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Current medical imaging systems provide excellent spatial resolution, high tissue contrast, and up to 65535 intensity levels. Thus,
image processing techniques which aim to exploit the information contained in the images are necessary for using these images
in computer-aided diagnosis (CAD) systems. Image segmentation may be defined as the process of parcelling the image to delimit
different neuroanatomical tissues present on the brain. In this paper we propose a segmentation technique using 3D statistical
features extracted from the volume image. In addition, the presented method is based on unsupervised vector quantization and
fuzzy clustering techniques and does not use any a priori information. The resulting fuzzy segmentation method addresses the
problem of partial volume effect (PVE) and has been assessed using real brain images from the Internet Brain Image Repository
(IBSR).

1. Introduction

Recent advances in the medical imaging systems make it
possible to acquire high resolution images with high tissue
contrast. Moreover, these systems provide images up to 16-
bit depth, corresponding to 65535 intensity levels. On the
other hand, the human vision system is not able to recognize
more than several tens of gray levels. Thus, image processing
techniques are necessary to exploit the information contained
inmedical images, to be successfully used in CAD systems. In
addition, computer-aided tools can analyze the volume image
in a reasonable amount of time. These are valuable tools for
diagnosing some neurological disorders such as schizophre-
nia, multiple sclerosis, the Alzheimer’s [1] disease, or other
types of dementia. Image segmentation consists in parcelling
or delimiting the image into different regions according to
some properties or features describing these regions. In brain
magnetic resonance imaging (MRI), segmentation consists
in delimiting neuroanatomical tissues present on a healthy
brain: white matter (WM), gray matter (GM), and cere-
brospinal fluid (CSF). All of the nonrecognized tissues or
fluids may be classified as suspected of being pathological.

Segmentation process can be addressed in two ways. While
the first consists in manual delineation of the structures
usually performed by experts, the latter aims to use automatic
or semiautomatic techniques which use statistical features
that describe different regions on the image. Some of these
techniques use the image histogram to define different tissues
by applying a threshold, under the assumption that a tissue is
characterized by an intensity level or by intensity levels within
an interval [2, 3]. In the ideal case, three different image
intensities should be found in the histogram corresponding
to GM, WM, and CSF, assuming the resolution to be high
enough to ensure that each voxel represents a single tissue
type. Nevertheless, variations in the contrast of the same
tissue are found in an image due to RF noise or shading
effects caused by magnetic field variations. These variations
which affect the tissue homogeneity on the image are a
source of errors for automatic segmentation methods. Other
approaches model the intensity histogram as probability dis-
tributions [4–6] or by a set of model vectors computed by
vector quantization techniques [7, 8], reducing the segmen-
tation problem to model the peaks and valleys present in the
histogram. There are other histogram-based segmentation
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Figure 1: Block diagram of the segmentation method.

approaches that take into account the relative position of
the peaks and valleys or other statistics extracted from
the histogram [8–10]. However, histogram-based techniques
usually does not take into account the spatial information
contained in the image, and different imagesmay have similar
histogramprofiles.On the other hand, segmentation has been
addressed in other works by means of contour detection
techniques [11, 12], region-based techniques [13], or other
approaches that seek for voxels belonging to an initial class
following specific geometrical models [14]. Segmentation
may also be addressed as a classification task, which can
be accomplished by supervised or unsupervised learning.
Clustering techniques group similar voxels in an unsuper-
vised way, according to a similarity criterion [15], while
statistical classifiers may use the expectation-maximization
(EM) algorithm [12, 16, 17], maximum likelihood estimation
(ML), or markov random fields [18]. In addition, fuzzy
variants of the k-means algorithm have also been widely used
as they avoid abrupt transitions in the classification process
[19] and address the PVE issue (i.e., voxels can contain
signal from several tissues at the same time due to limited
image resolution). In this paper we propose a segmentation
method based on first and second order statistical features
extracted from the image.There are segmentation approaches
for 2D-MRI data. However, as MRIs are 3D in nature, we
use 3D statistical features extracted from overlapped cubes
moving through the image to accomplish a 3D segmentation
approach.Moreover, local and nonlocal statistical descriptors
extracted from the image are modelled in an unsupervised
way using a self-organizing map, computing a reduced num-
ber of prototypes representing all the voxels in the image. In
addition, the degree a voxel is modelled by an SOMprototype
is computed by means of clustering the SOM units using
the FCM algorithm [20]. After this introduction, the rest
of the paper is organized as follows. Section 2 presents the
database used to evaluate our proposal and introduces the
image preprocessing stage and themain techniques used such
as SOM and FCM for modeling data and clustering the SOM,
respectively. Section 3 shows the segmentation approach
proposed in this paper and the results obtained using the

images from the IBSR database are depicted in Section 4.
Finally, conclusions are drawn in Section 5.

