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Abstract: Phytochemical investigation of leaves and stembark of Artocarpus lacucha collected in
Thailand resulted in three yet undescribed isomeric flavan-3-ol derivatives (1–3), the four known
compounds gambircatechol (4), (+)-catechin (5), (+)-afzelechin (6) and the stilbene oxyresveratrol
(7). Compounds 1 to 3 feature 6/6/5/6/5/6 core structures. All structures were deduced by NMR
and MS, while density functional theory (DFT) calculations on B3LYP theory level were performed
of compounds 1 to 3 to support the stereochemistry in positions 2 and 3 in the C-ring. Possible
biosynthetic pathways leading to 4 are discussed. The DPPH assay revealed high radical scavenging
activities for 1 (EC50 = 9.4± 1.0 µmol mL−1), 2 (12.2± 1.1), 3 (10.0± 1.5) and 4 (19.0± 2.6), remarkably
lower than ascorbic acid (EC50 = 34.9) and α-tocopherol (EC50 = 48.6). A cytotoxicity assay revealed
moderate but consistent antiproliferative properties of 1 in CH1/PA-1 (ovarian teratocarcinoma) and
SW480 (colon carcinoma) cells, with IC50 values of 25± 6 and 34± 4 µM, respectively, whereas effects
in A549 (non-small cell lung cancer) cells were rather negligible. The performed DCFH-DA assay of
1 in the former cell lines confirmed potent antioxidative effects even in the cellular environment.

Keywords: Artocarpus lacucha; Moraceae; flavan-benzofuran; artocarpinol; radical scavenging activi-
ties; cytotoxicity

1. Introduction

Artocarpus lacucha Buch.-Ham. (syn A. lakoocha Wall. ex Roxb.; Mulberry family;
Moraceae) is a widespread tree species in South-East Asia [1–3]. This species is also known
under the vernacular names Mahat or Ma-Haad in Thailand. Other well-known and
important species of this genus are A. altilis (Parkinson) Fosberg and A. heterophyllus Lam.,
both are important fruit trees in tropical areas.

Despite its wide distribution in natural forests and common uses for ethnomedic-
inal purposes, e.g., against tapeworm infections and also as component in whitening
solutions [4], A. lacucha has not been extensively studied in a phytochemical view. A
couple of studies deal with bioactivities of crude plant extracts [5,6], whereas in com-
parison, only some investigations of purified compounds are reported. Recently, deoxy-
benzoin and flavan derivatives were published to be present in this species [7,8]. Earlier,
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Puntumchai et al. [9] reported prenylated stilbenoid derivatives and Sritularak et al. [10]
published arylbenzofurans from the root bark of this species. Among stilbenoids, oxyresver-
atrol possesses a wide range of bioactivities [4,11–13] and is accumulated in higher amounts
in the heartwood of A. lacucha [14]. However, apart from that, isolectins were also reported
from seeds of this species [15]. Within the genus Artocarpus, accumulation of metabolites
derived from the shikimate pathway seems to be predominant. In particular, compounds
possessing prenyl- and/or geranyl side chains are a quite common feature of this plant
group. For example, prenylated flavonoids were reported and later summarized [16].

Herein we report the results of a phytochemical investigation on A. lacucha, which led
to the identification of three hitherto not yet described flavan-3-ol derivatives named as
artocarpinol A, 3-epi-artocarpinol A and artocarpinol B (1–3), together with gambircatechol
(4), (+)-catechin (5) and (+)-afzelechin (6) from the methanolic leaf extract. The stilbene
oxyresveratrol (7) was further purified from the stem bark extract. From compounds 1–4
the antioxidative properties were determined and compound 1 was investigated with
respect to the cytotoxic activities against three human cancer cell lines. Additionally, the
intracellular effects of the latter compound on radical oxygen species (ROS) levels were
assessed by means of the fluorimetric DCFH-DA assay.

2. Results and Discussion

Chromatographic separation of the crude methanolic extract from leaves and stem
extracts of A. lacucha yielded seven compounds (Figure 1). Compounds 1–3 have not yet
been reported and now found in natural sources for the first time. All compounds were
isolated and their chemical structures established, in particular using 1D and 2D NMR
and MS spectra. Additionally, theoretical calculations using GAUSSIAN09 software were
performed to reveal the most stable isomeric forms of compounds 1–3 (see Section 2.2).
Except compound 7, all described compounds possess a flavan-3-ol core structure, whereas
compounds 1–4 feature further extensions with one or two benzofuran moieties attached
to the A ring of the flavan core. Due to these structural features, we suggest to assign these
compounds to flavan-benzofuran, which would be a novel subclass of flavanols. Radical
scavenging activities were assessed from compounds 1–4 the (see Sections 2.5 and 2.6), and
from compound 1 the cytotoxic properties were determined (Section 2.7).

Compound 4 was previously described from the leaves of Uncaria gambier (W. Hunter)
Roxb. (Rubiaceae) and was named gambircatechol [17]. Its presence in the non-related
species A. lacucha suggests a diversification in biosynthetic pathways starting from catechin
(Section 2.3). The additional isolated compounds 5–7 are known from many plant taxa
and their potential radical scavenger activities were assessed several times [18,19]. These
compounds may contribute together with 1–4 to the plant internal protection against
oxidative stress caused by radical oxygen species (ROS).
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Figure 1. Structures of artocarpinol A (1), 3-epi-artocarpinol A (2), artocarpinol B (3), gambircatechol (4), (+)-catechin (5),
(+)-afzelechin (6) and the oxyresveratrol (7) isolated from A. lacucha.

2.1. Structure Elucidation

Compound 1 was isolated from the leaves of A. lacucha and indicated a molecular ion
[M − H]− of m/z 501.0856 detected with HR-TOF-ESI-MS. This correlates to the molecular
formula C27H18O10 with the calculated m/z 501.0822 for [M − H]−. From the NMR
measurements, one methylene group, nine methine groups and 17 quaternary carbon
atoms were found. Further 1D and 2D NMR measurements indicated a catechin core
structure. Another moiety, which consists of two additional aromatic rings, is bound at
position 8 in the A-ring. These aromatic rings are fused by furan rings between the aromatic
rings A and D and between D and E, as shown in Figure 1.

