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Abstract

Background: Genetic analyses are often limited by the availability of appropriate molecular
markers. Markers from neutrally evolving genomic regions may be particularly useful for inferring
evolutionary histories because they escape the constraints of natural selection. For the majority of
taxa however, obtaining such markers is challenging. Advances in genomics have the potential to
alleviate the shortage of neutral markers. Here we present a method to develop numerous markers
from putatively neutral regions of primate genomes.

Results: We began with the available whole genome sequences of human, chimpanzee and
macaque. Using computational methods, we identified a total of 280 potential amplicons from
putatively neutral, non-coding, non-repetitive regions of these genomes. Subsequently we amplified,
using experimental methods, many of these amplicons from diverse primate taxa, including a ring-
tailed lemur, which is distantly related to the genomic resources. Using a subset of |0 markers, we
demonstrate the utility of the developed markers in phylogenetic and evolutionary rate analyses.
Particularly, we uncovered substantial evolutionary rate variation among lineages, some of which
are previously not reported.

Conclusion: We successfully developed numerous markers from putatively neutral regions of
primate genomes using a strategy combining computational and experimental methods. Applying
these markers to phylogenetic and evolutionary rate variation analyses exemplifies the utility of
these markers. Diverse ecological and evolutionary analyses will benefit from these markers.
Importantly, methods similar to those presented here can be applied to other taxa in the near
future.

Background studies of molecular evolutionary phenomena is the anal-
The accumulating body of draft genome assemblies from  ysis of molecular markers. To date, most molecular phyl-
diverse animal species offers unprecedented opportunities ~ ogenetic studies have relied on sequences from less than a
for resolving the tree of life. A key component of empirical ~ few dozen genes. Mitochondrial DNA sequences have
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been the workhouse of phylogenetic and phylogeographic
studies for the past two decades (e.g. [1,2]). DNA barcod-
ing, a technique is increasingly used to identify species, is
reliant on mtDNA [3]. While these methods have
strengths, each carries some implicit limitations. First,
because mtDNA markers are maternally inherited, the
ability to infer evolutionary events from the perspective of
both sexes is limited. In addition, the reduced effective
population size of mtDNA compared to that of nuclear
markers could confound population genetic inferences.
Moreover, it is now well established that mtDNA
sequences are often incorporated into nuclear genomes in
diverse taxa, including humans and other primates [4,5].

Markers from single-copy nuclear DNA are free from the
aforementioned problems. Often used single-copy
nuclear DNA markers include conserved exons and genes.
However, the effects of natural selection on these markers
can result in homoplasy that has the potential to mislead
phylogenetic analyses [6]. Similarly, genes that experi-
enced positive selection in specific lineages (e.g., RNases
evolution in leaf monkeys, [7]) may have inaccurate phy-
logenetic signals (i.e., they suffer long branch attraction
due to increased number of nonsynonymous substitu-
tions in specific lineages). Conversely, genes that have a
history of strong purifying selection may harbor few phy-
logenetically informative sites, which make them unsuita-
ble for population genetic studies or phylogenetic
resolution in rapidly evolving taxa.

In addition to sequence based markers, events such as the
insertion of transposable elements into ancient genomes
provide excellent phylogenetic information [8]; yet these
markers provides little information on rates of nucleotide
substitution. Because of these limitations, neutrally evolv-
ing nuclear DNA sequence markers may provide the best
source of data for phylogenetic inference and estimates of
evolutionary rate variation.

Advances in genomics give molecular evolutionary studies
an extraordinary opportunity to establish numerous nuclear,
putatively neutral molecular markers. Genomes of many
taxa, including those of primates, have a large amount of
non-coding DNA, which can be used to infer genomic diver-
gence and the influence of neutral mutation rate variation [9-
11]. Therefore, we can obtain large numbers of putatively
nuclear molecular markers from non-coding regions. Even
though currently most taxa lack genome scale information,
sequencing technologies are rapidly improving, and it will
become progressively easier to obtain genome sequences.
The challenges then are, to utilize genomic information to
develop markers that can be used in a variety of ecological,
phylogenetic, and evolutionary applications.

Here we present a method for developing and utilizing
numerous non-coding, non-repetitive markers in pri-
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mates. The availability of whole-genome sequences of pri-
mates combined with their well-resolved phylogenetic
relationships makes them an excellent model system in
which to devise computational and experimental tools to
search for useful molecular markers. Moreover, such
markers from primate genomes are potentially useful
because they could be applied to the several outstanding
phylogenetic problems in primates (for example, [12-
15]). Such molecular markers also could serve as a
resource for understanding the genetic history of primate
populations, a topic of study of interest to molecular ecol-
ogists, primate biologists, and anthropologists.

We demonstrate the utility of these markers by applying
them to phylogenetic and evolutionary analyses. We first
constructed a sample data set of ten non-coding, non-
repetitive markers from ten diverse primate taxa, includ-
ing a strepsirrhine species rather distantly related to exist-
ing genomic resources. We reconstructed the correct
species phylogeny with high confidence and uncovered
significant evolutionary rate variation between lineages.
Furthermore, we have uncovered new and statistically sig-
nificant rate variation between some primate lineages.
Thus, our markers may contribute understanding the pat-
terns and causes of neutral evolutionary rate variation
between lineages. We propose that the methods outlined
here can be used in diverse taxa to address phylogenomic
and population genetic questions.