2. Materials and Methods

This section consists of six subsections which explain in
detail the segmentation method presented in this paper and
summarized in the block diagram shown in Figure 1. More-
over, the databases used to evaluate the performance of the
proposes algorithm and the metric applied for quantitative
assessment of the results are also provided in the following
subsections.

2.1. Databases. The performance of our proposal has been
evaluated in comparisonwith othermethods, using the Inter-
net Brain Segmentation Repository (IBSR) from the Mas-
sachusetts General Hospital [23]. This database provides 18
T1-weighted volumetric images, of 256 × 256 × 128 voxels,
with voxels dimensions between 0.84 × 0.84 × 1.5mm3 and
1 × 1 × 1.5mm3, corresponding to subjects with ages between
7 and 71 years. The images are spatially normalized into the
Talairach orientation and processed by the Center for Mor-
phometric Analysis (CMA) at Massachusetts General Hos-
pital with the biasfield autoseg routines for nonuniformity
correction. In addition, IBSR database also provides manual
segmentation references performed by expert radiologists.
These segmented images were used as a reference to test our
approach as usual in other works which use the IBSR 2.0
database [21, 22].

2.2. Image Preprocessing. Although the images are already
registered in the database, they contain nonbrain structures
such as scalp and skull. These structures have to be removed
before dealing with segmentation. In our case, nonbrain
structureswere removed using the BET 2.0 tool [24] fromFSL
package [25], running two iterations on every subject.We run
BET twice on each subject since nonbrain material remains
on the MRI after one iteration and three iterations tend to
remove some parts of the brain.Thus, running BET twice was
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Figure 2: 2D gray level cooccurrencematrix (GLCM) computation.
Main directions (0∘, 45∘, 90∘, and 135∘) are used and average value is
associated with central voxel.

determined to be optimum. Figure 1 shows the entire process,
from original images to segmented ones.

2.3. Feature Extraction. Unlike other MRI segmentation
approaches which use 2D statistical descriptors [22], we used
3D statistical descriptors extracted from overlapping cubes
slided across the volumetric image. A similar method to
extract 3D features is applied in [26] for 3D computerized
tomography (CT) images. These descriptors include first and
second order features, as (local) histogram features computed
from each cube. First order features are the intensity level
of the central voxel and mean and variance of the intensity
of the voxels in the window. Second order statistics aim to
describe the texture of the image as they take into account the
relationship among voxels in a window. This way, Haralick
et al. [27] proposed 14 features computed using the gray
level cooccurrence matrix (GLCM), which is a structure that
describes the cooccurring intensity values at a given offset.
In other words, the GLCM provides information on how
often a graylevel occurs at different directions. Usually, four
directions are considered in the 2D case: 𝜙 = 0

∘, 𝜙 = 45
∘,

𝜙 = 90
∘, and 𝜙 = 135

∘. However, Haralick suggests using the
mean value of the features computed for the four directions to
guarantee rotation invariance. Moreover, symmetric GLCM
(i.e., taking into account voxels separated by −𝑑 and 𝑑 voxels)
is a common choice in image analysis [27]. The structure of
the 2D-GLCM is shown in Figure 2, where 𝑛

𝑖𝑗
is the num-

ber of cooccurrences of gray levels 𝑖 and 𝑗 at a distance 𝑑

and a specific direction. Thus, the GLCM, matrix defined as
𝐺
𝜙

𝑑
(𝑖, 𝑗), is a square matrix of size 𝑁, where 𝑁 is the total

number of voxels in the window, so that (𝑖, 𝑗) entry represents
the number of cooccurrences of gray levels 𝑖 and 𝑗 for voxels
separated at a distance 𝑑 in direction 𝜙.

