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ABSTRACT
Genomic rearrangements involving transcription factors (TFs) can form fusion 

proteins resulting in either enhanced, weakened, or even loss of TF activity. Functional 
domain (FD) retention is a critical factor in the activity of transcription factor fusion 
genes (TFFGs). A systematic investigation of FD retention in TFFGs and their outcome 
(e.g. expression changes) in a pan-cancer study has not yet been completed. Here, 
we examined the FD retention status in 386 TFFGs across 13 major cancer types 
and identified 83 TFFGs involving 67 TFs that retained FDs. To measure the potential 
biological relevance of TFs in TFFGs, we introduced a Major Active Isofusion Index 
(MAII) and built a prioritized TFFG network using MAII scores and the observed 
frequency of fusion positive samples. Interestingly, the four TFFGs (PML-RARA, 
RUNX1-RUNX1T1, TMPRSS2-ERG, and SFPQ-TFE3) with the highest MAII scores 
showed 50 differentially expressed target genes (DETGs) in fusion-positive versus 
fusion-negative cancer samples. DETG analysis revealed that they were involved 
in tumorigenesis-related processes in each cancer type. PLAU, which encodes 
plasminogen activator urokinase and serves as a biomarker for tumor invasion, was 
found to be consistently activated in the samples with the highest MAII scores. Among 
the 50 DETGs, 21 were drug targetable genes. Fourteen of these 21 DETGs were 
expressed in acute myeloid leukemia (AML) samples. Accordingly, we constructed 
an AML-specific TFFG network, which included 38 DETGs in RUNX1-RUNX1T1 or PML-
RARA positive samples. In summary, this study revealed several TFFGs and their 
potential target genes, and provided insights into the clinical implications of TFFGs.

INTRODUCTION

Chromosomal aberrations leading to gene fusions 
occur frequently in cancer cells. Gene fusions play critical 
roles in tumorigenesis, can aid in cancer diagnosis, and 
serve as therapeutic targets. The recurrence of a fusion 
gene and retention of important functional domains (FDs) 
are important factors in assessing whether it plays an 
oncogenic role and has clinical relevance. Driver fusion 
genes typically retain functional domains (e.g., kinase 

domains or DNA-binding domains) [1, 2]. In our previous 
study [3], we performed a comprehensive analysis of 
kinase fusion genes that retain kinase domains and 
discovered features commonly present in recurrent kinase 
fusion genes. In this study, we performed a systematic 
annotation of transcription factor fusion genes (TFFGs), 
aiming to identify driver transcription factors (TFs) and 
fusion genes (FGs) across 13 major cancer types. TFFGs 
may enhance the activity or result in loss of function of a 
TF and its target genes. TFFGs are also known for their 
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dominant-negative effects, supported by the observation 
of a higher frequency of DNA binding domains than 
transcriptional activation domains [4]. 

One classical example of a TFFG is the fusion 
between the promyelocytic leukemia (PML) gene and the 
transcription factor, retinoic acid receptor alpha (RARA), 
which is seen in 95% of acute promyelocytic leukemia 
(APL) patients. The PML-RARA fusion protein retains 
domains of the RARA protein that allows binding to retinoic 
acid response elements (RARE) and dimerization with 
the retinoid X receptor protein (RXRA) [5]. This causes 
reduced transcriptional activation and inhibition of myeloid 
differentiation leading to APL [6]. Recently, the National 
Comprehensive Cancer Network guidelines specified 
arsenic trioxide and all-trans retinoic acid (ATRA) as front-
line treatments for APL [7]. Pharmaceutical companies 
have developed many kinase inhibitors targeting kinase 
fusion genes; however, few drugs target TFFGs, despite 
their pivotal role in enhancing or reducing the functionality 
of a TF and its target genes. Therefore, a comprehensive 
analysis of TFFGs in cancer will likely provide important 
insights into the mechanism of tumorigenesis of TFFGs and 
uncover new candidate therapeutic targets. 

In this study, we performed a pan-cancer annotation 
of 386 TFFGs including 232 TFs. Investigating FD 
retention led to the identification of 148 TFFGs including 
109 TFs. To prioritize the potential clinical relevance 
of these TFs, we introduced a new scoring system, a 
Major Active Isofusion Index (MAII) (see Materials and 
Methods). We also examined binding-related FD retention 
and identified 83 TFFGs that retained binding related 
FDs, including 67 TFs. We created a prioritized TFFG 
network using both of the MAII scores and the observed 
frequency. To assess the influence of TFFGs on their 
target genes, we examined the differentially expressed 
target genes (DETGs) of the 12 TFFGs with FD retention, 
which occurred in at least two samples of the same cancer 
type. In our comparison of the expression levels of target 
genes in fusion-positive with fusion-negative samples in 
each cancer type, we found four TFFGs (PML-RARA, 
RUNX1-RUNX1T1, TMPRSS2-ERG, and SFPQ-TFE3) 
that had 50 DETGs. Interestingly, these four TFFGs had 
the highest MAII scores. Furthermore, these DETGs 
were involved in the biological processes relevant 
to tumorigenesis in each cancer type. Interestingly, a 
DETG that encodes the plasminogen activator, urokinase 
(PLAU), a known biomarker for tumor invasion, was 
consistently upregulated in samples positive for the four 
TFFGs (PML-RARA, RUNX1-RUNX1T1, TMPRSS2-
ERG, and SFPQ-TFE3). Our further analysis indicated 
that 21 of the 50 DETGs were candidate drug targets. 
In addition, 14 of the 21 candidate targets occurred in 
samples with the RUNX1-RUNX1T1 fusion. Finally, we 
constructed an AML-specific DETG network based on 
gene expression changes in samples with PML-RARA or 
RUNX1-RUNX1T1 fusions.

