic GPM genes improved the risk prediction over the models
developed previously. High and low risk patients show a 2.52 fold dif-
ference in survival when stratified using the PI for apoptotic GPM genes
at median cutoff, with a p-value ~10�8 and C value of 0.62. 10-year
survival rate for high risk patients in this case is around 30% whereas
low risk patients have around 60% survival probability. Figure 1a shows
the Kaplan Meier plot for median cutoff. The PI model built using the
combination of apoptotic GPM genes and NOTCHGPM and BPM genes, is
again seen to enhance the risk stratification with HR ¼ 2.57 though p-
value and C remain of the same order as apoptotic GPM geneset alone.
KM plot for this model is shown in Figure 1b.
Table 2. Genes related to pathways associated with cancer. PMIDs of the studies th
univariate Cox-PH analysis is provided.

S. no. Pathway PMID No. o

1 NRF2 27344172, 18353146 481

2 P53 32377702, 31374895 201

3 Apoptosis 32687246, 32645331 161

4 WNT 32659938, 32073511 151

5 CELL-CYCLE - 128

6 PI3K-AKT 32626712, 32558531 105

7 TGF-β 31667872, 31599708 86

8 NOTCH 30569717, 30941830 47

9 MYC 32283126 25

10 RAS 32605090, 32568870 23

11 HIPPO 32407182, 32561850 22
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3.2. Models based on complete set of genes

In addition to developing models for pathway-specific gene sets, we
also developed similar models for the total GPM (1343), BPM (1294) and
combined gene set (2637). Feature selection was performed to obtain the
most important genes using random survival forests-variable hunting
(rfSRC) for 100 iterations, on each of these three gene sets. rfSRC resulted
in 58 GPM genes, 52 BPM genes and 129 combined genes (Supplemen-
tary S1 TableE). This feature selection method has been extensively used
in similar survival-based studies in the past [47, 50, 51, 52]. First, MLR
models were built and predicted OS was used to stratify high and low risk
patients, similar to the pathway-specific analysis before. Subsequently,
prognostic index based stratification was performed using the selected
GPM, BPM and combined genes. Results are provided in Supplementary
S2 Table S1. The SVR regression model based on 52 BPM genes performs
the best out of all these models with highest HR value of 2.77, lowest
p-value ~ 10�9 and concordance index of 0.63. A comparison of
apoptotic genes based PI models, NOTCH genes based regression models,
apoptosis and NOTCH genes combined models with the current 52 total
BPM based SVR model shows that HR, p-value and concordance have
improved. KM plot corresponding to this model is shown in Figure 2.

3.3. Using clinico-pathological features for prognostication

3.3.1. Univariate analysis shows Breslow thickness as the most significant
feature

In order to see whether the models developed earlier in this study
perform better than the previously established prognostic markers, pa-
tients were stratified using clinical factors such as AJCC pathological
staging, age, TNM staging, Breslow thickness, Gender and Ulceration
status. These have been reported to be associated with risk in CM patients
in the past [53, 54, 55, 56]. Table 5 shows these results.

Though our results agree with the previously reported observations,
such as patients with age greater than 63 years [57], males [58], patients
with metastasized tumors, stage III/IV patients etc. are at higher risk and
thus show a high HR value, some of them are either insignificant (p >

0.05) or have a low HR/high p-value except Breslow thickness. Patients
with Breslow thickness more than 3mm (median) were found to be at
2.45 times higher risk (p-value ¼ 3 � 10�6) than compared to the pa-
tients with a lesser Breslow thickness. Nevertheless, both apoptotic GPM
based PI model and total BPM based SVR model outperform the indi-
vidual clinical factors and AJCC staging based risk stratification.