In the case of 3D-GLCM, cubes of size 𝑤×𝑤 ×𝑤 instead
of square windows (𝑤 × 𝑤) have to be considered. Moreover,
the windowing process has been performed computing 𝑤

slices in each window. The choice of the window size plays
an important role in the classification process, as it may
determine the discrimination capabilities of the extracted
features.The use of small windows reduces the computational
burden and keeps resolution but it may not be able to capture
the texture. On the other hand, large windows will capture
textural properties but they increase memory and processing
requirements and may result in resolution loss. This way, we

choose 3×3×3windows as a trade-off between performance
and resolution. This process is depicted in Figure 3.

While four independent directions exist in 2D for GLCM
calculation, 13 independent directions are found in 3D, and
GLCM computation can be generalized as
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where𝑁 is the number of gray levels present in the image or
subimage considered for GLCM calculation,𝑉 = (𝑉

𝑥
, 𝑉
𝑦
, 𝑉
𝑧
)

is the position of the voxel, and 𝑑 = (𝑑
𝑥
, 𝑑
𝑦
, 𝑑
𝑧
) are the

distances in each direction. Figure 4 shows a calculation
example of 3D GLCM for 𝑑 = (0, 0, −1) direction and𝑁 = 4

gray levels.
This way, 3D GLCM is computed through an offset 𝑑 =

(𝑑
𝑥
, 𝑑
𝑦
, 𝑑
𝑧
), where 𝑑

𝑥
and 𝑑

𝑦
correspond to 2D offset (as

in 2D GLCM) and 𝑑
𝑧
indicates the 𝑧 coordinate. As the

offset can be applied in 𝑥, 𝑦, or 𝑧 axes, there are 27 possible
offset directions. However, as 𝐺

𝑑
= 𝐺
𝑇

−𝑑
there are only 13

independent directions as indicated in (1). This deals with 13
3D-GLCMs computed from each cube.

Regarding implementation details, cubes are vectorized
as shown in Figure 3 to speed up the process in matlab [28].
Image vectorization aims to convert a 3D image into a matrix
which contains a number of columns corresponding to the
number of extracted cubes. Computations with these struc-
tures are considerably faster in matlab.

Once 3DGLCMhas been defined, Haralick’s textural fea-
tures can be computed as in 2D, but using the 3D GLCM as
previously defined in (1). Mathematical details on Haralick’s
textural features used in this work are provided in the
appendix and can also be found in [8, 26, 27].

In addition to 3DHaralick features, we extract local histo-
gram-based features from each 3D window. These features
includemaximum probability local intensity, mean, variance,
skewness, entropy, energy and kurtosis [15].

Moreover, intensity probability in terms of the entire
image is also included in the feature set. Thus, the entire
feature set extracted from the image is summarized inTable 2.

Features computed from each window (cube) are extrac-
ted from the image and associated with the central voxel
which is described by 23 features (i.e., feature space is com-
posed by 23-dimensional feature vectors).

2.4. Background in SOM. The self-organizing map [29] is
a well-known bioinspired clustering algorithm which aims
to discover the most representative and most economic
representation of data and its relationships [29, 30]. SOM
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Figure 3: (a) 3D overlapped windows extraction process. Note that overlapping is shown as color mixture. (b) 3 × 3 × 3 cube vectorizing
example. Image is split into slices depending on the 𝑧 coordinate. Values in these slices correspond to the column vector index.
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Figure 4: 3D GLCM calculation in direction (0, 0, −1). 𝑧 values
indicate different slices (z coordinate). Arrows show the relationship
between voxels for computing the cooccurrence value in the direc-
tion indicated.

consists of a number of units arranged in a two- or three-
dimensional lattice, and each of them stores a prototype
vector. During the training stage, the prototypes retain the
most representative part of the input data, while the units
on the output space holding similar prototypes (in terms
of euclidean distance) are moved closer together. In other
words, units on the output space are close as their prototypes
are similar, and units being apart on the output space hold
different prototypes. Thus, some important features of the
input space can be inferred from the output space [30].