Results

Amplification of potential markers

Our preliminary screen for orthologous non-repetitive
and non-coding segments based on a three-way alignment
the genomes of two hominid apes (human, Homo sapiens;
and common chimpanzee, Pan troglodytes) and the rhesus
macaque (Macaca mulatta, an Old World monkey)
resulted in nearly 10,000 candidate amplicons. Subse-
quently, we designed 280 (212 from autosomes and 68
from the X chromosome) primer pairs in regions ranging
from ~300 to ~1200 base pairs long, with an average
length of ~600 bps.

We then used the polymerase chain reaction (PCR) to
amplify these markers from the following primate species:
gorilla (Gorilla gorilla, a nonhuman hominid), anubis
baboon (Papio anubis, an Old World monkey), spider
monkey (Ateles geoffroyi, a New World monkey) and tam-
arin (Saguinus labiatus, a New World monkey), and ring-
tailed lemur (Lemur catta, a prosimian). Two hundred
primer pairs (~70%) amplified a single band from G.
gorilla, 170 primer pairs (~v60%) amplified a single band
for P. anubis, 116 (~41%) and 106 (~38%) primer pairs
amplified a single band for A. geoffroyi and S. labiatus
respectively. Furthermore, we amplified single bands in
18 markers (~6%), from a phylogenetically distant clade
from the genome resources, L. catta. Sequences, locations
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in the human genome, and the applicable range of phyl-
ogeny of these markers (total 280 non-coding, non-repet-
itive markers) are listed the Additional file 1 [see
Additional file 1].

We chose 10 markers (6 autosomal and 4 X-linked) for
subsequent analyses (Table 1). These markers are likely to
be orthologous, for the following reasons. First, these ten
markers are unique genomic regions in the human
genome (i.e. they are not included in segmentally dupli-
cated regions, nor do they have closely related paralogous
sequences in the genome, as determined by homology
searches). Second, primers for all the ten markers pro-
duced single bands in PCR reactions in the primate spe-
cies we tested. Third, when we used the experimentally
amplified sequences as a query to search other genomes
using BLAT or BLAST programs, all of these produced a
single hit in the expected locations. Fourth, genetic diver-
gences of these markers also fall within the expected
ranges of neutrally evolving orthologous markers (see
below). However, we caution that it is possible that these
markers are not orthologous, given that most primate
genomes are far from complete, and that unknown copy
number variation may exist between and within species.
Thus, whether the amplified markers of these regions
from other primate genomes truly represent orthologous
segments can only be determined by comparing finished,
high-fold coverage, whole genome sequences from multi-
ple individuals of the primate species in our study. The
markers amplified and sequenced in this study are depos-
ited in the GenBank (accession numbers GQ175181-
GQ175229).

We also retrieved these 10 regions from the publicly avail-
able genome sequences of the following five species:
human (H. sapiens), common chimpanzee (P. troglodytes),
orangutan (Pongo pygmaeus abelii), thesus macaque (M.
mulatta), and the common marmoset (Callithrix jacchus).
All sequences, except for the X1 marker from the chim-
panzee and the A5 marker from macaque, were of high
quality (meaning, < 2 ambiguous sites). The chimpanzee
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X1 and the macaque A5 marker had a substantial number
of ambiguous sites, suggesting that the two particular
markers may potentially include sequencing and/or
assembly errors. Therefore, we experimentally amplified
the two regions from the corresponding species and used
them in further analyses.

Subsequent analyses were all based on these 10 markers.
We used the GBlocks program [8] to remove poorly
aligned sites. The alignment information and nucleotide
content of the markers are shown in Table 2. A1 had the
longest alignment with 778 aligned sites. The GC content
of the 10 markers ranged from 30.5% in A3 to 54.3% in
A2, with an average of 38.7% for the concatenated dataset.
We tested whether base frequencies across taxa are
homogenous using a chi-square test for each of the 10
markers and found no sign of heterogeneity among taxa
(P> 0.1 for all markers, results not shown).

Genetic divergence

To estimate the genomic divergence for these newly deter-
mined markers, we calculated the pairwise Kimura two-
parameter distances [16] among the 10 primate species. A
subset of pairwise divergences is shown in Table 3. All
pairwise distances for the species compared here are
shown in the Additional file 2 [see Additional file 2].

There is a substantial variation of evolutionary distances
among markers. For example, the distance between
human and chimpanzee ranges from 0.59% in A2 to
2.34% in X2. Such regional heterogeneity has been
observed before and could be caused by several different
factors, such as the difference in the proportion of sites
susceptible to mutations caused by DNA methylation
[17,18]. Nevertheless, this variation is within the range of
0%-2.91% observed in previous studies using non-repet-
itive and non-coding regions [9,19]. The mean human-
chimpanzee divergence from these 10 segments is 1.53%
+ 0.16%, which is close to previous estimates (1.24% +
0.07% [9], and 1.19% + 0.02% [19]). Thus, non-coding,
non-repetitive markers developed in this study exhibit

Table I: The ten non-repetitive and non-coding (intron or intergenic regions) markers amplified and analyzed in this study.