3.3.2. GEP and clinical features based combinatorial models
In one of our previous studies [59], Human Leukocyte Antigen (HLA)

alleles-based features were used in combination with clinical informa-
tion, for the prognostication of melanoma patients. The study used a
at relate to role of the pathway in melanoma and gene-count before and after

f Genes No. of GPM No. of BPM Combined

27 26 53

17 16 33

29 4 33

7 9 16

4 17 21

18 11 29

3 1 4

3 4 7

2 2 4

2 1 3

1 2 3



Table 3.MLR models for risk stratification. The table shows the best models for each pathway and corresponding gene set used. Patients with predicted OS less than or
equal to the median cutoff are at higher risk than patients with predicted OS more than cutoff.

S. no. Pathway Gene set Regressor HR p-val C

1 NRF2 Combined Ridge 2.17 3 � 10�6 0.60

2 P53 Combined RF 2.04 1 � 10�5 0.59

3* Apoptosis GPM RF 2.24 1.2x10¡6 0.59

4 WNT Combined RF 2.22 2 � 10�6 0.59

5 CELL-CYCLE Combined RF 1.76 5.7 � 10�3 0.59

6 PI3K-AKT Combined RF 1.90 8 � 10�5 0.60

7 TGF-β Combined KNN 1.73 9 � 10�4 0.58

8 NOTCH Combined Lasso 2.34 3 � 10�7 0.62

9 MYC GPM Lasso 1.68 1.7 � 10�3 0.57

10 RAS Combined Lasso 1.79 3.8 � 10�4 0.58

11 HIPPO Combined KNN 1.11 0.51 0.52

12* Apoptosis þ NOTCH GPM þ Combined RF 2.54 2.3x10¡8 0.61

*Boldface indicates the best results. Hyperparameters for above models are provided in Supplementary S1 TableC.

Table 4. Prognostic index (PI) based risk stratification. The table shows the results for each pathway and corresponding gene set used. Patients with PI less than the
median cutoff are at lower risk than patients with PI greater than cutoff.

S. no. Pathway Gene set HR p-val C

1 NRF2 GPM 1.87 1.2 � 10�4 0.58

2 P53 Combined 2.20 1.5 � 10�6 0.61

3* Apoptosis GPM 2.52 3.2x10¡8 0.62

4 WNT GPM 1.97 3.6 � 10�5 0.59

5 CELL-CYCLE GPM 1.48 1.6 � 10�2 0.57

6 PI3K-AKT GPM 1.82 2.4 � 10�4 0.58

7 TGF-β BPM 1.48 1.6 � 10�2 0.53

8 NOTCH Combined 2.26 9.4 � 10�7 0.60

9 MYC BPM 1.67 1.8 � 10�3 0.57

10 RAS BPM 1.79 4.5 � 10�4 0.56

11 HIPPO Combined 1.67 1.9 � 10�3 0.55

12* Apoptosis þ NOTCH GPM þ Combined 2.57 1.5x10¡8 0.62

*Boldface indicates the best results.

Figure 1. Kaplan Meier plot for risk stratification of CM patients. (a) Based on prognostic index of apoptotic genes. Based on GPM gene set, patients with PI � median
(PI) are at a greater risk than patients with PI < median (PI) with HR ¼ 2.52 and p-val ¼ 3 � 10�8. (b) Based on prognostic index of apoptotic GPM and NOTCH
combined genes. Patients with PI � median (PI) are at a greater risk than patients with PI < median (PI) with HR ¼ 2.57 and p-val ¼ 1.5 � 10�8.
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dataset of 401 patients for developing ML based models. Here, we follow
a similar strategy with a bigger dataset (449 patients) and additional
features (TNM staging, Ulceration status), to combine clinical-features
with the apoptotic GPM set, NOTCH combined set and total BPM set to
6

see whether performance increases. New MLR models and PI based
models were built with the combinations and patients were classified
based on pred OS and PI in the same way as earlier. Best results based on
combination with ‘Breslow Thickness’ are shown in Supplementary S2



Figure 2. CM patients were stratified based on the predicted survival time (pred OS) by the 52 BPM based SVR model. Patients with pred OS � median (pred OS) are
at higher risk than the patients with pred OS > median (pred OS).