(1) Input space modelling: the prototypes computed dur-
ing the SOM training, 𝜔

𝑖
, provide an approximation

to the input space, as each prototype models a part of
it.

(2) Topological order: units on the output map are
arranged into a 2D or 3D lattice, and their position
depends on the specific features of the input space.

(3) Density distribution: SOM reveals statistical varia-
tions on the distribution of the input data. This way,
a higher density on the output space corresponds to a
higher density on the input space.

(4) Feature selection: prototypes computed from the
input data space represent the data manifold. Thus,
the algorithm reduces the input space to a set of pro-
totype vectors.

The processmentioned previously is performed in a com-
petitive way, where only one neuron wins (i.e., its prototype
vector is the most similar to the input data instance) with
each input data instance. Nevertheless, prototypes of neurons
belonging to the neighbourhood of the wining unit (called
best matching unit (BMU)) are also updated. Let the SOM
units be linearly indexed. The BMU 𝜔

𝑖
is computed as
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where 𝑆 = {1, . . . , 𝑛} is the output space for an SOM com-
posed by 𝑛 units and V

𝑘
is the 𝑘th input.Moreover, prototypes

of units belonging to the neighbourhood of the wining unit
(also called best matching unit (BMU)) are also updated
according to

𝜔
𝑗
(𝑡 + 1) = 𝜔
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(𝑡) + 𝛼 (𝑡) ℎ

𝑖,𝑗
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𝑗
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where 𝛼(𝑡) is the learning factor and ℎ
𝑖,𝑗
(𝑡) is the neighbour-

hood function defining the unit surrounding the BMU 𝜔
𝑖
.

Both 𝛼(𝑡) and ℎ
𝑖𝑗
(𝑡) decrease exponentially with 𝑡. Thus, the

prototype vectors𝜔
𝑖
quantize the datamanifold and represent

the cluster center of the data mapped on each BMU.

2.5. SOM Clustering Using FCM. SOM can be seen as a
clustering method as it quantizes the feature space by a num-
ber of prototypes, and each prototype can be considered as
the most representative vector of a class. On the other hand,
the prototypes are projected onto a two- or three-dimensional
space while topology (i.e., distribution of SOM units in the
projection space) is preserved. In that sense, SOM assumes
that each map unit acts as a single cluster. In this work,
input space is composed by feature vectors whose coordinates
represent a different feature as presented in Section 2.3.
Thus, each voxel is represented by a 23-dimensional vector
and SOM is used to group these vectors (i.e., voxels) in
different classes. This way, SOM performs hard clustering
over the feature vectors which describe image voxels, and
the cluster a voxel belongs to is represented by the BMU
corresponding to its feature vector. In other words, SOM
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Figure 5: SOM units membership probability for WM (a), GM (b), and CSF (c) clusters according to FCM clustering for IBSR volume 7.

quantizes the feature space. However, this simple model that
considers each unit as a different cluster does not exploit
valuable information contained in SOMs and it is referred
to its topological preservation property (i.e., nearby units
in the map model similar data [29]). Thus, SOM provides
extra advantages over classical clustering algorithms if more
than one unit represents the same class, and a range of
SOM units act as BMU for a subset of the data manifolds.
This adds flexibility to the clustering algorithm and allows
to compute a set of prototype vectors for the same class.
Nevertheless, since each cluster can be prototyped by a set
of model vectors, grouping SOM units is necessary to define
cluster borders [8]. SOM clustering can be addressed by
specific clustering algorithms such as CONN linkage [31, 32],
which implements a hierarchical agglomerative technique
using the topological information contained in the map
and the relationships between the SOM layer and the data
manifold to build clusters. Nevertheless, taking into account
the membership probability of a voxel to a cluster requires
fuzzy or probabilistic clustering techniques. Hence, we used

fuzzy c-means (FCM) algorithmas a voxel can belong tomore
than one cluster at the same time according to a certain
membership measure [20, 33, 34]. FCM for SOM can be for-
mulated as follows. Let V