The NMR chemical shifts, couplings and multiplicities of several nuclei in 1 are
comparable to those of the structural closely related structure gambircatechol (4), which
has also been isolated from U. gambier (compound 4, see below) [17]. The core structure of
catechin is assigned by 1H NMR data, which showed the chemical shifts of the A-ring at δH
6.63 ppm (H-6), B-ring at 6.82 ppm (H-2′), 6.73 ppm (H-6′) and 6.68 ppm (H-5′) and C-ring
at 5.70 ppm (H-2), 4.51 ppm (H-3), 2.89 ppm (H-4a) and 2.68 ppm (H-4b). The chemical
shifts of the carbon atoms in the catechin moiety (Table 1) also very well match those of
the gambircatechol (4). An additionally singlet at δH 7.00 ppm in the 1H NMR points to a
penta-substituted benzene ring (D), while the 13C NMR signals at δC 108.7, 119.7, 141.7,
143.6 and 153.8 ppm demonstrated two sp2 quaternary carbon and three sp2 oxygenated
quaternary carbon, respectively, in this ring. The 3JH–C coupling in HMBC between H-6
and C-8 together with H-5” and C-1” indicated the substituted C-C bond linkage between
A-ring (C-8) and D-ring (C-1”), comparable to gambircatechol (4) [17]. In analogy to this,
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the ether bond linkage between C-7 in the A-ring and C-6” in the D-ring is assigned by
2JH–C coupling in HMBC between H-6 and C-7 and H-5” and C-6”. Important COSY and
HMBC correlations of 1 and also of 3 are given in Figure 2.

The additional NMR spectroscopic data indicated the presence of a fifth benzene ring
(E) in the molecule, which is tetra-substituted. This benzene ring (E) is indicated by the
chemical shifts and multiplicities of nuclei in positions 1′′′ to 6′′′. Two singlet signals at δH
8.45 ppm (H-2′′′) and 7.00 ppm (H-5′′′) and quaternary carbons at δC 152.8 ppm (C-6′′′),
147.1 ppm (C-4′′′), 142.5 ppm (C-3′′′) and 117.7 ppm (C-1′′′) indicate a tri-oxygenated
benzene ring and one C-C bond connection. The 2,3JH–C couplings between H-2′′′ (8.45 ppm)
and C-2” (119.7 ppm), C-3′′′ (142.5 ppm), C-4′′′ (147.1 ppm) and C-6′′′ (152.8 ppm) together
with those between H-5′′′ (7.00 ppm) and C-1′′′ (117.7 ppm), C-4′′′ (147.1 ppm) and C-6′′′

(152.8 ppm) in HMBC indicate the para-oriented proton position of H-2′′′ and H-5′′′. They
further display the C-C bond connection between C-2” in D-ring and C-1′′′ in E-ring, and
ether bond connection between C-3” and C-6′′′.

Table 1. NMR spectroscopic data [ppm] of artocarpinol A (1) 3-epi-artocarpinol A (2) and artocarpinol B (3) recorded in
CD3OD. Positions of the carbon atoms are demonstrated in Figure 1. The relative integral, the multiplicity and the coupling
constants (Hz) are provided. In addition, the 13C NMR chemical shifts and multiplicities are given.

Position
Artocarpinol A (1) 3-epi-Artocarpinol A (2) Artocarpinol B (3)

δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC

Catechin moiety
2 5.70 (1H, d, 3.1) 80.4, d 5.65 (1H, d, 3.3) 79.7, d 4.96 (1H, d, 7.6) 83.7, d
3 4.51 (1H, q, 3.9) 67.4, d 4.47 (1H, ddd, 8.1, 5.0, 3.3) 67.3, d 4.28 (1H, td, 8.0, 5.3) 68.1, d

4 2.89 (1H, ddd, 16.8, 3.7, 1.7)
2.68 (1H, dd, 16.7, 4.3) 25.5, t 3.11 (1H, ddd, 15.9, 5.0, 1.2)

2.72 (1H, dd, 15.9, 7.7) 27.9, t 3.34 (1H, dd, 15.8, 5.3)
3.05 (1H, dd, 15.8, 8.2) 28.6, t

5 - 156.0, s - 155.8, s - 155.3, s
6 6.63 (1H, s) 91.2, d 6.65 (1H, s) 91.3, d - 109.8, s
7 - 158.0, s - 158.2, s - 149.4, s
8 - 107.4, s - 107.4, s - 104.6, s
9 - 148.7, s - 149.4, s - 148.4, s

10 - 102.9, s - 103.6, s - 100.5, s
1′ - 132.1, s - 130.7, s - 131.9, s
2′ 6.82 (1H, d, 2.0) 113.9, d 7.01 (1H, d, 2.1) 116.0, d 7.01 (1H, d, 2.1) 115.2, d
3′ - 145.9, s - 145.8, s - 146.5, s
4′ - 146.3, s - 146.1, s - 146.4, s
5′ 6.68 (1H, d, 8.3) 116.4, d 6.68 (1H, d, 8.2) 115.8, d 6.82 (1H, d, 8.1) 116.2, d
6′ 6.73 (1H, dd, 8.3, 2.1) 120.3, d 6.87 (1H, dd, 8.5, 2.0) 120.4, d 6.89 (1H, dd, 8.2, 2.1) 120.2, d

D-ring
1” - 108.7, s - 108.6, s - 115.1, s
2” 119.7, s - 119.7, s 7.47 (1H, s) 107.2, d
3” - 141.7, s - 141.9, s - 143.5, s
4” - 143.6, s - 143.6, s - 146.0, s
5” 7.00 (1H, s) 98.2, d 6.98 (1H, s) 98.1, d 7.05 (1H, s) 99.1, d
6” - 153.8, s 153.8, s - 151.7, s

E-ring
1′′′ - 117.7, s - 117.5, s - 116.3, s
2′′′ 8.45 (1H, s) 111.7, d 8.34 (1H, s) 111.9, d 7.38 (1H, s) 108.1, d
3′′′ - 142.5, s - 142.4, s - 143.2, s
4′′′ - 147.1, s - 147.1, s - 145.7, s
5′′′ 7.00 (1H, s) 96.3, d 6.97 (1H, s) 96.3, d 7.09 (1H, s) 99.3, d
6′′′ - 152.8, s - 152.5, s - 151.5, s
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Figure 2. Important COSY (1H—1H) (blue) and HMBC (1H—13C) (red) correlations of artocarpinol A (1) and artocarpinol B (3).

The relative configurations of positions 2 and 3 were deduced accordingly to the
isolated (+)-catechin (5), which is a well-known compound from A. lacucha, and the struc-
ture calculation from Gaussian09 software (see Section 2.2). The detection of a cross peak
between H-2 and H-2′′′ in NOESY spectrum indicated a spatial closeness. In particular
a weak nuclear Overhauser effect between H-2 and H-2′′′ demonstrated that these two
protons were in close proximity (2.37 Å) (Figure 3). Furthermore, the chiral center at
position 3 is also deduced by a particular weak nuclear Overhauser effect between H-3 and
H-6′. Based on these data, the R-configuration of position 2 and S-configuration of position
3 were assigned.