RESULTS

Transcription factor fusion genes (TFFGs) 
retaining functional domains 

The concept of FD (i.e., fusion domain) retention 
in TFFGs is shown in Figure 1A. When a TFFG retains 
its functional domain (e.g., DNA-binding domain), the 
resulting fusion protein likely binds to the promoter 
region and the distal-regulatory region of its target genes, 
and regulates downstream gene expression. In contrast, 
if a TFFG does not retain the DNA binding domain, it 
would not bind to its target genes, leading to the partial 
or complete loss of gene expression. Figure 2A shows 
our pipeline for identifying driver TFs and TFFGs. From 
~8,000 fusion genes available in the TCGA Fusion Gene 
Data Portal [8], we selected 2,782 in-frame fusion genes. 
By overlapping these fusion genes with the TFs that 
had target gene information from the TRANSFAC [9] 
and TRRUST [10] databases, we obtained 386 fusion 
genes (FGs) involving 232 TFs. We next investigated 
the retention of FDs by translating the fusion transcripts 
into amino acid sequences and searching for the presence 
of 34 protein features from UniProt (see Materials and 
Methods). This FD retention analysis resulted in 81, 
59, and 10 TFFGs that had 52, 51, and 19 TFs at the 
5’-position (5’-TFFGs), the 3’-position (3’-TFFGs), or 
both 5’- and 3’-positions (5’-3’-TFFGs), respectively 
(Supplementary Table 1). To investigate which protein 
domains were more frequently retained in TFFGs, we 
compared the retention status of all UniProt’s protein 
features in the TFFGs, with those in all other FGs (non-
TFFGs). As shown in Figure 3, TFFGs significantly 
retained 14 out of 34 protein features at a relatively higher 
frequency than non-TFFGs; these domains are: ‘site’, 
‘compositional bias’, ‘cross-link’, ‘zinc finger’, ‘region’, 
‘DNA binding’, ‘mutagenesis’, ‘modified residue’, 
‘motif’, ‘helix’, ‘turn’, ‘initiator methionine’, ‘metal 
binding’, and ‘beta strand’. This result is consistent with 
previous reports that TF fusion proteins often contain 
several different protein domains such as a DNA-binding 
domains, domains that act in homo or hetero-dimerization, 
and domains that interact with chromatin remodeling 
components such as co-repressor molecules [11]. Among 
these FD-retained TFFGs, we focused on the domains with 
TF activity such as ‘calcium binding’, ‘DNA binding’, 
‘domain’, ‘metal binding’, ‘motif’, ‘nucleotide binding’, 
and ‘zinc finger’. After applying this filter, we identified 
37, 36, and 10 TFFGs including 24, 30, and 19 TFs for 
5’-TFFGs, 3’-TFFGs, and 5’- 3’-TFFGs, respectively. 
Only 12 TFFGs retained their FDs in at least two samples 
(Figure 2B). Of those, TMPRSS2-ERG was the most 
frequent (21 samples retained TF domains among 59 
TMPRSS2-ERG positive samples in PRAD). Three TFFGs 
had a transcription factor as both (the 5’ and 3’) partners. 
We annotated these as 5’-3’-TFFGs. They are PML-RARA 
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(15 samples in AML), RUNX1-RUNX1T1 (seven samples 
in AML), and SFPQ-TFE3 (three samples in KIRC). 

Identification of “effective” TFs in FGs by 
Major Active Isofusion Index (MAII) score and 
network analysis

We hypothesized those TFs that are involved in 
fusion genes in multiple cancer types, have breakpoints 
in multiple locations, or have multiple partner genes, 
would have a critical role in tumorigenesis. Therefore, we 
used a method we previously developed [12] to quantify 
the recurrence of these fusion genes. We utilized three 
characteristics of TFFGs: (1) the number of partner genes 
of each TF, (2) the number of break points in each TF, 
(3) and the number of cancer types associated with each 
TF fusion. Using these factors, we defined a Degree-of-
Frequency (DoF) score (Table 1). By applying DoF scores 
to TFs involved in gene fusions, we found 15 potentially 
effective TFs including EP300, ERG, ETV6, FOXK2, 
KDM4B, KDM5A, MLLT10, NCOR2, NFIX, NSD1, RFX4, 
SMARCA4, SND1, TBL1XR1, and VAV1. However, in the 
TFFGs, the DoF scores did not always follow the observed 