𝑘
be the 𝑘 feature vector representing

the 𝑘 voxel of the image and 𝜔
𝑖
the prototype associated with

the 𝑖-unit on the SOM. An objective function can be defined
as
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where𝑁 is the number of data samples (voxels),𝐶 is the num-
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where 𝑐
𝑙
is the center of cluster 𝑙, defined as
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=
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Fuzzy clustering is carried out by optimizing the objective
function (4) until

max
𝑘𝑖

{
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𝑡+1
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𝑡
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} < 𝜖, (7)

where 𝜖 ∈ [0, 1] and 𝑡 represents the iteration steps. This
iterative procedure will converge to a local minimum of 𝐽

𝑚

[33].
Once the SOM is trained and clustered, each voxel (des-

cribed by its corresponding feature vector) is mapped to a
cluster, so that it belongs to a specific tissue with a probability.
Figure 5 shows the membership value assigned to each SOM
unit for the three clusters (WM, GM, and CSF), and Figure 6
shows the projection of the SOM prototypes in 3D where the
units have been colored according to the maximum mem-
bership criterion using the probabilities computed by FCM
clustering. However, this method deals with hard clustering
and does not take into account partial volume effect (PVE)
[22, 35, 36]. In order to take into account PVE in our
implementation, we introduced a thresholding parameter 𝜏 to
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determine whether a BMU is included in two classes at the
same time. Thus, we define the𝐷matrix as

𝑑
𝑖𝑘
=






𝑢
𝑖𝑘
− 𝑢
𝑗𝑘






, 𝑗 = 1, . . . , 𝐶, 𝑖 ̸= 𝑗. (8)

Thus, voxels whose BMU fulfills the 𝑑
𝑖𝑘
< 𝜏 constraint are

included in 𝑖 and 𝑘 clusters (i.e., belong to 𝑖 and 𝑘 tissues).
In order to identify the tissue corresponding to each clus-

ter, we use the fact that GM voxels usually present lower
intensity values than CSF, andWM voxels present the higher
intensity values due to theMRI acquisition process.This way,
the cluster with the lower mean intensity value is associated
withGMvoxels and the clusterwith the highermean intensity
values is associated with WM voxels.

2.6. Feature Selection. As shown in Section 2.3, first order
and second order (textural) and histogram-based features are
extracted from each cube. However, using all the features
does not provide the best results as they may not be discrim-
inative enough for the three tissues. Moreover, using non-
discriminative features can deteriorate the clustering results.
Thus, a feature selection stage was performed using a subset
of 5 training images to compute the most discriminative
features.This is addressed by a genetic algorithm (GA), using
the parameters described in [8] which evolves an initial
population of solutions (permutations of the features) aiming
to minimize the fitness function defined as

fitness = − (𝐽WM + 𝐽GM + 𝐽CSF) , (9)

where 𝐽
𝑇
is the mean Jaccard coefficient [7, 15, 23] for a subset

of 5 images (volumes no. 7, no. 8, no. 9, no. 10, and no. 11). It
measures the average overlap between the segmented image
and the segmentation reference provided by the database.
This metric is used in many works [21–23, 37] to assess the
performance of segmentation algorithms and can be defined
as

𝐽 (𝑆
1
, 𝑆
2
) =





𝑆
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∩ 𝑆
2










𝑆
1
∪ 𝑆
2






, (10)

where | ⋅ | represents the cardinality of the set.
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(a) (b)

(c) (d)

Figure 9: Segmentation results for the IBSR volume 7. Some slices of the axial and coronal planes are shown in (a) and (b), respectively.
Segmentation performed by experts is shown in (c) and (d) for the axial and coronal planes, respectively.

(a) (b) (c) (d)

Figure 10: Axial slice from volume no. 7 (a). Segmentation results show CSF (b), WM (c), and GM (d).

(a) (b) (c) (d)

Figure 11: Axial slice from volume no. 7 (a). Segmentation results show CSF (b), WM (c), and GM (d) with PVE correction, 𝜏 = 0.02.

(a) (b) (c) (d)

Figure 12: Coronal slice from volume no. 7 (a). Segmentation results show CSF (b), WM (c), and GM (d).
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(a) (b) (c) (d)

Figure 13: Coronal slice from volume no. 7 (a). Segmentation results show CSF (b), WM (c), and GM (d) with PVE correction, 𝜏 = 0.02.
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Figure 14: Jaccard index calculated throughout the images in the IBSR2 database.