Figure 3. Three-dimensional structure simulation and key NOESY correlations (red arrows) of artocarpinol A (1) and
3-epi-artocarpinol A (2).

Three-dimensional structure simulation and important NOESY correlation of com-
pound 1 are illustrated in Figure 3. All the NMR-spectroscopic data are depicted in Table 1
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and the NMR spectra are shown in the Supplementary Materials (Figures S1–S7). According
to the plant source, this compound was named artocarpinol A (1).

Compound 2 showed a molecular ion in HR-TOF-ESI-MS at m/z = 501.0845 [M − H]−,
which corresponds to the molecular formula C27H17O10 (calcd m/z = 501.0822 [M − H]−).
By using NMR, one methylene group, nine methine groups and seventeen quaternary
carbon atoms were found. The results from 1D and 2D NMR measurement strongly
corresponded to artocarpinol A (1). Therefore, the structure of compound 2 also consists of
a catechin core structure and two more aromatic moieties fused by a furan ring. The overall
1H NMR data of compound 2 are similar with those of compound 1, nevertheless the
low-field shifted peak of H-2′ (δH 7.01 ppm), H-6′, (δH 6.87 ppm) and H-4a (δH 3.11 ppm)
in a catechin core structure were found. This result indicated a different configuration
at position 3 and suggests epi-catechin as its core structure moiety. Moreover, a lack
of detectable nuclear Overhauser effect between H-3 and H-2′ and H-6′ in the NOESY
indicates that these protons are not in close proximity, which can be assigned that proton
H-3 and ring A are not both is in quasi equatorial position. On the other hand, the relative
configuration of position 2 is indicated by a significant NOESY cross peak between H-2
and H-2′′′ (Figure 3).

The ether bond (C-7 and C-6”) and C-C bond (C-8 and C-1”) connection between
A-ring and D-ring are confirmed by 2,3JH–C coupling between H-6 (δH 6.65 ppm), C-7
(δC 158.2 ppm) and C-8 (δC 17.4 ppm) together with H-5” (δH 7.00 ppm), C-6” (δC
153.8 ppm) and C-1” (δC 18.6 ppm) in HMBC. In addition, 2,3JH–C coupling in HMBC
between H-2′′′ (δH 8.34 ppm) and C-2” (δC 119.7 ppm) and H-5′′′ (δH 6.97 ppm), C-1′′′ (δC
117.5 ppm) and C-6′′′ (δC 152.5 ppm) indicated the C-C bond connection between C-1′′′

in E-ring and C-2” in D-ring and ether bond connection between C-6′′′ in E-ring and C-3”
in D-ring. The structure of compound 2 is displayed in Figure 1 and it is named 3-epi-
artocarpinol A (2) (C27H18O10). Additionally, Figure 3 illustrates the three-dimensional
structure simulation and key NOESY correlation of compound 2. The NMR-spectroscopic
data is provided in Table 1 and also, 1D and 2D NMR spectra are presented in the Supple-
mentary Materials (Figures S9–S15).

Compound 3 also showed a molecular ion in HR-TOF-ESI-MS at m/z = 501.0835
[M − H]−, which corresponds to a molecular formula of C27H17O10 (calcd m/z = 501.0822
[M − H]−). The chemical shifts and multiplicities of nuclei again indicated the signals
of one methylene group, nine methine groups and seventeen quaternary carbon atoms.
Further interpretation of 1D and 2D NMR spectroscopy suggests the presence of a catechin
core structure together with two additional aromatic moieties fused by furan ring. Accord-
ing to the 1H NMR and 13C NMR data of the structural similar compound gambircatechol
(4), the occurrence of A-ring in catechin core structure was confirmed by two dimensional
heteronuclear NMR experiments. The existence of C-5 (δC 155.3 ppm), C-9 (δC 148.4 ppm)
and C-10 (δC 100.5 ppm) can be confirmed by 2,3JH–C coupling in HMBC between H-4
(δH 3.34 and 3.05 ppm) and these carbons. Two protons showing singlets at δH 7.47 ppm
(H-2”) and δH 7.05 ppm (H-5”) together with four quaternary carbons at δC 115.1 ppm
(C-1”), δC 143.5 ppm (C-3”), δC 146.0 ppm (C-4”) and δC 151.7 ppm (C-6”) indicated of
tetra-substituted benzene containing the trioxygenated group. In addition, 2,3JH–C coupling
between H-2” (δH 7.47 ppm) and C-8 (δC 104.6 ppm) along with H-5” (δH 7.05 ppm)
and C-1” (δC 115.1 ppm) and C-6” (δC 151.7 ppm) in HMBC indicated the para-oriented
position of these two proton and C-C bond (C-1” and C-8) and ether bond (C-6” and C-7)
linkages between A-ring and D-ring.

The existence of the E-ring was demonstrated by the chemical shifts and multiplicities
of nuclei of two singlet protons at δH 7.38 ppm (H-2′′′) and δH 7.09 ppm (H-5′′′) additional
with four quaternary carbons at δC 116.3 ppm (C-1′′′), δC 143.2 ppm (C-3′′′), δC 145.7 ppm
(C-4′′′) and δC 151.5 ppm (C-6′′′). The C-C bond connection between C-6 in A-ring and C-1′′′

in E-ring was confirmed by 3JH–C coupling between H-2′′′ and C-6 in HMBC. Moreover,
the ether bond linkage between C-5 in A-ring and C-6′′′ in E-ring also confirmed by 2,3JH–C
coupling between H-5′′′ and C-6′′′, and H-4 and C-5 in HMBC.
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The relative configuration of positions 2 and 3 are deduced accordingly to the well-
known compound (+)-catechin (5). In addition, a weak nuclear Overhauser effect between
H-3 and H-2′ indicated a close proximity between these two protons. On the other hand,
the lacking of NOESY correlation between H-2 and H-3 indicates that these two protons are
not spatially close, which suggests that they are not located at the same side of the C-ring.
A comprehensive description of the relative and absolute stereochemistry at positions
2 and 3 for compounds 1–3 is carried out in Section 2.2. This yet undescribed catechin
derivative is named artocarpinol B (3) (C27H18O10). The NMR-spectroscopic data is shown
in Table 1 and also 1D and 2D NMR spectra are provided in the Supplementary Materials
(Figures S17–S23).