frequency of the number of samples with fusion genes. 
To resolve this issue, we introduced another measurement 
of TF effectiveness in gene fusions: the Major Active 
Isofusion Index (MAII). The MAII is calculated by 
dividing the number of observed samples with a particular 
TFFG by its DoF score (Table 1). Here, an isofusion 
refers to one particular gene fusion combination, with one 
particular partner gene and one particular break point, in 
one particular cancer type. This new score (MAII) can 
give us the average frequency of each TF for each possible 
isofusion. A TF with a high MAII score is considered 
“effective” (i.e., highly recurrent) in cancer fusion genes. 
To make the MAII scores (ranging from 0.11 to 15) more 
intuitive, we transformed MAII scores of <1 to reversed 
negative values (tMAII). We generated a box plot of 
tMAII values for the TFs involved in TFFGs that retained 
binding domains, except those who had a DoF of ‘1.0’ in 
one sample (Figure 4A). A TF with a high tMAII score 
(i.e., >1) means that it has a high frequency of occurrence 
per one isofusion. We refer to these as “effective TFs in 
fusion genes” (eTFinFGs). The eTFinFGs include RARA, 
RUNX1T1, PML, ERG, RUNX1, SFPQ, and TFE3. 
Alternatively, if a TF has a tMAII score of less than ‘-1.0’ 

Figure 1: Illustration of DNA binding domain (DBD) retention in transcription factor fusion genes (TFFGs). The 
activities of retained domains of transcription factors (TFs) involved in fusion genes may subsequently affect the expression of their target 
genes.
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and a DoF score of more than ‘8’, which is the threshold 
of high frequent gene fusions in our previous study, it 
indicates that the TF has a higher chance of generating 
FGs in different cancer types, with multiple partner genes, 
and multiple break points than observed. We named these 
as “possibly effective TFs in fusion genes” (peTFinFGs). 
We found 34 peTFinFGs including NSD1, KDM4B, SND1, 
SMARCA4, NCOR2, KDM5A, VAV1, TBL1XR1, EP300, 
MLLT10, ETV6, LIN28A, and 22 additional genes (Table 
1). Next, we created a TFFG network based on both 
observed frequency and tMAII scores of 83 TFFGs that 
retained functional domains related TF activity, including 
67 TFs, (Figure 4B). In this figure, we excluded the TFFGs 
with a tMAII of ‘1.0’, represented by the non-highlighted 
cases. Using a gradient color scale of the nodes, which 
represents the tMAII score of each TF, we can assess the 
“effective TFs” and “possibly effective TFs” in pan-cancer 
fusion genes at a glance.

Analysis of differentially expressed target gene 
(DETG) identified consistent up-regulation of 
PLAU in four TFFGs

Focusing on the 12 TFFGs with FD retention in 
at least two samples, we explored the DETGs between 

fusion-positive and fusion-negative samples within 
each cancer type (Supplementary Table 2). The aim of 
this analysis is to understand the oncogenic role of each 
TFFG in each cancer type. Analysis of DETGs (Wilcoxon 
rank sum test followed by multiple test correction using 
Benjamini-Hochberg’s method [13], |log2(Fold change, 
FC)| ≥ 0.585 and adjusted p-value (i.e., q-value) < 0.1) 
revealed 50 DETGs from four gene fusions (PML-
RARA, RUNX1-RUNX1T1, TMPRSS2-ERG, and SFPQ-
TFE3). Remarkably, these four gene fusions were those 
with the highest tMAII scores as shown in Table 1. This 
supports the reliability of the tMAII scoring system in 
determining the biological relevance of gene fusions. 
A schematic representation of gene fusions and their 
important domains is shown in Figure 5A. Figure 5B 
shows the different expression levels of DETGs between 
fusion-positive and fusion-negative samples. In our 
results, a DETG is especially interesting. This DETG is 
the plasminogen activator, urokinase (PLAU, synonym: 
uPA), whose expression was significantly increased in 
AML samples with PML-RARA or RUNX1-RUNX1T1 
fusion genes. PLAU is also known to be induced by 
ERG, which is upregulated in 21 samples harboring the 
TMPRSS2-ERG fusion. Furthermore, in the SFPQ-TFE3 
positive samples, there was consistent downregulation of 