C. Arora et al. Heliyon 6 (2020) e04811
Table S2. Clearly, the predicted OS obtained from the SVR model based
on a combination of 52 total BPM genes and Breslow thickness boosted
the performance even further as compared to using BPM genes alone. An
HR value of 3.19 with a p-value ~ 10�10 and C value of 0.65 was ach-
ieved at median cutoff, which is the best amongst other combinatorial
models as well as previous models. At mean cutoff, HR was 3.19, p-value
~ 9.16 � 10�10 and C ¼ 0.65 (not shown in the table). KM plot illus-
trating the survival rates associated with high/low risk patients corre-
sponding to this model at median cutoff is shown in Figure 3.
Gene-enrichment analysis was performed on this set of 52 genes and the
results are shown in Supplementary S1 TableF. A pathway enrichment
corresponding to the associated proteins showed that the proteins KRT4,
KRT13, KRT27 and SPRR3 are involved in the cornification process,
which has a direct association with risk of skin cancer [60, 61].

3.3.3. Clinico-pathological information-based ensemble model as a superior
prognostic marker

We devised a new ensemble model for integrating the prognostic
potential of important clinical features. Here, entries corresponding to
each clinical feature were allotted a risk point (r) as r¼ 1, 0 or -1 based on
Table 5. Risk estimation in CM patients using clinical factors. N represents no. of sam

Factor Strata

Age >63y vs �63y

continuous

AJCC 6th ed. Stage III, IV vs I,II

AJCC 7th ed. Stage III, IV vs I,II

N staging N1, N2, N3 vs N0

T staging T2, T3, T4 vs Tis, T1

M staging M1 vs M0

Breslow thickness >3mm vs �3mm

continuous

Gender Male vs Female

Ulceration status Yes vs No

7

the risk group (high risk: r ¼ 1, low risk: r ¼ -1, unavailable: r ¼ 0),
according to Table 5. For example, in the feature ‘Breslow Thickness’,
entries that were>3mm (high-risk) were given an r¼ 1, entries that were
�3mm (low-risk) were given r¼ -1 andmissing/unavailable entries were
labelled with r ¼ 0. This method ensured fixed length vectors, each of
equal dimensions i.e. 449. Various linear combinations comprising of
two or more features were evaluated and the best results were achieved
with the combination of Breslow thickness, N staging, M staging and
Ulceration status. We termed this combination as Risk Grade (RG) where
RG for a patient is defined as:

RG ¼ r (Breslow thickness) þr (N staging) þr (M staging) þ r
(Ulceration status)

The hazard ratio for RG was 6.40 with a p-value of 2.49 � 10�15.
Patients with RG> 1 were at higher risk than patients that had an RG�1,
as represented by the KM plot in Figure 4. 10-year survival rate for high
risk patients is seen to fall to zero whereas patients in low risk group have
a 50% survival probability. Results for other top combinations are shown
in Supplementary S2 Table S3. It is important to note the inferior risk
stratification achieved using the AJCC 7th edition staging (Table 5) in
contrast to RG. It should also be noted that even when the patients with
ples for which data was available.

N HR p value

449 1.83 4 � 10�4

449 1.02 1.9 � 10�6

138 1.60 0.071

215 2.26 0.025

396 1.82 9 � 10�4

378 1.68 4.8 � 10�2

423 1.90 9.9 � 10�2

342 2.45 3 � 10�6

342 1.03 10�4

449 1.20 0.277

300 2.06 5 � 10�4



Figure 3. Kaplan Meier plots for risk stratification of CM patients based on SVR model with combination of 52 BPM and Breslow thickness as features. Patients with
Pred OS � median (Pred OS) are at a greater risk than patients with Pred OS > median (Pred OS) with HR ¼ 3.19 and p-val ¼ 8.9 � 10�10.
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data available for all four clinical features were taken (~259 patients),
RG was able to stratify high (RG> 1) and low risk (RG�1) patients with a
significant HR of 4.04 (95%CI 2.09–7.79) with a p-value of 3 � 10�5

(Wald test p-val ¼ 3� 10�5, logrank test p-val¼ 6� 10�6), which is still
superior than AJCC staging. High risk patients in this case had a 10-year
survival probability of zero as compared to a 40% survival chance for low
risk patients.