In addition to the above described compounds, the three flavan-3-ol derivatives gam-
bircatechol (4), (+)-catechin (5) and (+)-afzelechin (6) could also be isolated and identified
from the leaf extract. The stembark extract yielded the stilbene oxyresveratrol (7) in higher
quantities but was not detectable in the leaf extract by HPLC-UV-PDA. The structures of
compounds 4–7 were elucidated by 1D and 2D NMR spectroscopy and HR-TOF-ESI-MS
mass spectrometry. The 1H, 13C NMR and mass spectra are provided in the Supplementary
Materials (Figures S25–S40). The structure elucidation of these compounds was proven
by comparison of the corresponding spectroscopic and spectrometric data with previous
reports [13,17,20].

The presence of the stilbenoid oxyresveratrol (7) in the stem bark deserves special
attention due to its ascribed role as phytoalexin [11]. However, the accumulated amount
present in the stembark extract (67 mg isolated from 8.5 g ethyl acetate extract) and also in
the heartwood of A. lacucha [14] may contradict its role as phytoalexin in this plant species.
Since other stilbenoid derivatives have already been found in this plant species [7], these
compounds may be present constitutively.

Interestingly, none of the prenylated compounds could be detected during this work,
although such compounds have already been described from this species. A comprehensive
literature survey revealed that most of such compounds were identified from the roots
or root bark [8,10,21] and only a few derivatives were isolated from the aerial parts like
twigs [7]. Nevertheless, the presence of compounds featuring prenyl-/geranyl side chains
in the examined extracts could not be excluded, since the analyses by HPLC-PDA resulted
in chromatograms showing a bulk of inseparable compounds, all of them possess identical
UV spectra to compounds 5 and 6.

2.2. Stereochemistry of 1–3

The relative configuration of compounds 1–3 were also deduced from 1H NMR spec-
tra NOESY spectra and in particular by structure simulation using Gaussian09 software.
Therefore the density functional theory (DFT) with six d-type Cartesian−Gaussian polar-
ization functions (6-31G(d,p)) in Gaussian09 was used to calculate the energy-minimized
conformer of these compounds. Each simulation structure was compared with the ob-
served correlations in NOESY as shown in Figure 3. Moreover, their optical rotation (OR)
was calculated by using the density functional theory (DFT) based on the “self-consistent
field” method (SCF). Comparing the observed optical rotation values and the calculated
optical rotation of compound 1 −310.00 (calcd = −355.81), 2 −222.00 (calcd = −275.36)
and 3 −170.00 (−176.10), the results were close significantly. In addition, the estimated
coupling constants from Karplus equation were used to explain the dihedral angle affected
between the two protons at C-2 and C-3. The data from theoretical calculation and structure
simulation were compared to the NMR results.

Compound 1 indicates R-configuration of position 2 and S-configuration of position 3,
which correspond to the results from theoretical calculation and NMR spectroscopy. The
4JH–H long range coupling (W coupling) between H-2 at δH 5.70 ppm (d, J = 3.1 Hz) and
H-4a at δH 2.89 ppm (ddd, J = 16.8, 3.7, 1.7 Hz) implied that these two protons were located
in the same plane. Moreover, the angle between H-3 and H-4a (Φ = 69.9◦), compared to
H-3 and H-4b (Φ = −46.8◦), corresponded to the calculated coupling constant obtained
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from the Karplus equation. This was in accordance to the higher coupling constant value
of H-4b at δH 2.68 ppm (dd, J = 16.7, 4.3 Hz).

Compound 2 demonstrates R-configuration at positions 2 and 3. The protons in
position 2 at δH 5.65 ppm (d, J = 3.3 Hz), and in position 3 at δH 4.47 ppm (ddd, J = 8.1, 5.0,
3.3 Hz) and in position 4a, δH 3.11 ppm (ddd, J = 15.9, 5.0, 1.2 Hz) were in the same plane,
which was not confirmed alone by the coupling between these three protons. This is also
indicated by the lower coupling constant value of proton position 4a (Φ = −53.3◦, ddd,
J = 15.9, 5.0, 1.2 Hz) compared to the proton at position 4b (Φ = −169.7◦, dd, 15.9, 7.7 Hz).
The simulation structures of 1 and 2 are displayed in Figure 3.

Compound 3 indicates R-configuration at position 2 and S-configuration at position 3,
which were the same with compound 1, however, the conformation at C-ring was different.
According to the Karplus equation, the larger coupling constant of proton position 2 in
compound 3 (Φ = 178.1◦, d, J = 7.6 Hz) compared to compound 1 (Φ = 68.6◦, d, J = 3.1 Hz)
and compound 2 (Φ = 52.3◦, d, J = 3.3 Hz) confirms the relative dihedral angle between
H-2 and H-3 from the structure simulation results. Moreover, the larger angle between
H-3 and H-4b (axial, Φ = 164.8◦) compared to the angle between H-3 and H-4a (equatorial,
Φ = 48.9◦) corresponded to the higher coupling constant value of H-4b (dd, J = 15.8, 8.2
Hz) rather than H-4a (dd, J = 15.8, 5.3 Hz).

The 2R,3S-configuration of artocarpinol A (1) and B (3) was also present in compounds
4, 5 and 6. With regard to the substitution pattern in ring B, it seems likely that (+)-catechin
(5) is a biosynthetic precursor of gambircatechol (4), from which compounds 1 and 3 are
then subsequently formed. In contrast, 3-epi-artocarpinol A (2) has a 2R,3R-configuration,
which indicates that 3-epi-catechin is likely its biosynthetic precursor.

2.3. Proposed Biosynthesis of 1–3

A possible biosynthesis of artocarpinol A (1) and artocarpinol B (3) starts from (+)-
catechin (5) and comes across gambircatechol (4) as an intermediate. Biosynthesis of
3-epi-artocarpinol A (2), which starts from the structure of 3-epi-catechin and contains
this as a central moiety, is quite likely very similar. A C-C bond formation is the key
reaction step in this biosynthetic reaction cascade. Comparable C-C bond formations are
key steps in further diversification of flavanoids and related or similar aromatic natural
products. Examples are flavanoid prenylation [22,23] and the biosynthesis of flavanoid
alkaloids [24] and flavonoid C-glycosides [25], which are based on well-studied enzyme-
catalyzed reactions.