Figure 2: Pan-cancer analysis of TFFGs. (A) Workflow of the functional domain retention analysis of TFFGs in pan-cancer. (B) 
Recurrent TFFGs retaining functional domains in TCGA fusion gene dataset. Y-axis represents the number of samples.
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Table 1: The Major Active Isofusion Index (MAII) 
Gene # cancer types # partners # break points DoF score Obs. frequency MAII tMAII
RARA 1 1 1 1 15 15 15
RUNX1T1 1 1 1 1 7 7 7
PML 1 1 3 3 16 5.33 5.33
ERG 2 3 2 12 24 2 2
RUNX1 1 2 2 4 8 2 2
SFPQ 1 1 2 2 3 1.5 1.5
TFE3 1 1 2 2 3 1.5 1.5
TRPS1 1 4 1 4 4 1 1
YY1 1 2 1 2 2 1 1
BPTF 1 2 3 6 3 0.5 -2
GLIS3 2 2 1 4 2 0.5 -2
IKBKB 1 2 2 4 2 0.5 -2
KAT6A 2 2 1 4 2 0.5 -2
NCOR1 1 2 2 4 2 0.5 -2
RFWD2 1 2 2 4 2 0.5 -2
WWP1 1 2 2 4 2 0.5 -2
BRIP1 1 2 2 4 2 0.5 -2
ARID1B 2 2 1 4 2 0.5 -2
RBMS1 2 1 2 4 2 0.5 -2
PAX8 1 2 2 4 2 0.5 -2
UHRF1 2 2 1 4 2 0.5 -2
ZNF143 2 2 1 4 2 0.5 -2
FOXK2 1 3 3 9 3 0.33 -3
NFIX 2 3 2 12 3 0.25 -4
RFX4 2 3 2 12 3 0.25 -4
CLOCK 2 2 2 8 2 0.25 -4
KHSRP 2 2 2 8 2 0.25 -4
NFIB 2 2 2 8 2 0.25 -4
TRIM24 2 2 2 8 2 0.25 -4
YAP1 2 2 2 8 2 0.25 -4
ZBTB48 2 2 2 8 2 0.25 -4
FGFR1 2 2 2 8 2 0.25 -4
LIN28A 2 2 2 8 2 0.25 -4
ETV6 3 3 5 45 10 0.22 -4.5
MLLT10 2 3 6 36 7 0.19 -5.14
EP300 2 3 3 18 3 0.17 -6
TBL1XR1 2 3 3 18 3 0.17 -6
VAV1 2 3 3 18 3 0.17 -6
KDM5A 2 4 4 32 4 0.13 -8
NCOR2 3 3 3 27 3 0.11 -9
SMARCA4 3 3 3 27 3 0.11 -9
SND1 4 4 5 80 6 0.08 -13.33
KDM4B 5 5 3 75 5 0.07 -15
NSD1 4 5 5 100 6 0.06 -16.67
Obs: observed.
DoF score = (# cancer types) × (# partners) × (# break points). 
MAII = (# obs. frequency) / (DoF score). 
tMAII: transformed MAII. tMAII = if MAII < 1, then do (MAII)-1 × (−1).
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the serine proteinase inhibitor SERPINE1, an inhibitor of 
tissue plasminogen activator (tPA) and urokinase (uPA). 
PLAU encodes a secreted serine protease that converts 
plasminogen to plasmin, promoting fibrinolysis and 
degradation of the extracellular matrix, facilitating cancer 
growth and metastasis [14, 15]. As a cancer biomarker, 
PLAU plays a role in tumor invasion [16]. Recently, a 
positive correlation was reported between the expression 
level of plasminogen activator inhibitor (PAI)-1 and poor 
prognosis in patients with ovarian cancer [17]. These 
results suggest that pharmacological combination therapies 
using PAI-1 and urokinase inhibitors may be potentially 
effective in patients with PML-RARA, RUNX1-RUNX1T1, 
or TMPRSS2-ERG fusion genes.

PML-RARA

An in-frame PML-RARA fusion was present in 
15 of the 170 TCGA AML samples. This fusion gene 
retains the ‘zinc finger’ and ‘DNA binding domain’ in 
the 5’-partner gene (PML), and 3’-partner gene (RARA), 
respectively (Figure 5A). PML retains two different zinc 
finger (ZnF) domains; ZnF RING-type (PROSITE id: 
PS50089) and ZnF B-box-type (PROSITE id: PS50119). 
The ZnF B-box-type domain is considered essential but 
not sufficient to localize the PML protein in a punctate 
pattern in interphase nuclei. The DNA binding domain of 

RARA is of the nuclear hormone receptor type (PROSITE 
id: PS51030). RARA is a ligand-activated transcription 
factor that regulates gene expression by interacting with 
specific DNA sequences upstream of its target genes [18]. 
The up-regulated target genes of PML, through comparing 
15 fusion-positive samples versus 155 fusion-negative 
samples, were ANXA8, APOA1, CCNA1, CRABP1, PLAU, 
PRKCA, and RPTOR. The overexpression of ANXA8 has 
been reported as associated with AML [19]. APOA1 is 
known as a biomarker for leukemia aggressiveness [20]. 
CCNA1 is reported to have increased expression in AML 
too [21]. The down-regulated target genes were ABCC3, 
CD1D, FOLR2, ICAM1, MACROD1, RARG, and SCD. 
The major mechanism of tumorigenesis of the PML-RARA 
gene fusion is the disruption of the retinoic acid (RA) 
signaling pathway and arrest of myeloid differentiation 
[22]. In agreement with this mechanism, RARG is 
involved in the retinoic acid signaling and myeloid cell 
differentiation and SCD is involved in fatty acid metabolic 
process [23]. ABCC3, FOLR2, ICAM1, and MACROD1 
are involved in lymphocyte regulation, modification, and 
migration [23]. 

RUNX1-RUNX1T1

Eight percent of AML and 20% of M2-type AML 
have this gene fusion, which is now recognized by the 

Figure 3: Comparison of retained protein features between TFFGs and all other FGs. For each protein feature (Y-axis), the 
relative proportion of samples involving TFFGs and other FGs is represented. After calculating the p-value via a hypergeometric test, 14 
protein features were selected as significantly enriched features in TFFGs, not in all other FGs (p-value < 0.001).