Marker Corresponding human chromosome ENCODE region hg 18 location
Al 7 Yes 116019952—-116020821
A2 10 No 130647230-130647739
A3 13 No 91672658-91673369
A4 15 No 84502360-84503129
A5 16 Yes 26155304-26155905
Ab 21 Yes 34098146—-34098878
XI X No 29000135-29000689
X2 X No 31344540-31345210
X3 X No 97879736-97880312
X4 X No 141551659—141552259
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Table 2: Characteristics of the 10 non-repetitive and non-coding segments and for concatenated dataset.

Mean base frequencies (%)

Locus # aligned sites # variable Sites # Pl sites? A Cc G T ModeP
(# analyzed)'
Al 806 (778) 271 96 32.1 235 19.5 25.0 GTR+G
A2 508 (508) 75 27 22.1 23.9 304 235 HKY+G
A3 485 (473) 151 63 314 15.6 14.9 382 GTR+G
A4 806 (673) 234 70 28.1 21.0 21.9 28.9 GTR
A5 619 (569) 205 83 329 18.0 16.3 328 GTR
Aé 631 (569) 234 92 343 14.9 17.9 329 GTR+I
Xl 508 (487) 145 63 28.5 18.0 18.6 349 GTR+G
X2 586 (565) 154 67 30.3 18.7 20.6 30.5 GTR+G
X3 466 (449) 125 43 335 17.0 17.1 324 GTR+G
X4 528 (522) 178 79 32.8 19.9 15.2 32.1 GTR+I
Concatenated 6535 (5592) 1791 684 30.6 19.3 19.4 30.7 GTR+G

I The number of analyzed sites are after removing poorly aligned sites using the Gblocks program [46].

2Pl sites = parsimony informative sites

3 Best fitting substitution models determined using the AIC (see text). (GTR = General time reversible model; HKY = Hasegawa-Kishono-Yano
model; G = The shape parameter of a gamma distribution; | = The proportion of invariable sites in the alignment)

genetic divergences similar to those obtained from larger
scale analyses.

We report that the divergence between baboon and
macaque is 1.29% =+ 0.16% for the concatenated dataset
(range between 0.39% - 1.98%). This value is similar to
an earlier estimate (1.24% in [17]). Within the New
World monkeys, marmoset and tamarin are more closely
related to each other (average distance: 4.02% + 0.27%)
than either is to the spider monkey (Table 3). This obser-
vation is concordant with the generally accepted under-
standing of platyrrhine phylogeny [14].

We also estimated genetic distances between different pri-
mate groups, defined as the mean of all pairwise distances

between two groups in a inter-group comparison [20].
The average divergences between apes and Old World
monkeys, apes and New World monkeys, and Old World
monkeys and New World monkeys are 6.92% + 0.34%,
10.90% + 0.39%, and 11.80% =+ 0.47%, respectively.
Notably, genetic divergences between the spider monkey
and the other two New World monkeys (spider monkey
versus marmoset [5.85% + 0.35%]; spider monkey versus
tamarin [5.35% + 0.32%]) are comparable to the diver-
gence between apes and Old World monkeys (Table 3).

Our data also provide a chance to examine the genetic
divergence between ring-tailed lemur and other primate
groups based upon nuclear, non-coding, non-repetitive
loci. Hominid apes, Old World monkeys and New World

Table 3: Pairwise divergences between some primate species and groups. The Kimura two-parameter model [16] was used to

estimate the divergence.

Kimura two-parameter Distance (% 10-2)

Marker HC HO HMC HBA HMR HSM HTA H-LM HOM-OWM HOM-NWM OWM-NWM
Al 1.30 5.08 8.63 7.18 12.11 11.77 1064 2231 827 11.79 11.93
A2 0.59 2.00 2.32 2.11 491 4.06 5.12 9.31 235 4.78 4.33
A3 1.74  0.86 6.32 6.09 13.82 1231 13.74 2273 6.57 13.14 13.70
A4 1.96 1.97 6.82 6.14 10.80 10.23 1039 24.50 6.83 10.94 9.60
A5 072 329 5.98 5.78 15.30 13.48 1282 29.08 5.77 1391 13.54
Ab 2.16 4.04 8.28 8.69 17.39 15.18 1500 3478 7.36 14.94 16.50
Xl 062 337 9.54 10.24 8.87 8.38 11.49 18.73 9.59 9.76 12.66
X2 234 364 7.25 6.66 11.24 9.97 10.55 17.71 6.40 10.38 10.97
X3 .81 227 7.01 7.51 6.82 8.03 7.09 18.97 6.84 7.57 10.95
X4 2.16 5.02 9.33 8.89 10.44 11.91 12.55 21.86 8.39 11.83 14.28
Concatenated 1.53 324 7.29 6.88 1122 10.60 10.81 22.07 6.92 10.90 11.80