The dimerization of flavanoids is furthermore attributed to polyphenol oxidase-
catalyzed oxidation of (+)-catechin (5) to the according ortho-quinone and a subsequent
Michael-type addition to a second (+)-catechin (5) [26]. The resulting non-symmetrical
dimer is described to be the starting point of a further tyrosinase-catalyzed oxidation,
which leads to the formation of the furan ring and splitting off a benzopyranyl group [27].
In this reaction cascade again an oxidation to an ortho-quinone is formulated, which is
followed by spontaneous intramolecular oxycyclization, loss of the benzopyranyl moiety
and rearomatization. According to Janse van Rensburg et al. [27] this reaction leads directly
to the structure of gambircatechol (4), which was a few years later isolated as a natural
product for the first time [17]. A comparable reaction sequence starting from gambircat-
echol (4) and (+)-catechin (5) can further lead to artocarpinol A (1) and artocarpinol B
(3). The biosynthesis of 3-epi-artocarpinol A (2) is likely based on the same mechanism
that starts with 3-epi-catechin. The proposed reaction sequence is shown schematically in
Scheme 1 for the example of the gambircatechol biosynthesis.
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Scheme 1. Possible biosynthetic pathway starting from (+)-catechin (5) and leading to gambircatechol (4) according to
Guyot et al. [26] and Janse van Rensburg et al. [27]. Since the enzymes involved in A. lacucha are not yet discovered,
they are referred as “polyphenol oxidase” in general. The mechanism for the biosynthesis of artocarpinols starting from
gambircatechol (4) likely proceeds in accordance to this proposed mechanism. This reaction cascade starts from position 2”
in 4 with an attack to an oxidized form of (+)-catechin.

2.4. Oxidation of 1–4 to Ortho-Quinone Structures

The easy oxidizability of polyphenols to ortho-quinones, which was already described
in the possible biosynthesis [26,27], can also be observed for the isolated compounds 1–4.
In addition to the molecular ions of the polyphenol structures, all HR-ESI-MS spectra
show signals of ions with a mass, which indicate the loss of two hydrogen atoms. These
oxidized analogues appeared in different amounts (Figures S8, S16, S24, S32, S35 and
S38); in particular the peak of the ortho-quinone form of 4 was the dominant signal re-
sulting from an isolation of gambircatechol (4) (Figure S35). However, only the reduced
form of gambircatechol was detected in the subsequently performed NMR measurement
(Figures S33 and S34). It was therefore not yet possible to determine exactly whether the
oxidation and reduction preferentially occur at positions 3” and 4” in the D-ring or at
positions 3′ and 4′ in the B-ring. The subsequent reactions to the artocarpinols (1–3) make
the positions in the D-ring quite likely. Due to the occurrence of the ortho-quinone in
(+)-catechin (5) (Figure S38), oxidation of the B-ring however cannot be excluded. The
same argumentation can be made for the artocarpinols (1–3), which allow the formation of
ortho-quinone forms either in the E-ring (positions 3′′′ and 4′′′) or in the B-ring (positions 3′

and 4′).
Such relative good oxidizability of compounds 1–5 as well as the quite good reducibil-

ity of their ortho-quinone analogues indicate that 1–5 can contribute to the defense of A.
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lacucha against predators by irritating the oral area of herbivores [28]. Furthermore, it is
interesting to examine the radical scavenger activities, in particular of compounds 1–3, in
some more detail.

2.5. Radical Scavenging Activities of 1–4

The DPPH method (2,2-diphenyl-1-picrylhydrazyl) was applied to investigate the
radical scavenging activity of isolated compound 1–4 [29,30]. To evaluate the EC50 values,
the UV absorption at 517 nm of each compound was recorded after 30 min and compared to
ascorbic acid andα-tocopherol. Compound 1 (EC50 = 9.4± 1.0 µM), 2 (EC50 = 12.2 ± 1.1 µM),
3 (EC50 = 10.0± 1.5 µM) and 4 (EC50 = 19.0± 2.6 µM) exhibited higher radical scavenger ac-
tivity compared to both ascorbic acid (EC50 = 34.9 µM) and α-tocopherol (EC50 = 48.6 µM).
This potent effect is not surprising since compounds 1–4 display hydroxy groups in po-
sitions 3′ and 4′ and in positions 3′′′ and 4′′′, which may, depending on the environment,
easily form ortho-quinones as mentioned in Section 2.4. The formation of comparable
ortho-quinones in presence of DPPH has already been described [31].

2.6. Antioxidative Effects of Artocarpinol A (1) in Cancer Cells

To figure out whether the radical-scavenging properties of compound 1 might be
biologically relevant in cancer cells, its effects on ROS levels were studied by means
of the fluorimetric 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) assay [32] in
various in vitro settings. When applied alone at a concentration of 20 µM, tremendous
antioxidative effects developed within the first 2 h, with average ROS levels decreasing
from 35% to 4% and from 13% to 5% in CH1/PA-1 and SW480 cells, respectively, relative
to untreated controls (100%), whereas the strong oxidant tert-butylhydroperoxide (TBHP;
commonly used as a positive control for ROS generation), raises these levels to 230% at the
same concentration within the same time period. When the two compounds were added
immediately after each other and cells exposed to the equimolar simultaneous combination
for 2 h, 1 completely abolished the oxidative effects of TBHP (even reducing the ROS levels
to less than 25% of untreated controls towards the end of the 2 h test period in both cell
lines), no matter which of the compounds was added first (Figure 4a). When the two
compounds were applied consecutively for 1 h each (thereby minimizing their extracellular
interaction), SW480 cells treated with TBHP first were relieved of oxidative stress as soon
as compound 1 was added, whereas cells pretreated with 1 effectively resisted an oxidative
challenge by TBHP (Figure 4b). We hence conclude that artocarpinol A (1) is a very potent
antioxidative agent even in the cellular environment.
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2.7. Cytotoxic Properties of Artocarpinol A (1)

Representative for compounds 1–3, artocarpinol A (1) was investigated for its capacity
to inhibit the proliferation of cancer cells in vitro by means of the MTT assay, a colorimetric
microculture test, in three human carcinoma cell lines exposed to the compound for 96 h.
Concentration–effect curves (Figure 5) revealed a moderate, but consistent concentration-
dependent activity in two of the three cell lines employed, with IC50 values of 25 ± 6 µM
in the broadly chemosensitive ovarian teratocarcinoma cell line CH1/PA-1 and 34 ± 4 µM
in the P-glycoprotein-expressing colon carcinoma cell line SW480. Only in the highly
multidrug-resistant non-small cell lung cancer cell line A549, its activity proved insufficient
to reach an average IC50 within a concentration range of up to 200 µM.
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Figure 5. Concentration–effect curves of compound 1 in three human cancer cell lines, obtained by the MTT assay with 96 h
exposure (means ± standard deviations from three independent experiments).