Oncotarget110109www.impactjournals.com/oncotarget

World Health Organization (WHO) classification system 
as a specific subtype of AML [24, 25]. The RUNX1-
RUNX1T1 fusion gene is known to promote self-renewal, 

disrupt terminal differentiation of myeloid cells, and 
increase DNA damage [26]. From a structural point of 
view, RUNX1 retains the Runt domain (PROSITE id: 

Figure 4: TFFG network providing clinical relevance. (A) TFs ranked by tMAII score. “eTFinFGs” refers to effective transcription 
factor gene fusions (TFFGs) based on high tMAII score. “peTFinFGs” refers to potentially effective TFFGs based on low tMAII score, that 
is, those have higher possible combination of gene fusion than the observed frequency. (B) TFFG network showing TFFG pairs retaining 
binding domain features. In this network, we show only TFFGs including the TFs that formed fusion genes with multiple partners. Nodes 
in red refer to TFs with a high tMAII score and nodes in blue refer to the TFs with a low tMAII score.
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Figure 5: Four recurrent TFFGs and differentially expressed target genes (DETGs) in the samples with fusion genes 
(FGs) versus without FGs (NFG). (A) Fusion protein structure of the four recurrent TFFGs with highest MAII score. (B) DETGs of 
the four TFFGs in A. Y-axis: mRNA expression level measured by log2 (read count +1). Significantly up- and down-regulated genes in the 
FG samples were labeled in red and green, respectively.
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PRU0039) which confers DNA binding ability [18]. 
RUNX1T1 retains the zinc finger domain (MYND-type 
ZnF) (PROSITE id: PS50865). Proteins with MYND-type 
ZnF domains are known to include the transcriptional co-
repressor protein BS69 within them [27]. We compared 
seven RUNX1-RUNX1T1 fusion-positive samples with 
163 fusion-negative samples through our DETG analysis. 
This analysis identified nine up-regulated genes (BAALC, 
CD34, ELANE, MPL, MPO, MYC, NCAM1, PLAU, and 
VEGFA). The high expression of BAALC and CD34 are 
known as a maker for prognostic risk stratification of 
AML and B lymphoblastic leukemia, respectively [28, 
29]. MPL has been reported to be involved in initiating 
and maintaining RUNX1-RUNX1T1 positive AML 
[30]. Myeloperoxidase (MPO) has been associated 
with prognosis of AML patients [31]. Four of these up-
regulated genes are oncogenes: MPL, MYL, PLAU, and 
VEGFA (Figure 6A). The oncogene VEGFA, encoding 
vascular endothelial growth factor A, induces proliferation 
and migration of vascular endothelial cells to promote 
angiogenesis in cancer [32]. Additionally, we found 16 
down-regulated genes (BCL2, CCL3, CD36, CHI3L1, 
GP1BA, GPR132, ITGA2B, ITGB2, KLF4, LGALS3, 
LILRB1, LTB4R, MYH10, OCLN, PF4, and SLC44A1). 
CCL3, LGALS3, LILRB1, and PF4 are involved in 
‘regulation of myeloid leukocyte differentiation’ pathway. 
BCL2, ITGB2, and OCLN are the genes involving in 
‘leukocyte migration’. The other genes are involved 
in the pathways such as ‘regulation of angiogenesis’, 
‘regulation of protein kinase activity’, and ‘regulation 
of macromolecule metabolic process’ [23]. This result is 
consistent with a study of transcriptional dysregulation 
mediated by RUNX1-RUNX1T1 in normal human 
progenitor cells and in AML [33]. While microarray data 
was used in this previous study, here we provided DETGs 
that are more accurate by using the digital expression 
levels from RNA-seq data.

TMPRSS2-ERG

Chromosomal rearrangements between the 
androgen-regulated gene, TMPRSS2, and the oncogenic 
ETS transcription factor gene, ERG, occurs in 
approximately 30–50% of prostate cancers (PRAD) 
[34]. The 3’-partner gene, ERG, retains the ETS DNA-
binding domain (PROSITE id: PS50061), which is 
enriched in positively-charged and aromatic residues and 
binds to purine-rich segments of DNA [35]. Out of the 
59 TMPRSS2-ERG positive PRAD samples, 21 samples 
had an in-frame gene fusion retaining FDs. DETG analysis 
between 21 in-frame TMPRSS2-ERG positive samples 
versus 471 fusion-negative samples yielded only two 
up-regulated target genes: ERG and TDRD1. Previous 
transcriptional profiling studies have shown that ERG 
knockdown in TMPRSS2-ERG positive prostate cancer 
cell-lines leads to decreased expression of genes that 

are typically overexpressed in PRAD as compared to 
prostatic intraepithelial neoplasia [36]. Furthermore, ERG 
regulates the expression of target genes associated with 
cancer initiation and progression pathways such as DNA 
damage, inflammation, epigenetic control, regulation of 
differentiation, epithelial mesenchymal transition (EMT), 
cell proliferation and cell invasion [37]. Interestingly, one 
study demonstrated that ERG induced the expression of 
metalloproteinase and plasminogen activator pathway 
genes such as MMP3, PLAT, and PLAU [34]. The 
activation of the second up-regulated gene, tudor domain-
containing protein1 (TDRD1), is known to be induced by 
ERG in prostate cancer cells harboring an ERG fusion 
[38–40].