Note. C = chimpanzee, H = human, G = gorilla, O = orangutan, BA = baboon, MC = macaque, MR = marmoset, SM = spider monkey, TA =
tamarin, LM = lemur, HOM = hominoids, NWM = New World monkey, OWM = Old World monkey.
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monkeys are on average 22.29% + 0.75%, 23.66% =+
0.89% and 23.45% + 0.74% divergent from the ring-tailed
lemur based on our data. Previous studies suggested
approximately 20-21% divergence between human and
the ring-tailed lemur [12,21]. Our estimate of the genetic
distance between hominids and the ring-tailed lemur is
similar to this value, and these findings also show that
Old World monkeys and New World monkeys have
diverged slightly more from lemur than have the apes.

Phylogenetic analysis

We performed phylogenetic analyses using the new mark-
ers generated in this study. We used Maximum Parsimony
(MP), Neighbor Joining (NJ), and Bayesian Inference (BI)
methods to construct phylogenetic trees for each of the 10
markers. The best-fitting substitution model for each
marker for Bayesian Inference (BI) was determined by the
Akaike information criterion (AIC) as implemented in
ModelTest3.7 [22] and MrModelTest2.3 [23] (listed in
Table 2). We also performed phylogenetic analyses using
the three methods and a maximum likelihood (ML)
method of the concatenated data set.

Human A2 Human

Gorilla Chimpanzee

Chimpanzee Gorilla

Orangutan

Marmoset
100100/100
Tamarin

Marmoset
10084100
Tamarin
1009738
Spider monkey

—— | TV

Spider monkey

—— | U

o1 o o1

X1 _Human X2

Chimpanzee
Gorilla
Orangutan 10090/

Baboon

100/100/100

Macaque

Marmoset

Tamarin
100/100/

pider monkey Spider monkey

Lemur

Orangutan Frs

Orangutan T
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Overall, none of these methods strongly supported con-
flicting topologies for any single marker. However, indi-
vidual-marker analyses were less well resolved than the
tree based on the concatenated data (compare Figure 1
with Figure 2). Figure 2 represents the total evidence tree
obtained from MP, NJ, ML, and BI of the concatenated
dataset. All the methods recovered identical topology with
100% bootstrap value or 1.0 Bayesian posterior probabil-
ity support for all clades, except for node 1 (Figure 2). This
tree agrees with the current understanding of the primate
species tree in most aspect.

The behavior of combining characters from different par-
titions was evaluated by examining the relative contribu-
tion, or utility, of data partitions to resolving relationships
of the combined data set. Specifically, partitioned Bremer
support (PBS) was calculated using TreeRot3 [24] using
the method of Baker and DeSalle [25] to measure the rel-
ative contribution of each marker to node support. The
larger the partitioned Bremer support is for a given parti-
tion at a particular node, the greater the relative contribu-
tion of that partition to the support of that node. The sum
of all partition lengths for any given node will always

Human

Human A5

Chimpanzee Joonasr ™ Chimpanzee

Gorilla Gorilla
Orangutan
Baboon
freapeen

Macaque

Marmoset
Spider monkey
Lemur Lemur ——— 1]
Human X3 oo, JHuman X4 Human
Chimpanzee 550 J®Gorilla 1cassez |® Chimpanzee

Gorilla Chimpanzee Gorilla

Orangutan Orangutan
Baboon
1001001100

Macaque

Marmoset
TiisarT0
Tamarin
1061100100
Spider monkey

— U

Baboon

70011004100

Macaque

Marmoset

Tamarin

Marmoset
sarrma
Tamarin
10011001100 10095198
Spider monkey

—— 7T

Spider monkey

Lemur

Lemur

o1 o

Figure |

a1 01

Phylogenetic trees for each marker. The numbers at each node were the support values based on Bayesian inference (Bl)/
maximum parsimony (MP)/neighbor-joining (N]) analyses, respectively. The support values <50% were indicated using short

dash "-" as shown in the figure.

Page 5 of 11

(page number not for citation purposes)



BMC Genomics 2009, 10:247

MP NJ ML1 ML2 B
Node | ———m
99 94 99

97 100

100

100

QO Spider monkey
100
100 @ Marmoset
Q Tamarin

http://www.biomedcentral.com/1471-2164/10/247

. Human
@ Chimpanzee
Hominoids
QO Gorilla

.Orangutan

Old World Monkeys

New World Monkeys

O Lemur

0.02

Figure 2

Phylogeny of the ten primates. The tree is derived from the analyses of the concatenated dataset (5592 bp) based on max-
imum parsimony (MP), neighbor-joining (NJ), maximum likelihood (using Garli [MLI] and PHYML [ML2]), and Bayesian infer-
ence (Bl). All the nodes (except node |, which indicated otherwise) received 100% bootstrap proportion and 1.0 Bayesian
posterior probability support. Branch lengths were optimized using NJ based on Kimura 2-parameter distance model. The solid
circle before the taxon name means the data for this taxon were retrieved from UCSC genome browser, while open circle
means the data were sequenced in present study. As for the three ENCODE region markers (Al, A5, and A6), these segments

for baboon were retrieved from NCBI.

equal to the decay index for that node on the total evi-
dence tree [25].