Figure 7 shows the fitness value for 60 generations, which
are enough for the GA to converge.The optimized feature set
is shown in Table 3.

Thus, these features have been used to process the images
on the IBSR database and to provide the segmentation
outcomes based on the Jaccard index as shown in Section 4.

2.7. SOM Topology Selection. The number of SOM units usu-
ally determines the performance of the clustering. Figure 8
shows the quantization error as a function of the number of
units used in the model, computed using the equation

𝑄err =
∑
𝑁

𝑖=1






V
𝑖
− 𝜔
𝑖

bmu






𝑁

,
(11)

where 𝜔𝑖bmu is the BMU corresponding to data sample V
𝑖
and

𝑁 is the number of data samples in the dataset.
The quantization error in this figure represents a measure

of the reconstruction error, which tends to stabilize from
64 units. Thus, we choose 10 × 10 units map as a trade-off
between quantization error and performance. Moreover, 3D
SOM layer with hexagonal lattice was used as it yields better
segmentation results.

3. Segmentation Procedure

Unsupervised segmentation using SOM requires to cluster
the SOM units after training. This can be addressed using a
standard clustering algorithm or a specific algorithm devel-
oped to cluster the SOM layer, as shown in Section 2.5. The
overall process is summarized in Algorithm 1.

Cluster assignment of SOMunits can be addressed in two
ways. Since FCMcomputesmembership probability, the units
can be assigned to the cluster providing the maximum prob-
ability.This method uses themaximummembership criterion
and assumes that a voxel only belongs to a specific cluster and
does not address the partial volume effect (PVE) (i.e., a voxel
can contain signal from different tissues due to the limited
resolution of the acquisition process). The second approach
can assign a voxel to different clusters simultaneously if
the membership probability is above a predefined threshold
𝜏. These two previous approaches have been implemented
in the experiments conducted and experimental results are
providedwith andwithout PVE correction. 𝜏 = 0.02 has been
used in the experiments performed in Section 4, meaning
that voxels whose membership probability differs in 𝜏 for two
different clusters are assigned to these two clusters (tissues)
simultaneously.
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(1) Remove the background (i.e. null intensity voxels).
(2) Extract overlapping cubes from 3DMRI.
(3) Compute features from the cubes.
(4) Normalize the samples for zero mean and unity variance.
(5) Train the SOM.
(6) Cluster the SOM prototypes using the FCM algorithm.
(7) Compute the mean intensity of the receptive field of each cluster.
(8) Assign a tissue to each cluster depending on its intensity profile.
(9) Build the segmented image using the receptive fields of each cluster.

Algorithm 1: SOM-FCM segmentation algorithm for 3D MRI.

Table 1: 3D directions in spherical coordinates and offset coding.
Offset (d) indicates radius value.

Direction (𝜙, 𝜃) Offset vector Direction (𝜙, 𝜃) Offset vector
(0, 0) (0, 𝑑, 0) (90, 45) (−𝑑, 0, −𝑑)

(45, 0) (−𝑑, 𝑑, 0) (90, 135) (𝑑, 0, −𝑑)

(90, 0) (−𝑑, 0, 0) (45, 45) (−𝑑, 𝑑, −𝑑)

(135, 0) (−𝑑, −𝑑, 0) (45, 135) (𝑑, −𝑑, −𝑑)

(0, 45) (0, 𝑑, −𝑑) (135, 45) (−𝑑, −𝑑, −𝑑)

(0, 90) (0, 0, 𝑑) (135, 135) (𝑑, 𝑑, −𝑑)

(0, 135) (0, −𝑑, −𝑑)

4. Experimental Results

Numerous experiments were carried out to assess the perfor-
mance of the proposed algorithm using the IBRS2 database,
as it provides real brain MRIs. Figure 9 shows the segmenta-
tion results for some slices of axial and coronal planes, respec-
tively, for the IBSR volume 7 using themaximummembership
criterion to defuzzify the clustering result. In this case, no
PVE correction is applied as each voxel only belongs to a
single cluster.