To find DETGs that could drive cancer in the 
other 38 PRAD samples with TMPRSS2-ERG fusion 
not retaining functional domains, we performed DETG 
analysis by comparing 38 samples with out-of-frame 
fusion versus the 21 in-frame fusion samples (|log2(Fold 
change, FC)| ≥ 0.585, q-value < 0.2, and Supplementary 
Table 3). We found one amplified gene in the in-frame 
fusion samples, hydroxyprostaglandin dehydrogenase 
15-(NAD) (HPGD), which was reported as a therapeutic 
target in prostate cancer due to its involvement in the 
arachidonic acid pathway with PLA2G7, EPHX2, and 
CYP4F8 [41]. HPGD was highly expressed in androgen 
receptor (AR)–overexpressing advanced tumors, as well 
as in metastatic prostate cancers. 

SFPQ-TFE3

SFPQ retains two eukaryotic RNA recognition motif 
(RRM) domains (PROSITE id: PS50102). TFE3 retains 
Myc-type, basic helix-loop-helix domain (PROSITE id: 
PDOC00038). This ‘helix-loop-helix’ (HLH) domain 
mediates protein dimerization. Most proteins with HLH 
domains have an extra basic region of approximately 15 
amino acid residues and this motif sequence binds to DNA 
[18]. A previous study on the molecular genetics of the 
TFE3 fusion gene in TCGA renal cell carcinoma samples 
suggested that it could contribute to carcinogenesis 
pathways such as TGFβ signaling, MET oncogene up-
regulation, insulin signaling, Rb-dependent cell cycle, 
ETS oncogene regulation, FLCN/AMPK signaling, T-cell 
activation, and E-cadherin regulation [42]. The most 
widely accepted model for the oncogenic effects of the 
TFE3 gene fusions is the introduction of a constitutively 
active promoter leading to dysregulated TFE3 activity 
[16]. Accordingly, we found two up-regulated target genes 
(i.e., SLC25A3 and TFE3) in three fusion-positive samples 
compared to 523 fusion-negative samples. 

AML specific DETG network 

Out of the 50 DETGs identified in our study, 
38 genes were from the two gene fusions (i.e., PML-
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Figure 6: DETG network of four recurrent TFFGs and AML-specific network. (A) DETG network of the four TFFGs. The 
red and green nodes represent significantly up- and down-regulated target genes, respectively. The small circles above the nodes denote 
drug target gene (blue), oncogene (orange), transcription factor (purple), and tumor suppressor (green) from IUPHAR [54], Catalogue of 
Cancer Genes [55], TRANSFAC [9] and TRRUST [10], and TSGene2.0 [56], respectively. RUNX1-RUNX1T1 affects nine potentially 
targetable genes. (B) AML-specific TFFG network. Using 38 DETGs of the PML-RARA and RUNX1-RUNX1T1 gene fusions, we created 
a network by using the Gene MANIA app in Cytoscape. The orange and purple lines highlight genes involved in leukocyte migration and 
differentiation, respectively.
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RARA and RUNX1-RUNX1T1) in AML. Using these 38 
DETGs as initiating genes in the GeneMANIA Cytoscape 
plugin [43] (see Materials and Methods, Figure 6B), 
we constructed an AML-specific DETG network. This 
network was composed of the 38 DETGs and the top 20 
related genes suggested by GeneMANIA. After running 
GSEA for the nodes in this network (GeneMANIA, 
hypergeometric test followed by multiple test correction 
using Benjamini-Hochberg’s method [13], q-value < 0.05), 
we found that DETGs of the AML fusion-positive samples 
were significantly enriched in ‘leukocyte migration’ and 
‘leukocyte differentiation’ pathways, suggesting that an 
abnormal regulation of leukocyte function plays a role in 
the development of AML. 

Rare gene fusions with clinically relevant DETGs

Although we could not perform the differentially 
expressed gene test for TFFGs with retained FD occurring 
in only one sample, several examples are worth reporting. 
For example, Erb-b2 receptor tyrosine kinase 2 gene 
(ERBB2, synonym: HER2) was upregulated in one breast 
cancer sample containing the ATF7-SPATS2 fusion. The 
expression level of ERBB2 in the fusion-positive sample 
was about 25 times higher than in fusion-negative samples. 
Supplementary Figure 1 shows the comparison of ERBB2 
expression across 113 BRCA samples with matched 
normal samples, HER2-negative samples, and HER2-
positive samples, according to the PAM50 annotation 
information for clinical subtype classification of BRCA 
subtype [44]. The ATF7-SPATS2 fusion-positive sample 
had the highest expression level of ERBB2 among HER2-
positive samples and all BRCA samples. 