The results of the PBS analysis are presented in Table 4.
The PBS values for 7 nodes across all the 10 markers and
summed PBS scores for each marker are presented to eval-
uate the contribution of a given marker to the overall sup-
port of the simultaneous analysis tree. In order of total
level of support, marker A5 shows the highest degree of
support (56) for the simultaneous analysis tree, while A2
shows the lowest degree of support (16.5). For compari-
son, we also summarized the relative contribution of the
support for the total autosomal markers (A1-A6) and X
chromosomal makers (X1-X4), the concatenated dataset
from the six autosomal markers shows a larger contribu-

tion (258) to the whole tree than that from the four X
chromosomal markers (175) (Table 4).

Relative rate variation in primates

To determine whether the rates of nucleotide substitu-
tions for these 10 non-coding fragments varied between
lineages on the phylogenetic tree, we performed relative
rate tests. For example, to examine rate difference between
apes and Old World monkeys, we used marmoset (a New
World monkey) or the ring-tailed lemur (a strepsirrhine)
as the outgroup (Table 5).

Pairs of lineages that exhibit significant rate differences are
presented in Table 5. We observe that the Old World mon-
key lineage (as a group) is evolving significantly faster

Table 4: Partitioned Bremer support (PBS) for the simultaneous analysis parsimony tree.

Marker Node | Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Total
Al 0 7.5 1.5 7 22 6 12 66

A2 0 5 0.5 3 3 5 4 20.5
A3 0 25 6 6 10 13 4 41.5
A4 0 3 12 3 12 I 6 47

A5 3 7 6 15 9 17 5 62

A6 -2 6 2 I 15 21 4 57

Xl 3 4 5.5 6 17 7 2 44.5
X2 2 4 4.5 7 I5 15 4 51.5
X3 0 | 2.5 6 15 5 | 30.5
X4 2 3 5.5 I 23 I | 56.5
Autosomes (Al-A6) | 31 38 45 71 73 35 294
X chr. (X1-X4) 7 12 18 30 70 38 8 183
Concatenated 8 43 56 75 141 1 43 477
Note. All marker rows show the PBS for each marker for the corresponding nodes shown in Figure 2.
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than the ape lineage. The lengths of Old World monkey-
specific branch are 30-50% longer than the ape-specific
branch since their divergence, depending upon the choice
of the outgroup (marmoset and lemur, respectively). This
finding is in accord with the repeatedly observed 'homi-
noid/hominid-rate slowdown' phenomenon [17,19,26-
29].

Interestingly, we found that the macaque lineage is evolv-
ing significantly faster than the baboon lineage since the
divergence of the two Old World monkey lineages. In the
ten markers studied here (Table 5) the macaque lineage
has accumulated almost twice as many nucleotide substi-
tutions as has the baboon lineage. Indeed, analyses of
ENCODE data have shown that the branch length leading
to macaque is significantly longer than that leading to
baboon [30]. Another recent study using over 8 million
base pairs of aligned genomic sequences among several
Old World monkeys also indicated significant rate differ-
ence between rhesus macaque and baboon [31]. Overall,
New World monkeys evolve at a faster rate than the hom-
inids (Table 5). We also discovered significant rate varia-
tion among New World monkeys. In particular, marmoset
has a significantly faster substitution rate (p = 0.015) than
the spider monkey (Table 5).

These findings indicate that significant rate variation
between lineages is a common feature of primate genome
evolution. Based upon the known differences in life history
traits [see Additional file 3], the observed rate differences
are in general in agreement with the idea that species with
larger body size, and likely longer generation time, tend to
have slower molecular clocks. Baboons are larger and have
longer lifespans than macaques, and spider monkey are
larger and have longer lifespans than marmosets.

Taken together, these findings not only suggest a wide-
spread influence of life history traits on molecular evolu-
tion of primates, but also provide a practical explanation

http://www.biomedcentral.com/1471-2164/10/247

on the fact that the degree of rate difference between spe-
cific primate groups can differ depending upon the actual
lineages compared. For example, the hominid rate slow-
down is more pronounced when rates are compared
between human and macaque than between human and
baboon (Table 5), which is in accord with the rate differ-
ence between macaque and baboon.

Discussion

Genomics is arguably one of the fastest evolving branches
of modern science. Emerging new sequencing technolo-
gies enable analyses of large number of individuals from
a species or to interrogate genetic diversity of a complex
biological community. Yet, aside from the fields of micro-
bial genomics and human population genomics, for most
taxa on earth only a sparse amount of genomic resources
are available.

Developing genome-scale markers from the majority of
the diversity of life will have high payoff, facilitating eco-
logical and evolutionary applications. Here we have illus-
trated that we can develop markers from specific genomic
regions (such as non-coding, non-repetitive regions) uti-
lizing genomic resources that are moderately divergent
from target species. For example, studies estimate that the
human/chimpanzee/macaque and the ring-tailed lemur
has shared the last common ancestor up to 80 million
years ago [32]. Here we have generated markers from
potentially neutral genomic regions in ring-tailed lemurs
using primers based upon human-chimpanzee-macaque
genome alignments.