3.3.4. Comparative validation of ‘Risk Grade’
We performed a comparative assessment of the strength of RG as

prognostic marker by employing a popular melanoma survival prediction
model [62]. To do this, we used our dataset's features as input to the
web-server “AJCC individualised melanoma patients outcome prediction
tool” for prediction of 5 and 10-year survival probabilities of the patient
samples in our dataset. The web-server required a total of seven input
features i.e (i) whether patient had localized melanoma or regional
melanoma (ii) tumour-thickness (iii) age (iv) tumor burden (v) lesion site
(vi) number of nodes and (vii) ulceration status. After the queries were
executed, it was able to predict survival rates for 162 patients out of 449
patients in our dataset. A pre-computed RG score based on the ensemble
model for these 162 patients was used to classify these patients. Figure 5
shows the web-server predicted survival rates between two risk groups
(RG > 1 or High Risk vs RG<¼1 or Low Risk) in the form of a boxplot.
The high risk group (n ¼ 46) had a ~30% 5-year and ~20% 10-year
mean survival rate as compared to the low risk group (n ¼ 116) with a
~65% 5-year and ~55% 10-year mean survival rate. Apart from the risk
groups segregation, the strength of RG can also be implied from the
minimal number of required input features i.e four features as compared
to seven features in the “AJCC individualised melanoma patients
outcome prediction tool” for survival prediction.

4. Web-server and mobile application

A web-server and an android application named “CMcrpred” were
developed and are freely available at (http://webs.iiitd.edu.in/raghava
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/cmcrpred/) and Google Play Store. Users can predict the survival
outcome and risk of a melanoma patient using these services. The web-
server provides a detailed prediction (graphical and tabular output)
about the survival outcome of a patient belonging to a specific RG. On the
other hand, the android application has been kept less detailed and more
user friendly for on-the-go usage by clinicians and/or patients. The web
server has been designed by using a responsive HTML template for
adjustment to the browsing device. Thus, our web server is compatible
with a wide range of devices, including desktops, tablets, and
smartphones.

5. Discussion

So far, the primary methods for the prognosis of melanoma patients
include patient classification on the basis of various clinico-pathological
features — following which the therapy choice is made for the majority
of cases. However, alleged inadequate assessment of individual tumor
prognosis by clinicopathological variables led to the need for molecular
biomarkers that provide sufficient predictive value to allow personal
treatment in the case of cancer. Molecular biomarkers such as S100 levels
in pembrolizumab treated patients with metastatic melanoma [63],
higher levels of serum tryptase levels in deeper melanomas and mela-
nomas with ulceration [64], serum levels of vitamin D in regards to shield
site melanoma vs non-shield site melanoma [65] are examples of a few
recent studies. Another widely emerging class is GEP based biomarkers
and combinations of these biomarkers. These genomic biomarkers are
directly related to the intricacies of cancer biology and could adjunct the
phenotypic staging system. To that endeavor, many studies in the past
have suggested prognostic markers that could enhance the risk man-
agement in melanoma patients notably [22, 23, 24, 25, 26, 27, 28, 29].
While there has been a major interest in this area, none of the GEP based
prognostic markers have been included in the AJCC staging system as of
yet.

In this study, we were able to present new models for risk assessment
in melanoma patients, based on OS time. We first analyzed various cancer

http://webs.iiitd.edu.in/raghava/cmcrpred
http://webs.iiitd.edu.in/raghava/cmcrpred