3. Experimental
3.1. Plant Material and Extraction Procedure

The plant material was collected in Udon Thani, Thailand in January 2020 (17◦08′03.7′′

N 102◦37′02.5′′ E). A voucher specimen (BK No. 070908) has been deposited at the Bangkok
Herbarium, Plant Varieties Protection Office, Department of Agriculture, Bangkok, Thai-
land.

Leaves—Air-dried and ground leaves of A. lacucha (1.8 kg) were extracted with
methanol at room temperature (3 × 7 days). The filtered methanolic extracts were pooled
and evaporated by using a rotary evaporator to yield a dry residue (162.6 g). The crude
extract was partitioned between distilled water, petroleum ether (PE), chloroform (8.1 g)
and ethyl acetate (EtOAc) (13.3 g), respectively.

Stembark—The air-dried and ground stembark of A. lacucha (4.0 kg) was sequentially
treated with hexane, dichloromethane, ethyl acetate and MeOH (3 × 7 days for each
solvent). All extracts were evaporated by using a rotary evaporator to afford dry residue
of hexane (11.9 g), dichloromethane (6.4 g), ethyl acetate (8.5 g) and MeOH (212.6 g),
respectively.

3.2. General Experimental Procedures

HPLC analyses were performed on Agilent 1100 series (Agilent, Vienna, Austria)
with UV–diode array detection using a Hypersil BDS-C18 column, 250 mm × 4.6 mm,
5 µm particle size, at a flow rate of 1.0 mL min−1 and an injection volume of 10 µL. The
concentration of the injected crude extracts was set after evaporation of the extraction
solvent at 10 mg mL−1 in pure methanol (MeOH; VWR, Vienna, Austria). An aqueous
solution containing 10 mM ammonium acetate (A; VWR, Vienna, Austria) and MeOH
(B) were used as eluents. The following gradient was applied: From 20 to 90% B in A
within 15 min, from 90–100% B in A within 0.1 min and 100% B was kept for 5.9 min. The
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wavelength of detection was set at 230 nm (reference WL 360 nm). MPLC separations
were done over a silica gel 60 column (40–63 µm particle size), eluted with mixtures of
petrol ether (PE), ethyl acetate (EtOAc) and MeOH. TLC analyses were done on silica
gel 60 F254 plates, layer thickness 0.2 mm (Merck, Darmstadt, Germany) developed with
CHCl3/MeOH 90:10 and 80:20. Final purification was done via CC on Sephadex LH-20
(GE Healthcare) eluted with methanol. All the preparative separation procedures were
monitored by HPLC and TLC.

For NMR spectroscopic measurements each compound was dissolved in deuterated
solvent (CD3OD, DMSO-d6; Eurisotop, Saarbrücken, Germany) (the isolated amounts of
1–5 mg in 0.6 mL) and transferred into 5 mm high precision NMR sample tubes. NMR spec-
tra were recorded on a Bruker AVIII 600 spectrometer at 600.25 MHz (1H) and 150.93 MHz
(13C) at the Department of Organic Chemistry, University of Vienna and Bruker 400 MHz
AVANCE III HD spectrometer at 400 MHz (1H) and 100 MHz (13C) at the Department
of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand. Spectra were
processed with MestReNova 14.1.2 software. Chemical shifts (δ) are given in ppm; for
1H relative to residual non-deuterated solvent signals in methanol (δH = 3.31 ppm) and
DMSO-d6 (δH = 2.50 ppm) and for 13C relative to solvent signals (CD3OD, δC = 49.0 ppm;
DMSO-d6, δC = 39.5 ppm). CH3, CH2, CH and Cq are indicated by the multiplicities (q, t, d
and s), respectively, which indicate the signal form, as if the 13C NMR measurements had
been taken without proton broadband decoupling.

The optical rotations (OR) of compounds 1–3 were measured by the sodium D line us-
ing a 100 mm of path length cell on a Perkin Elmer Automatic Polarimeter 341 (Perkin Elmer,
Rodgau, Germany). The concentration of compound 1–3 was each set at 0.25 mg mL−1 in
pure methanol.

HR-ESI-MS spectra were obtained on a maXis UHR ESI-Qq-TOF mass spectrometer
(Bruker Daltonics, Bremen, Germany). Samples were dissolved and further diluted in
ACN/MeOH/H2O in the ratio of 99:99:2 (v/v/v) and directly infused into the ESI source
with a syringe pump. The ESI ion source was operated as follows: capillary voltage:
4.0–4.5 kV, nebulizer: 0.4 bar (N2), dry gas flow: 4 L min−1 (N2) and dry temperature:
180 ◦C. Mass spectra were recorded in the range of m/z 50–1900 in the positive and
negative ion mode. The sum formulae of the detected ions were determined using Bruker
Compass DataAnalysis 4.1 based on the mass accuracy (∆m/z ≤ 5 ppm) and isotopic
pattern matching (SmartFormula algorithm).

Initially, the Gaussian09 software package was used for energy optimization and
frequency calculations of a single molecule. The DFT method was carried out by hybrid
function Becke−3−Lee−Yang−Parr (B3LYP) and double-ζ polarized basis set with six
d-type Cartesian−Gaussian polarization functions (6-31G(d,p)). The DFT calculations were
used for observation energy minima and vibration mode of a single molecule. The optical
rotation (OR) values were also calculated by DFT and “self-consistent field” method (SCF).

IR spectra were recorded on a Bruker Tensor 37 FT-IR spectrometer with Bruker
Platinum ATR (Diamant); resolution: 4 cm−1, number of scans: 64.