As far as we are aware, data from non-coding regions of
strepsirrhines are rare, and markers developed in this
study have a great potential to be used in evolutionary
studies of this group. Importantly, we demonstrated that
we could potentially achieve genome scale marker gener-
ation by sampling genomes across the tree of life with
moderate divergence times.

Table 5: Relative rate test: Comparisons of evolutionary changes among several primate lineages.

Lineage | Lineage 2 Outgroup KI K2 dK sd_dK P Ratio
OWM HOM Marmoset 12.20 .14 1.06 0.36 0.003** 1.36
OWM HOM Lemur 23.48 22.20 1.28 0.42 0.002+* 1.48
Macaque Baboon Marmoset 12.48 12.08 0.40 0.18 0.029* 1.93
Macaque Baboon Lemur 23.86 2342 0.44 0.21 0.039* 1.99
Baboon HOM Marmoset 12.00 11.14 0.86 0.37 0.019* 1.28
Macaque HOM Marmoset 12.42 11.15 1.26 0.38 0.000%** 1.43
Marmoset Spider monkey Lemur 23.83 22.77 1.06 0.44 0.015% 1.48
NWM HOM Lemur 23.34 22.06 1.28 0.50 0.011* 1.24

Notes. |. KI, number of substitutions per site that lineage | accumulated starting from the split with lineage 2; dK, the difference between K| and
K2 numbers of substitutions; sd_dK, standard deviation for dK; P, significance value for differences in substitution rates between lineage | and
lineage 2; Ratio, the ratios of the branch length leading to the lineage | to that leading to the lineage 2 since the divergence of the two lineages.

2. HOM = hominoids, OWM = Old World monkey, NWM = New World monkey.
3. *significant at 0.05 level; **significant at 0.01 level; ***significant at 0.001 level.
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We chose Primates as the test group of organisms for this
study because their phylogenetic relationships are well
characterized [33]. We felt that if we could replicate the
known primate phylogeny using the markers we designed
then we would have proof of principle that this type of
marker was useful for phylogenetic analysis. Toward that
end this study was successful. Using a subset of new mark-
ers, we have performed phylogenetic analyses. The result-
ing phylogenies from single markers were generally in
accord with the accepted phylogenetic relationship
among different primate species. In particular, no marker
supported incorrect phylogeny with statistical signifi-
cance. The only node that required several markers to be
resolved was the relationship among human, chimpan-
zee, and gorilla, a notorious phylogenetic example that
had previously been shown to require a large amount of
data to be resolved [34,35]. Given that there are several
outstanding problems remaining in the field of primate
phylogeny (e.g., [13-15,36]), putatively neutral markers
such as developed in this study potentially will be useful
toward resolving these issues.

Previous work focusing on identifying conserved, ultra-
conserved, or lineage specific elements for their potential
functionality (e.g. [37,38]) have recognized the usefulness
of utilizing regions located distantly from annotate genes
as putatively 'meutral' standards to generate statistical
'background' for their analysis. Our approach, while seek-
ing to identify regions of the genome that are not under
functional constraint instead, have adopted such underly-
ing logic and applied it to species whose genomic
sequences are not yet available. It should be cautioned
however that computational logics identifying putatively
‘neutral' markers do not guarantee true neutrality: it
remains as a prime challenge in modern genomics to
experimentally establish neutrality or functionality of
non-coding regions.

It has recently been demonstrated that protein coding
regions are subject to frequent and widespread parallel
evolution [6]; therefore we attempted to choose regions
that are less likely to be subject to homoplastic effects that
could result in misleading phylogenies. That our results
support the well-known topology of Primates (e.g. [33]) is
encouraging, because our understanding of primate phyl-
ogeny has taken over a century to get to the point is at
today. There are still phylogenetic controversies (i.e. the
hominoid trichotomy, the relationships among neotropi-
cal platyrrhines, and the phylogenetic placement of tars-
iers) that still resist resolution besides decades of work.

Using the newly developed markers, we also observed
substantial evolutionary rate variation among different
primate lineages. We not only confirm the phenomenon
of hominid rate slowdown [17,19,26,29], but also uncov-
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ered several other intriguing patterns. In particular, we
observe that since the divergence of rhesus macaque and
anubis baboon (estimated to be approximately 6-8 mil-
lions of years ago, [28,29]), the macaque lineage has accu-
mulated almost twice as many mutations as the baboon
lineage. Substantial rate variation between Old World
monkey lineages could have contributed to earlier contro-
versy over the degree of hominid rate slowdown. When
the macaque lineage is used to compare evolutionary rates
of hominids and Old World monkeys, the degree of rate
slowdown is much stronger (Table 5). We also observed a
strong rate difference between marmoset and spider mon-
key, and to a lesser degree between tamarin and spider
monkey. The marmoset lineage has accumulated almost
50% more mutations than the spider monkey lineage
since the two lineages have split (Table 5). Thus, evolu-
tionary rate variation is a common phenomenon in puta-
tively neutral genomic regions [18].