Thus, in Figure 9 each tissue is shown as a different color.
Specifically, CSF, GM, and WM are shown as green, orange,
and maroon to identify them in the same figure. In addition,
Figures 9(c) and 9(d) show the segmentation references
from the IBSR database (i.e., manual segmentation by expert
radiologist or ground truth). It is worth noting that expert seg-
mentations included in the IBSR database does not include
internal CSF spaces. However, our approach also delineates
sulcal CSF. This is the main source of difference between our
segmentation outcomes and the ground truth. Thus, Jaccard
index for CSF is not as high as in the WM or GM case.

In order to show segmentation outcomes, Figure 10 pre-
sents a slice of the original IBSR2 volume no. 7 after brain
extraction and the segmented tissues. In this figure, CSF,
GM, and WM are shown in Figures 10(b), 10(c), and 10(d),
respectively. Coronal plane is shown in Figure 12.

In addition, PVE correction is applied as explained in
Section 2.5, and the results are presented in Figures 11, 13,
and 14. As shown in these figures, PVE correction improves
the results, specially for GM delineation. Figure 14 presents
the Jaccard index for the 18 volumes on the IBSR2 database.

Table 2: Feature set extracted from 3D image.

Index Feature Index Feature
3D Haralick (Textural)

1 Energy 7 Sum average
2 Entropy 8 Dissimilarity
3 Correlation 9 Cluster shade
4 Contrast 10 Cluster tendency
5 Homogeneity 11 Maximum probability
6 Variance 12 Difference variance

Local histogram

13 Central voxel
Intensity

14 Intensity mean
15 Intensity variance

Local histogram
16 Mean intensity 20 Skewness
17 Intensity variance 21 Kurtosis

18 Energy 22 Maximum probability
intensity

19 Entropy
Image histogram

23 Intensity probability

Moreover, a comparison with other segmentation techniques
is presented for comparison. As shown in these figures, our
method outperforms the FCMmethod applied over the voxel
intensity levels and also performs better for some volumes
than other methods combining fuzzy clustering and intensity
inhomogeneity compensation techniques. Ourmethod tends
to better delineate WM and also delineates correctly the CSF.
Moreover, brain extraction stage may cause differences in the
final segmentation results in terms of the Jaccard index, as
the number of voxels in the segmentation references may
differ depending on the brain extraction technique (i.e., brain
extraction by manual delineation).

5. Conclusions

In this paper, we present MRI segmentation methods using
3D statistical features (Tables 1 and 4). These features include
first and second order statistics computed using overlapping
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Table 3: Optimized feature set.

Index Feature type Feature
1 3D-GLCM/Haralick-textural Energy
4 3D-GLCM/Haralick-textural Contrast
6 3D-GLCM/Haralick-textural Homogeneity
9 3D-GLCM/Haralick-textural Cluster shade
12 3D-GLCM/Haralick-textural Inverse variance
13 1st order Voxel intensity
14 1st order Voxel mean intensity

15 1st order Voxel intensity
variance

18 Local histogram Energy
20 Local histogram Skewness
21 Local histogram Kurtosis

Table 4: Mean and standard deviation of the Jaccard index for the
segmentation methods in Figure 14.

Algorithm Ref. WM index GM index
SOM-FCM + PVE (𝜏 = 0.02) — 0.85 ± 0.02 0.83 ± 0.03

SOM-FCM — 0.83 ± 0.02 0.82 ± 0.02

NL-FCM [21] 0.85 ± 0.04 0.79 ± 0.04

R-FCM [22] 0.85 ± 0.04 0.84 ± 0.04

FCM [22] 0.83 ± 0.03 0.82 ± 0.03

cubes moving across the image. In addition, local histogram
features computed from each cube are used to compose the
feature space. The feature vectors associated with each non-
background voxel are unsupervisedly modelled by an SOM,
reducing the feature space to a number of prototypes each
of them representing a set of voxels. These prototypes are
grouped to define the cluster borders in the SOM layer using
FCM, allowing a specific prototype tomodel voxels belonging
to different tissues simultaneously. This way, PVE correction
is incorporated to the segmentation algorithm.The algorithm
has been assessed by experiments regarding the modelling
capabilities using the proposed feature set and the proposed
clustering technique combining SOM and FCM. Moreover,
a GA-based feature selection stage is used over a subset of
images to compute the most discriminative features. Seg-
mentation results using the selected features show improve-
ments over other segmentation methods depending on the
specific volume and clearly outperform FCM. In addition,
results using maximum membership criterion to defuzzify
the clustering result and fuzzy clusters (i.e., it is possible to
assign a voxel to two tissues at the same time) are shown.The
first approach does not correct PVE while the latter does.
Segmentation techniques could help to find causes of brain
disorders such as Alzheimer’s disease (AD). In fact, the seg-
mentation algorithm presented in this paper is part of a larger
study performed by the authors on the tissue distribution
for neurological disorders characterization and the early
diagnosis of AD.