3.3. Isolation Procedure

Leaves—The ethyl acetate fraction was chromatographed over MPLC using mix-
tures consisting of petrol ether, ethyl acetate and methanol, starting with 20% EtOAc
in petrol ether to 100% MeOH (v/v) with the compositions 80/20/0; 70/30/0; 60/40/0;
50/50/0; 30/70/0; 10/90/0; 0/100/0; 0/90/10; 0/80/20; 0/70/30; 0/50/50 and 0/0/100
(100–200 mL each). This separation afforded 30 fractions between 20 and 300 mL named as
M01–30. The pooled fractions M05 and M06 (680 mg) were further chromatographed over
Sephadex LH20 eluted with MeOH. This step yielded 13.4 mg of impure 6. Repetition of
this step yielded 3.1 mg of 6. Separation of the combined fractions M10 and M11 (439 mg)
on Sephadex LH20/MeOH yielded 22 fractions, of 10 mL each, yielded 11.5 mg of 1 and
1.5 mg of 3 (8.3 × 10−5%) together with 130.3 mg of impure 2. Repeated CC over Sephadex
LH20/MeOH afforded 1.1 mg of 2 (6.1 × 10−5%. Purification of fraction M08 (67.2 mg) via
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Sephadex LH20/MeOH gave 5 mg of 5 (2.8 × 10−4%) and further 2 mg (1.1 × 10−4%) of
4. Fraction M07 (420 mg) was chromatographed over 20 g silica gel 60, (40–60 µm) using
n-heptane/ethyl acetate/MeOH mixtures in the compositions 90/10/0; 80/20/0; 70/30/0;
50/50/0; 30/70/0; 0/100/0; 0/80/20; 0/50/50 and 0/0/100 (100 mL each; v/v/v). This
step afforded 18 fractions á 50 mL. Fractions 9 and 10 were pooled (327 mg) and subjected
to CC over Sephadex LH20/MeOH, followed prep. TLC developed in CHCl3/MeOH 80:20.
The broadest band was scraped off and the extraction was accomplished with MeOH. The
final purification was achieved by over Sephadex LH20/MeOH. This yielded 1.3 mg of an
ortho-quinone of 4.

Stembark—The ethyl acetate fraction was fractionated over silica gel column chro-
matography using mixtures of hexane, ethyl acetate and methanol, starting with 35% ethyl
acetate in hexane to 20% MeOH (v/v/v) in the compositions 65/35/0, 55/45/0, 45/55/0,
35/65/0, 35/75/0, 15/85/0, 5/95/0, 0/95/5 and 0/80/20. This separation step afforded
ten fractions between 20 and 300 mL named as C01–10. The selected fraction C06 (284 mg)
was further chromatographed over silica gel column chromatography with 60% ethyl
acetate in n-hexane. This step yielded 67.0mg of oxyresveratrol (7).

3.4. DPPH Assay

From compounds 1–4 stock solutions in MeOH with concentrations of 59 µg mL−1

for compound 1, 80 µg mL−1 (2), 100 µg mL−1 (3) and 100 µg mL−1 (4) were prepared.
From these stock solutions dilution series in microwell plates reaching conc. ranges of
117.5 µmol L−1 to 57.3 nmol L−1 for 1, 199.1 µmol L−1 to 97.2 nmol L−1 (2), 159.3 µmol L−1

to 77.7 nmol L−1 (3) and 252.4 µmol L−1 to 123.2 nmol L−1 (4) were prepared by transferring
50 µL of the stock solution into the first well and diluting it with the equal volume of MeOH.
After that, 50 µL of freshly prepared DPPH solution at a concentration of 200 µM was added.
After 30 min the UV extinctions were measured at 517 nm (free radical DPPH) and 700 nm
(reference) using a Tecan Sunrise plate reader. The EC50 values were calculated using
the online tool from www.ic50.tk (accessed on 25 January 2021). The potent antioxidants
ascorbic acid and α-tocopherol were used for comparison.

3.5. Cytotoxicity Assay

For biological experiments, a 40 mM stock solution of compound 1 was prepared
in DMSO (Fisher Scientific, Waltham, MA, USA) and stored at 4–8 ◦C. All cell culture
media, supplements and reagents were purchased from Sigma-Aldrich (St. Louis, MO,
USA) unless stated otherwise, all plasticware from Starlab (Hamburg, Germany), and all
incubations were at 37 ◦C under a moist atmosphere containing 5% CO2 in air. CH1/PA-
1 ovarian teratocarcinoma (kindly provided as CH1 by Lloyd R. Kelland, CRC Centre
for Cancer Therapeutics, Institute of Cancer Research, Sutton, UK; later identified as
PA-1 by STR profiling at Multiplexion, Heidelberg, Germany), SW480 (ATCC CCL-228)
colon carcinoma and A549 (ATCC CCL-185) non-small cell lung cancer cells (both kindly
provided by the Institute of Cancer Research, Department of Medicine I, Medical University
of Vienna, Austria) were harvested from adherent cultures in minimal essential medium
(MEM; supplemented with 10% (v/v) heat-inactivated fetal calf serum (FCS from BioWest,
Nuaillé, France), 4 mM L-glutamine, 1 mM sodium pyruvate and 1% (v/v) non-essential
amino acid solution) by trypsinization and seeded in 100 µL aliquots in densities of 1 × 103

(CH1/PA-1), 2 × 103 (SW480) or 3 × 103 (A549) cells/well into clear flat-bottom 96-well
microculture plates. After 24 h incubation, 100 µL aliquots of test compound serially
diluted in supplemented MEM were added in triplicates, with final DMSO content not
exceeding 0.5% v/v. After incubation for 96 h, MEM was exchanged for 100 µL/well of
a 1:7 v/v mixture of MTT dye (5 mg mL−1 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide in phosphate-buffered saline) and RPMI 1640 medium (supplemented
with 10% FCS and 4 mM L-glutamine). After incubation for another 4 h, mixtures were
replaced with 150 µL DMSO per well and optical densities were measured with an ELx808
microplate reader (BioTek, Winooski, VT, USA) at 550 nm (and 690 nm as a reference). The

www.ic50.tk


Molecules 2021, 26, 1078 15 of 18

50% inhibitory concentrations (IC50) relative to untreated controls were interpolated from
concentration–effect curves and averaged from three independent experiments.

3.6. DCFH-DA Assay

CH1/PA-1 and SW480 cells were harvested from adherent cultures as described in the
Section 3.6 and seeded in 100 µL aliquots in densities of 2.5 × 104 cells/well into clear flat-
bottom 96-well microculture plates. After a 24 h incubation, cells were washed with 200 µL
of Hanks′ balanced salt solution (HBSS; supplemented with 1% FCS), incubated for 45 min
with 100 µL of 25 µM 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) in HBSS (with
1% FCS), and washed again with 200 µL of HBSS (with 1% FCS). Then, 200 µL aliquots of
compound 1 or the positive control tert-butylhydroperoxide (TBHP), each of them diluted
to 20 µM in phenol-red-free Opti-MEM (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA); supplemented with 1% FCS, were added in triplicates. In parallel, 100 µL aliquots of
the two appropriately diluted compounds were added immediately after each other (and
in reverse order) to further wells to yield triplicate combinations with final concentrations
of 20 + 20 µM of the applied substances. Apart from these simultaneous combinations,
consecutive combinations were tested in SW480 cells in additional plates by exchanging
after 1 h the medium containing 20 µM of compound 1 for 200 µL aliquots of fresh medium
containing 20 µM of TBHP (and in reverse order). Fluorescence (ex/em = 485/516 nm) was
measured every 10 min over a total period of at least 2 h with a Synergy HT multimode
microplate reader (BioTek, Winooski, VT, USA). Blank-corrected values relative to negative
(untreated) controls were averaged from three independent experiments.