The relative rate test shows that mutations have accumu-
lated in the Old World monkey and New World monkey
lineage at a rate significantly higher than in the hominids.
We found no significant evolutionary rate difference
between Old World monkeys and New World monkeys,
in contrast to an earlier finding [28]. However, we should
be careful in concluding the patterns of rate variation
between groups based upon data from a few lineages. First
there is the issue of regional rate variation within a
genome. Also, as we have witnessed above, rates can vary
dramatically between closely related lineages (such as
macaque and baboon). The earlier analysis on rate varia-
tion between marmoset and Old World monkeys [28] was
based upon a single, albeit long (~59.8 kbps), ortholo-
gous region. The New World monkey species used in the
previous analysis was marmoset, a fast evolving lineage.
Thus the previous finding of significant rate variation
between Old World monkeys and New World monkeys
[28] may reflect the underlying molecular clock specific to
that genomic regions and the sets of species. In this respect
expanding the usage of non-coding, non-repetitive mark-
ers from many different genomic regions as developed
here to other primate lineages will be highly useful to rec-
oncile these conflicting results and to elucidate the pat-
terns and causes of genomic neutral molecular clocks in
primates.

The markers developed in this study [see Additional file 1]
should thus be of great use for ecological and evolutionary
applications in primates. In particular a subset of markers
from closely related species can be used as 'local' markers
to elucidate recent evolutionary events, while a few mark-
ers that can be amplified throughout the evolution of pri-
mates (such as the 10 markers analyzed here) could be
used as 'global' markers to analyze underlying trends in
primate evolution.
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Conclusion

Molecular markers from nuclear, putatively neutrally
evolving genomic regions are extremely useful in ecologi-
cal and evolutionary applications, yet hard to obtain from
the majority of taxa. Here we describe a method for devel-
oping numerous nuclear markers from putatively neutral
regions of primate genomes. First we demonstrate that by
combining computational and experimental methods, we
can generate a large number of putatively neutral markers
from diverse primate genomes. Our PCR analyses show
that we can amplify numerous markers from several well-
separated primate lineages. We chose a subset of ten
markers among the newly developed markers and ampli-
fied them from five primate species. Notably, we were
able to amplify and sequence a subset of these markers
from a ring-tailed lemur, representing a lineage that
diverged from the lineage leading species from which the
primers were designed 80 million years ago. We show that
these ten markers can reconstruct the phylogenetic rela-
tionships among the ten primate species with high confi-
dence, and useful in analyses of evolutionary rate
variation between lineages. In particular we uncovered
substantial rate variation among lineages, both within
and between different primate families. Thus, these mark-
ers can provide a snapshot of genomic divergences and are
likely to be highly useful in diverse applications.

Methods

Genome-scale mining of potential non-repetitive, non-
coding amplicons

Whole genome assemblies of human (H. sapiens), com-
mon chimpanzee (P. troglodytes) and rhesus macaque (M.
mulatta) (hgl8, panTro2, rheMac2, respectively) were
retrieved from the UCSC genome browser [39]. The
human-chimpanzee-macaque alignments were obtained
using blastz program [40]. Using the 'Ensembl' and
'Known' gene annotations provided by the UCSC genome
browser, we identified non-coding regions, which include
intergenic regions (defined as regions that are at least
1500 base pairs [bps] away from any known or ENSEMBL
gene) and introns. We removed first introns and short
(less than 250 bps) introns from further analyses, since
these may be under selective constraint to preserve regula-
tory signals. We then extracted intergenic and intronic
amplicons of length between 500 to 1500 bps, flanked by
highly conserved 30-50 bp regions to be used as primer
sites. Amplicons within 150 bps from an intronic start site
or end site were also removed. We further filtered ampli-
cons so that at least 80% of the sites are aligned between
human-chimp-macaque and at least 85% of the aligned
sites are from non-repetitive regions.

We then selected candidate primers, by either directly
using the highly conserved flanking regions or automati-
cally designing primers based upon the potential ampli-
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cons sequences, using the software fastPCR [41]. After
designing primer pairs, we used either the BLAT [42] or
BLAST [43] programs to map the primer pairs and the
potential amplicons back to the human and macaque
genome, to select only those that have a single hit in both
human and macaque genome. This step removes poten-
tial spurious PCR products due to the homology to the
primer sequences. Furthermore, we used BLAST program
to map the single hit primers against the supercontig data
of marmoset genome (downloaded from Washington
University Genome Research Center). We chose primer
pairs that satisfy the following criteria only: for each
amplicon, the forward and the reverse primer should hit
the same contig in marmoset genome, and the length of
marmoset high scoring pair (HSP) should be at least 20
bps in length.