Figure 4. Kaplan Meier plot for risk stratification of CM patients based on Risk Grade (RG). Patients with RG > 1 are at a greater risk than patients with RG � 1 with
HR ¼ 6.40 and p-val ¼ 2.49 � 10�15.
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pathway associated genes and showed that a PI constructed with the GEP
of 29 apoptotic pathway linked genes could be used for risk prediction in
melanoma. These genes mainly encode for proteins that are directly
related to promoting cell death and are under-expressed in tumor cells.
Examples include MCL1, XIAP, FAS, FASLG, Caspases [3, 7, 8], which are
key players in the intrinsic and extrinsic apoptotic pathway [66, 67]. The
PI for these 29 genes was able to significantly discriminate between high
and low-risk patients by a 2.5 hazard ratio. Another model employed the
genes involved in both Apoptosis and NOTCH pathways and increased
Figure 5. Boxplot representing the distinct segregation of risk groups by RG on the
melanoma patients outcome prediction tool”. A total of 162 predictions were made us
risk (RG > 1).
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the HR, though only by a marginal amount. The strong biological roles of
these pathways in the general case of cancer are well established [68, 69,
70, 71]. Further, a popular feature selection method, rfSRC was used to
filter out important survival associated genes, which were then used to
make MLR and PI-based models. We show that OS time predicted by
using GEP of a set of novel 52 genes was able to stratify high and low-risk
patients with a higher HR (2.77) than 29-apoptotic genes based PI. The
PI-based on these 52 genes also performed better than the 29-apoptotic
genes based PI. By integration of this 52 GEP and Breslow thickness in
basis of 5- and 10- year survival outcomes predicted by “AJCC individualised
ing the tool out of which 116 were low-risk patients (RG<¼1) and 46 were high-
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an SVR based regression model, we were able to enhance the risk clas-
sification further (HR ¼ 3.19).

Further, to assess the comparative strength of the clinico-
pathological features against the GEP based prognostication, we
developed models with combinations of two or more clinical fea-
tures. To achieve this, we employed a simple categorization method,
which helped to avoid data loss and consequently guaranteed a
bigger dataset. “Risk Grade (RG)” built on the information from N
stage, M stage, Breslow thickness, and Ulceration status of a patient
was shown to stratify high and low-risk patients with an HR value
almost two-fold (HR ¼ 6.40) of the 52 GEP and Breslow thickness-
based model. Though, the efficacy of RG was also shown for a sub-
set of 259 patients where data for every clinical feature was present.
The strength of this risk segregation scheme can be compared with
the current AJCC staging. While in the conventional AJCC staging
criteria, T stage encompasses the information about Breslow
thickness and Ulceration, here we constructed RG with the explicit
use of both of these features. It is also necessary to point out that
even though we have shown the performance of RG in comparison to
AJCC 7th and 6th editions, it is bound to perform equally well when
compared with 8th edition, since the major change in AJCC 8th

edition was within the substages (primarily in stage III sub staging)
[16]. Briefly, as compared to using any of the GEP based methods,
the number of required prognostic features was reduced to a mini-
mum, with a huge improvement in risk stratification. Although these
models are based on features that are already involved in the AJCC
staging system, an integration of these features, such as the one done
in this study, has been missing in the previous studies. We exhibit
the strength of using the clinico-pathological features over the
molecular biomarkers by means of combinatorial models. We also
show by making a comparative assessment with an existing survival
prediction tool that our model which employs information about
only four clinical features displays both risk segregation and sur-
vival prediction ability. Clearly, there needs to be more develop-
ment and integration of prognostic biomarkers, such as the one
presented here, for therapeutic decision-making in melanoma. To
promote this concept further and facilitate the scientific as well as
clinical community, we have also developed a web-server (htt
p://webs.iiitd.edu.in/raghava/cmcrpred) and an android applica-
tion “CMcrpred”, based on this model.

6. Limitations of the study

The in-silico analysis presented here was performed by employing a
recent RNAseq dataset obtained from TCGAwhich contained clinical as
well as bio-specimen information. To the best of our knowledge, only
publicly accessible free dataset which contains all the clinical features
(i.e Breslow Thickness, N staging, M staging and Ulceration status) that
are required as input to our model, is the TCGA-SKCM cohort. Though,
we have used cross-validation techniques and comparative analysis
with another prediction tool to assess the risk prediction models, an
independent validation on external dataset is crucial for the application
of the model in a clinical setting. Absence of such an external validation
dataset and constraints within TCGA dataset are major limitations of
this study and thus demand future efforts.
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