3.7. Isolated Compounds
3.7.1. Artocarpinol A (1)

Dark amorphous powder; yield 11.5 mg (=6.4 × 10−4% of the plant material);
[α]20

D = −310.00 (c 0.25 mg mL−1, MeOH); UV(MeOH) λ nm (log ε): 204 (4.38), 224 (4.38), 260
(4.30), 284 (4.23), 318 (4.27), 336 (4.23), 352 (4.29); IR: 3364, 1616, 1521, 1466, 1454, 1287, 1155,
1065, 801 cm−1. The IR spectrum is depicted in Figure S47. HR-TOF-ESI-MS m/z 501.0856
[M − H]− (calcd for C27H17O10 501.0822); 1H NMR and 13C NMR data see Table 1. The 1D
and 2D NMR spectra and the mass spectrum are shown in Figures S1–S8.

3.7.2. 3-epi-Artocarpinol A (2)

Dark amorphous powder; yield 1.1 mg (=6.1× 10−5%); [α]20
D =−170.00 (c 0.25 mg mL−1,

MeOH); UV(MeOH) λ nm (log ε): 202 (4.33), 222 (4.32), 254 (4.39), 266 (4.24), 312 (4.19), 324
(4.21); IR: 3355, 2924, 2854, 1605, 1466, 1286, 1160, 1117, 1064 cm−1. The IR spectrum is
depicted in Figure S49. HR-TOF-ESI-MS m/z 501.0835 [M − H]− (calcd for C27H17O10
501.0822); 1H NMR and 13C NMR data see Table 1. The 1D and 2D NMR spectra and the
mass spectrum are shown in Figures S9–S16.

3.7.3. Artocarpinol B (3)

Dark amorphous powder; yield 1.5 mg (=8.3× 10−5%); [α]20
D =−222.00 (c 0.25 mg mL−1,

MeOH); UV(MeOH) λ nm (log ε): 204 (4.17), 224 (4.18), 260 (4.12), 284 (4.08), 318 (4.06), 336
(4.07), 352 (4.05); IR: 3364, 1615, 1461, 1313, 1165, 1120, 1048, 866, 784 cm−1. The IR spectrum
is depicted in Figure S48. HR-TOF-ESI-MS m/z 501.0845 [M − H]− (calcd for C27H17O10
501.0822); 1H NMR and 13C NMR data see Table 1. The 1D and 2D NMR spectra and the
mass spectrum are shown in Figures S17–S24.

3.7.4. Gambircatechol (4)

Dark amorphous powder; yield 2.0 mg (=1.1 × 10−4%); UV(MeOH) λ nm (log ε): 204
(5.16), 224 (4.54), 264 (4.06), 296 (3.94), 322 (3.92); HR-TOF-ESI-MS m/z 395.0779 [M − H]−

(calcd for C21H15O8 395.0767); 1H NMR and 13C NMR data in agreement with [17]. The
1H and 13C NMR spectra and the mass spectrum are shown in Figures S25–S32. NMR
spectroscopic data are listed in Table S1.
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Oxidized form of gambircatechol (4): Dark amorphous powder; yield 1.3 mg
(=7.2 × 10−5%); UV(MeOH) λ nm (log ε): 220 (5.36), 254 (4.21), 308 (4.02), 459 (3.62), 692
(3.54); HR-TOF-ESI-MS m/z 393.0616 [M − H]− (calcd for C21H13O8 393.0610). The 1H and
13C NMR spectra mass spectrum is depicted in Figures S33–S35; comparison of UV spectra
from gambircatechol (4) and oxidized form of gambircatechol are shown in Figure S45.

3.7.5. (+)- Catechin (5)

White amorphous powder; yield 5.0 mg (=2.8 × 10−4%); HR-TOF-ESI-MS m/z
289.0720 [M − H]− (calcd for C15H13O6 289.0712); 1H NMR and 13C NMR data in agree-
ment with [17]. The 1H and 13C NMR spectra are shown in Figures S36 and S37 and the
mass spectrum is depicted in Figure S38. NMR spectroscopic data are listed in Table S1.

3.7.6. (+)- Afzelechin (6)

White amorphous powder; yield 3.1 mg (=1.7 × 10−4%); HR-TOF-ESI-MS m/z
273.0773 [M − H]− (calcd for C15H13O5 273.0763); 1H NMR and 13C NMR data in agree-
ment with [20]. The 1H and 13C NMR spectra are shown in Figures S39 and S40 and the
mass spectrum is depicted in Figure S41. NMR spectroscopic data are listed in Table S1.

3.7.7. Oxyresveratrol (7)

White amorphous powder; yield: 67.0 mg (1.7 × 10−3%); HR-TOF-ESI-MS m/z
267.0621 [M + Na]+ (calcd for C14H12O4Na 267.0633); 1H NMR and 13C NMR data in
agreement with [13]. The 1H and 13C NMR spectra are shown in Figures S42 and S43 and
the mass spectrum is depicted in Figure S44.

4. Conclusions

Chromatographic separation of the methanolic leaf extract of Artocarpus lacucha
yielded in sum seven flavan-3-ol derivatives, whereas three of them (1, 3 and 4) were
very likely derived from (+)-catechin (5) and one (2) might be derived from 3-epi-catechin.
Compounds 1–3 are described for the first time. From the stem bark extract of this species,
the stilbenoid oxyresveratrol (7) could be isolated in higher quantities, which may contract
its general ascribed role as phytoalexin in planta. Compounds 1–5 possess hydroquinone
type structural moieties, which are easily oxidizable to ortho-quinone moieties, which,
however, have only been detected by HR-ESI-MS. All of them show a highly aromatic
core structure with either one benzofuran moiety (in 4) or with two benzofuran moieties
in compounds 1–3, attached to the flavan-3-ol core structure. Compounds 1–4 exhibited
strong radical scavenging activities, which were assessed by employing the DPPH assay.
Furthermore, 1 also showed antiproliferative and antioxidative properties in the two cancer
cell lines CH1/PA-1 and SW480. These radical scavenger activities may also contribute to
the defense mechanism of plant species against the formation of reactive oxygen species.
Overall, these results contribute to the phytochemical knowledge of this plant species and
showed the bandwidth of possible biosynthetic modifications of flavan-3-ol derivatives.
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