A high level of proto-oncogene receptor tyrosine 
kinase, KIT, expression is a well-known driver of 
proliferation of breast cancer cells. In this study, we 
identified up-regulation of KIT in MYB-NFIB positive 
samples. KIT expressed 15.4 times higher in BRCA 
samples with the MYB-NFIB than in fusion-negative 
samples. The RPKM value was 13,081 in the fusion-
positive sample while the average of fusion-negative 
samples was 849. Based on this, we hypothesized that 
c-Kit inhibitors might be helpful in treating BRCA patients 
harboring the MYB-NFIB fusion. The MYB-NFIB fusion 
gene resulted in loss of the 3’-end of MYB, including 
several highly conserved target sites for microRNAs 
that negatively regulate MYB expression. Deletion of 
these miRNA target sites may disrupt the repression of 
MYB, leading to overexpression of MYB-NFIB fusion 
transcripts and subsequent transcriptional activation of 
critical MYB target genes associated with apoptosis, cell 
cycle control, cell growth/angiogenesis and cell adhesion 
[45]. Additionally, expression of GATA binding protein 
3 (GATA3), which encodes a trans-acting T-cell specific 
transcription factor protein, was significantly decreased in 
the MYB-NFIB fusion sample (RPKM was 601 in fusion 

sample, 13072 on average in no-fusion tumor samples). 
GATA3 is one of the three genes (TP53, PIK3CA and 
GATA3) mutated in more than 10% of breast cancer 
samples [46]. 

DISCUSSION

This study presents a novel assessment scoring 
system to identify TFs and FGs that may act as potential 
cancer driver genes, through a comprehensive analysis 
of functional domain retention of 386 TFFGs and their 
affected target genes, across 13 major cancer types. The 
MAII score is influenced by the frequency at which a 
gene fusion occurs. Therefore, the score for fusions that 
do not occur at a high frequency, but might be biologically 
relevant, could be low. A high MAII score should be 
better in prioritizing fusions that may be biologically 
significant. However, due to the lack of an independent 
data set with an abundant number of fusion genes across 
multiple cancer types, we could not extensively validate 
our scoring system. Furthermore, gene fusions are not 
as common as many of the somatic point mutations. 
Therefore, the small number of recurrent samples is a 
reflection of the nature of fusion genes in cancer. Due to 
this nature, we acknowledge the limitations of the DETG 
analysis. Another limitation of our approach is focusing 
on gene fusions in which at least one of the partners 
retained an important functional domain. Although this 
approach is helpful for identifying potentially active 
gene fusions, it cannot identify gene fusions that disrupt 
or eliminate the activity of a transcription factor. Thus, 
more investigations will be needed for TFFGs that may 
contribute to carcinogenesis by such mechanisms.

ETV6-NTRK3, a known oncogenic fusion involving 
a TF (ETV6) and a tyrosine kinase receptor (NTRK3), was 
identified as one of the 12 TFFGs with retained FDs in 
at least two samples, had only one DETG, growth arrest 
specific 2 (GAS2). This might be related to the fact that 
ETV6 has a low MAII score, that is, the average frequency 
of the TF for each possible isofusion was not enough to 
show DETGs. In contrast, the four fusions that showed 
significant DETGs are those with the highest MAII 
scores. Furthermore, three out of four of the fusions are 
5’-3’ TFFGs (PML-RARA, RUNX1-RUNX1T1 and SFPQ-
TFE3), that is, both fusion partners are transcription 
factors. These findings suggest that TFFGs are more 
likely to alter gene expression when both partners in 
the fusion are transcription factor genes. It is worth 
noting several rare TFFGs found in our study. ERBB2 is 
known to be overexpressed in 18–20% of BRCA positive 
samples due to gene amplification [47, 48]. We identified 
the ATF7-SPATS2 fusion as a potential regulator of 
ERBB2 expression through ATF7’s action on the ERBB2 
promoter, as shown by the higher ERBB2 expression in 
the fusion positive sample. Furthermore, the KIT tyrosine 
kinase gene showed up-regulated expression (15.4 times 
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higher) in MYB-NFIB fusion positive BRCA. From these 
examples, we carefully suggest combinational therapy 
using kinase inhibitors to TFFG patients for better therapy. 

Fusion genes are usually cancer type-specific, but 
TFs can be involved in multiple cancer types. Therefore, 
we performed a pan-cancer analysis for prioritizing TFs 
involved in FGs. To find the insights into the tumorigenic 
mechanism of TFFGs, we analyzed DETGs in each cancer 
type. Although the number of samples with TFFGs is small, 
chromosomal rearrangements involving TFs have clinical 
importance, due to their effects on the regulation of gene 
expression. This is the first study demonstrating druggable 
TFFGs with a systematic annotation of functional domains. 
A comprehensive understanding of TFFGs could help the 
development of new therapeutic strategies.

MATERIALS AND METHODS

Pan-cancer fusion gene data

The pan-cancer fusion gene dataset was obtained from 
the TCGA Fusion Gene Data Portal (http://54.84.12.177/
PanCanFusV2, December 2014) [8]. A total of 7,993 
fusion genes were curated in 13 cancer types from 4,366 
primary tumor samples: bladder carcinoma (BLCA), breast 
carcinoma (BRCA), glioblastoma multiforme (GBM), 
head and neck squamous carcinoma (HNSC), kidney renal 
clear cell carcinoma (KIRC), acute myeloid leukemia 
(AML), low grade glioma (LGG), lung adenocarcinoma 
(LUAD), lung squamous cell carcinoma (LUSC), ovarian 
serous cystadenocarcinoma (OV), prostate adenocarcinoma 
(PRAD), skin cutaneous melanoma (SKCM), and thyroid 
cancer (THCA). For these fusion genes, the following 
information was collected: TCGA sample ID, fusion gene 
name and its two partner genes, fusion protein frame 
information, and exon junction break point information at 
the genomic level. We followed the definition of fusion gene 
direction for the 5’- and 3’-partner genes to this dataset.