Appendix

Haralick’s Textural Features Computed Using
the 3D GLCM
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Notations

(i) 𝑁 is the number of distinct gray levels in the window.
(ii) 𝐺(𝑖, 𝑗) corresponds to the (𝑖, 𝑗)th entry in the 3D

GLCM.
(iii) MDM = ∑

𝑁

𝑖,𝑗
𝐺
𝜙

𝑑
(𝑖, 𝑗) marginal-probability distribu-

tion matrix.
(iv) 𝑝

𝑥
(𝑖) = ∑

𝑁

𝑖=1
𝐺
𝜙

𝑑
; 𝑝
𝑦
(𝑗) = ∑

𝑁

𝑖=1
𝐺
𝜙

𝑑
𝑖th and 𝑗th entry in

the marginal-probability distribution matrix, respec-
tively.

(v) 𝜇
𝑥
, 𝜇
𝑦
, 𝜎
𝑥
, 𝜎
𝑦
, are, respectively, the means and stan-

dard deviations of the partial probability density func-
tions 𝑝

𝑥
and 𝑝

𝑦
. In the case of variance calculation,

𝜇 represents the mean of the values within the 3D
GLCM. Symmetrical GLCM yields 𝜇

𝑥
= 𝜇
𝑦
and 𝜎

𝑥
=

𝜎
𝑦
.

(vi) 𝜎
𝑥

= (∑
𝑁

𝑖=1
∑
𝑁

𝑗=1
(𝑖 − 𝜇
𝑥
)
2
)

1/2

; 𝜎
𝑦

= (∑
𝑁

𝑖=1
∑
𝑁

𝑗=1
(𝑗 −

𝜇
𝑦
)
2
)
1/2.

(vii) 𝜇
𝑥
= ∑
𝑁

𝑖=1
∑
𝑁

𝑗=1
𝑖𝐺
𝜙

𝑑
(𝑖, 𝑗); 𝜇

𝑦
= ∑
𝑁

𝑖=1
∑
𝑁

𝑗=1
𝑗𝐺
𝜙

𝑑
(𝑖, 𝑗).

(viii) 𝑝
𝑥+𝑦

(𝑘) = ∑
𝑁

𝑖=1
∑
𝑁

𝑗=1
𝐺
𝜙

𝑑
(𝑖, 𝑗), 𝑖 + 𝑗 = 𝑘, 𝑘 = 2,

3, . . . , 2𝑁.
(ix) 𝑝

𝑥−𝑦
(𝑘) = ∑

𝑁

𝑖=1
∑
𝑁

𝑗=1
𝐺
𝜙

𝑑
(𝑖, 𝑗), |𝑖 − 𝑗| = 𝑘, 𝑘 = 1,

2, . . . , 𝑁.

Acknowledgments

This work was partly supported by the MICINN under the
TEC2012-34306 project and the Consejeŕıa de Innovación,
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mri,” Tech. Rep., Universitè de Strasbourg. CNRS, Strasbourg
Cedex, France, 2010.



12 Computational and Mathematical Methods in Medicine

[22] D. L. Pham and J. L. Prince, “Adaptive fuzzy segmentation
of magnetic resonance images,” IEEE Transactions on Medical
Imaging, vol. 18, no. 9, pp. 737–752, 1999.

[23] Center for Morphometric Analysis Internet Brain Segmenta-
tion Repository (IBSR), Massachusetts General Hospital, 2012.

[24] FMRIBCentre, NuffieldDepartment of Clinical Neurosciences,
University of Oxford, Brain extraction tool (bet), 2012.

[25] FMRIBCentre, NuffieldDepartment of Clinical Neurosciences,
University of Oxford, Fmrib software library, 2012.
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