Amplifying candidate amplicons from diverse primate
genomes

To demonstrate the usefulness of the markers developed
by our computational approach, we constructed a ten-spe-
cies data set for a subset of markers. This data set is com-
prised of experimentally gathered data from five species
combined with computationally extracted data from addi-
tional five species. First, five species across diverse group
of primates were chosen to test newly developed non-
repetitive and non-coding nuclear primer pairs. These are,
gorilla (G. gorilla, a hominid), anubis baboon (P. anubis,
an Old World monkey), black-handed spider monkey (A.
geoffroyi, a New World monkey), white-lipped tamarin (S.
labiatus, a New World monkey), and ring-tailed lemur (L.
catta, a prosimian). DNA samples used in present study
were purchased from Coriell (Camden, NJ) either as a pri-
mate phylogenetic panel (PRP00001) or individually
(e.g., PRO0036: anubis baboon).

To amplify the markers, approximately 5 ng of genomic
DNA was used as the template for a 10 ul PCR mixture. We
used a "touchdown" PCR program with an initial anneal-
ing temperature at 60°C and temperature subsequently
decreased by 1°C every cycle until the specified annealing
temperature 50°C is reached. Each reaction was per-
formed using the cycles of 30 sec at 94°C, 30 sec at 60-
50°C, and 60 sec at 72°C, with an initial step of 3 min at
94°C and a final step of 4 min at 72°C. Polymerase chain
reaction products were purified using ExoSAP-IT (USB,
Cleveland, USA) and then sequenced on both strands. The
PCR primers were also used as sequencing primers. We
performed gel purifications for the following three mark-
ers: A3 fragment from the baboon, A4 fragment from tam-
arin, and the A1 fragment from the lemur.

After sequencing, we used the BLAT program [42] to con-
firm that there is only one significant hit for each individ-
ual marker. These were combined with computationally
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extracted data from five other primate species. Specifi-
cally, homologous regions for the corresponding ampli-
cons were retrieved from the UCSC genome browser from
three hominids, including human (H. sapiens), chimpan-
zee (P. troglodytes; we amplified the X1 experimentally),
orangutan (P. pygmaeus abelii), and one Old World Mon-
key, rhesus macaque (M. mulatta; we amplified the A5
marker experimentally), and a New World Monkey, com-
mon marmoset (C. jacchus).

Sequence analysis

Initial sequence assembly was carried out using the
Sequencher software [44]. Full alignments were produced
with MAFFT using the L-INS-i MAFFT option [45]. All
alignments were checked by eye, adjusted where neces-
sary. Poorly aligned regions were removed using the
Gblocks 0.91b program [46] with the setting of relaxed
selection of blocks [47]. The final concatenated sequence
alignment that was used for subsequent analyses con-
tained 5592 aligned positions. Compositional stationar-
ity was explored wusing the Chi-Square test in
PAUP*4.0b10 [48].

Phylogenetic analyses were conducted by equally
weighted maximum parsimony (MP) method, with gaps
treated as missing data using PAUP, and by neighbor-join-
ing (NJ) method, based on Kimura 2-parameter model
using MEGA4.1Beta [20]. Maximum likelihood analyses
were performed using both Garli0.96 [49] and PHYML3
[50] programs. The mixed-model analysis was imple-
mented in MrBayes3.1.2 [51]. The best-fitting substitution
models for the ML and Bayesian analyses were chosen by
the Akaike information criterion (AIC) implemented in
ModelTest3.7 [22] and MrModelTest2.3 [23]. Statistical
support for the resulting phylogenies was assayed by con-
ducting 1000 bootstrap pseudo-replicates for MP and NJ
analyses as completed in PAUP and MEGA, and 100 boot-
strap pseudo-replicates for ML analyses as completed in
Garli and PHYML. Mixed-model Bayesian analysis also
employed locus-specific models comparable to those cho-
sen for ML analyses of individual genes. In MrBayes3.1.2,
two independent sets of MCMC chains were run, each
with three heated and one unheated chain for 2 x 10° gen-
erations. These were sampled every 100 generations. All
analyses employed the default flat Dirichlet priors. The
stationarity of each run was assessed by monitoring the
convergence of the standard deviation of split frequencies
and by graphing posterior probabilities of both runs
against generations. The trees and parameter values from
the pre-convergence "burn-in" phases of the runs were
excluded.

The behavior of combining characters from different par-
titions was evaluated by examining the relative contribu-
tion, or utility, of data partitions to resolving relationships
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within the simultaneous analysis tree by calculating the
Partitioned Bremer support (PBS) using TreeRot3 [24].

Significance of evolutionary rate variation among lineages
were tested by relative rate test, using the program
RRTreel.1 [52].
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Additional file 1

Genomic non-coding, non-repetitive markers generated in present
study. Primer ID, corresponding human chromosome, and primer
sequences are listed for the 280 markers.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-247-S1 xls]

Additional file 2

Pairwise Kimura two-parameter distances among the 10 primate spe-
cies. Pairwise Kimura two-parameter distances among the 10 primate spe-
cies for each marker and for concatenated dataset are listed in the table.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-247-S2 xls]

Additional file 3

Life history traits among anthropoid primate species in this study.
Some important life history traits such as age of female sexual maturity,
age at first birth, and lifespan are presented for the 9 ingroup species.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-247-83.doc]
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