Transcription factors and their target genes

TF-target pairs were downloaded from two 
databases, TRANSFAC (April, 2016) [9] and TRRUST 
(June 2015) [10]. From the downloaded data file of 
TRANSFAC, we obtained 1,001 human TFs with target 
gene information. TRRUST is a manually curated 
database of human transcriptional regulatory networks. 
From TRRUST, we obtained 748 human TFs with their 
target information. Combined, we had 1,307 human TFs 
with target gene information.

Annotation of protein domain retention

From ~8,000 fusion genes, we selected in-frame 
fusion genes using the annotations from the TCGA 
Fusion Gene Data Portal. Specifically, we selected fusion 

genes whose reading frames were not disrupted by the 
breakpoints; this resulted in 2,782 in-frame fusion genes. 
Next, we identified the TFs and their partner pairs using 
the 1,307 human TFs and their target gene dataset as 
described above. This process led to 232 TFs that involved 
386 fusion events. To survey the TF domain retention, we 
downloaded the protein domain annotation information 
for the 232 TFs from the UniProt database, using the 
UniProtKB search module [49]. Because the protein 
domain information was based on amino acid sequence, 
we converted the genomic break point information into 
the amino acid sequence by considering all UniProt 
protein accessions, transcript isoforms, and multiple 
break points for each TF. To map protein domain loci onto 
the human genome, we used the RefSeq gene model of 
human reference genome (hg19) from the UCSC Genome 
Browser [50, 51]. For the fusion genes whose 5’-partner 
genes were TFs (5’-TFFGs), we considered the protein 
domain being retained in the fusion if the break points 
were at the 3’-end of the functional domain. Similarly, 
for the fusion genes whose 3’-partner genes were TFs 
(3’-TFFGs), we considered the protein domain being 
retained if the break points occurred at the 5’-end of the 
functional domain. We also examined functional domain 
retention in fusion genes whose 5’- and 3’- partners 
were both TFs (5’-3’-TFFGs). As a result, we obtained 
148 TFFGs with 109 TFs. These were 81 5’-TFFGs, 59 
3’-TFFGs, and 10 5’-3’-TFFGs involving 52, 51, and 19 
unique TFs, respectively. All annotations that included 
protein domains on the amino acid sequence for each 
fusion gene are provided in Supplementary Table 1. To 
investigate the features of TF related domains, we used 
fusion genes retaining binding motifs such as ‘calcium 
binding’, ‘DNA binding’, ‘domain’, ‘metal binding’, 
‘motif’, ‘nucleotide binding’, and ‘zinc finger’ for further 
research. As a result, we obtained 83 TFFGs involving 67 
TFs.

Construction of the TFFG network

We built a TFFG network using gene fusion partner 
genes for which FDs with TF activity were retained. In 
this network, each node represents a partner gene or TF 
and each edge represents a gene fusion event. A gene 
fused with different partners would have multiple edges. A 
fusion gene can also occur in different cancer types, thus, 
we allowed multiple edges to represent the same fusion 
gene in different cancer types. We used Cytoscape (version 
3.2.1) [52] for visualization and analysis of the network. 

Annotation of differentially expressed target 
genes (DETGs) for recurrent TFFGs 

Gene expression data were obtained from TCGA 
(November 2016). The normalized gene expression, 
measured in log2 transformed normalized read count 
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plus 1 from RNASeqV2, was extracted using the R 
package TCGA-Assembler [53]. The Wilcoxon rank sum 
test in the R software package was used in the DETG 
analysis followed by Benjamini-Hochberg’s method [13] 
for multiple test correction. We defined significantly 
DETGs if they had |log2(FC)| ≥ 0.585 and q-value ≤ 0.1. 
For the expression levels of rare gene fusions, we used 
normalized gene expression measurements of reads per 
kilobase per million mapped reads (RPKM) from TCGA 
(January 5, 2015).

Construction of AML DETG network 

There were 38 DETGs for the PML-RARA and 
RUNX1-RUNX1T1 fusion genes. We used these DETGs 
as initiating gene nodes to GeneMANIA Cytoscape 
plugin (version 3.4.1), a fast, in-silico, gene function 
prediction tool [43]. We used human network data 
including 20,531 genes and over 14 million interactions 
from the GeneMANIA database (version 2014-08-12-
core). The algorithm for the construction of the network in 
GeneMANIA included interactions such as co-expression, 
co-localization, genetic interactions, signaling pathways, 
physical interactions, predicted interactions, and 
shared protein domains. Among all the network results, 
GeneMANIA added the top 20 related genes with up to 20 
attributes using automatic weighting to the AML-specific 
DETG network. 
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