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Abstract: Sepsis, a life-threatening organ dysfunction due to a dysregulated host response to infection,
is a leading cause of morbidity and mortality worldwide. Decades of research have failed to identify
any specific therapeutic targets outside of antibiotics, infectious source elimination, and supportive
care. More recently, vitamin C has emerged as a potential therapeutic agent to treat sepsis. Vitamin C
has been shown to be deficient in septic patients and the administration of high dose intravenous as
opposed to oral vitamin C leads to markedly improved and elevated serum levels. Its physiologic role
in sepsis includes attenuating oxidative stress and inflammation, improving vasopressor synthesis,
enhancing immune cell function, improving endovascular function, and epigenetic immunologic
modifications. Multiple clinical trials have demonstrated the safety of vitamin C and two recent
studies have shown promising data on mortality improvement. Currently, larger randomized
controlled studies are underway to validate these findings. With further study, vitamin C may become
standard of care for the treatment of sepsis, but given its safety profile, current treatment can be
justified with compassionate use.
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1. Introduction

Sepsis is a medical emergency that occurs due to a dysregulated host response to infection,
resulting in life-threatening organ dysfunction [1]. The incidence of sepsis continues to rise in hospitals
and intensive care units worldwide: approximately 31 million cases of sepsis occur globally every
year, with approximately 6 million deaths [2]. In the United States, an estimated 535 cases of sepsis
occur annually per 100,000 people, accounting for more than USD 23 billion in annual U.S. hospital
expenditures in 2013 [2,3]. Despite new advances in critical care support techniques, 30-45% of patients
die following hospitalization with severe sepsis and septic shock [4,5]. Sepsis can affect every organ
system to cause morbidity and mortality. One particularly devastating complication of sepsis is acute
respiratory distress syndrome (ARDS), a severe form of sepsis-induced lung injury. Compared with
other forms of acute lung injury, patients with sepsis-induced lung injury spend more days on the
mechanical ventilator and have a higher mortality rate [6]. Sepsis disproportionately affects elderly
patients with comorbidities, such as impaired immune function and limited functional status [7].
The most common infectious source of sepsis in patients is pneumonia, followed by intra-abdominal
and endovascular infections [8].
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In sepsis, reactive oxygen and nitrogen species are generated, leading to the oxidant-induced
activation of transcription factors that drive potent inflammatory cytokine and chemokine expression [9].
Oxidants produced during sepsis promote endothelial dysfunction, injuring surface glycocalyx proteins
(e.g., syndecan-1) as well as damaging cell membranes and promoting the expression of intercellular
adhesion molecules. During sepsis, endothelial cell damage leads to the loss of microvascular barrier
function, resulting in enhanced vascular permeability. Furthermore, oxidant-induced expression of
inflammatory cytokines and chemokines upregulates endothelial cell surface adhesion molecules,
which leads to activated neutrophil and platelet adhesion in the microvasculature. Despite uncovering
the complex multicellular activation pathways that drive tissue injury, a “cure” remains elusive.
Clinical trials have included over 15,000 patients and spent over one billion US dollars in randomized
clinical trial costs [10]. These trials have targeted mediators of inflammation or coagulation such as
statin agents [11,12], activated protein C [13], and monoclonal antibody to endotoxin [14], but have not
safely reduced sepsis mortality, suggesting that single-target therapy fails to meet the challenges of
treating the complex pathophysiology of sepsis. Overall, this accumulated knowledge strongly suggests
that a more “pleotropic” (i.e., broad-based) form of therapy that can interrupt multiple pathways is
required to uncover the “holy grail” of treating sepsis. At present, in 21st-century critical care practice,
antibiotics, “source control,” and maintaining hemodynamic stability with fluid administration and
vasopressors constitutes the mainstay therapy for sepsis. More recently, there has been emerging
evidence for the use of vitamin C as a treatment of sepsis.

2. Pharmacology and Physiology of Vitamin C

L-Ascorbic acid (AA), or vitamin C (Figure 1), is a water-soluble vitamin which is found in all
fruits and vegetables, but is particularly concentrated in citrus fruits, green peppers, strawberries,
broccoli, green leaves, and potatoes [15]. It was first isolated between 1927 and 1930 from ox adrenals
by the Nobel laureate Albert Szent-Gyorgyi at Cambridge University and the Mayo Clinic. Most animal
species synthesize vitamin C in the kidneys or the liver. Humans, some mammals (such as gorillas,
monkeys, bats, and guinea pigs), birds, and fish, however, have lost the ability to synthesize vitamin
C [16]. More specifically, these species lost the ability to synthesize the L-gulono-y-lactone oxidase
(GLO) enzyme, which catalyzes the last step in the vitamin C synthesis: oxidizing r-Gulono-1-lactone
into L-Ascorbic acid [16]. The human GLO gene was inactivated by random mutations somewhere
between 38 and 92 million years ago [17]. This gene loss was compatible with survival, however,
because of the abundance of vitamin C in the human diet [18].
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Figure 1. The last step in vitamin C (C¢HgOg, or L-Ascorbic acid) biosynthesis. Humans have lost the
ability to synthesize the GLO enzyme, and thus are dependent on exogenous vitamin C intake through
their diet. Modified from: U.S. National Library of Medicine, PubChem.
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2.1. Vitamin C Homeostasis

Since humans do not synthesize vitamin C, they depend on vitamin C dietary intake to stay alive.
The human body stores approximately 1.5 g of vitamin C, and scurvy develops when the stores drop
below 0.3 g, which is equivalent to a plasma concentration of less than 11 uM [19,20]. Normal plasma
vitamin C concentrations range from 50 to 80 uM, but tissue concentrations can often reach millimolar
levels (with the exception of saliva) [19]. Vitamin C is moved intracellularly by carrier proteins known
as sodium-dependent vitamin C transporters (SVCT). Two SVCT isoforms exist—SVCT1 and SVCT
2—and these isoforms are highly conserved glycoproteins with 12 transmembrane domains [21,22].
While almost all body tissues (including white blood cells and platelets) express SVCT2, SVCT1 is
expressed exclusively by intestinal epithelial cells, the proximal convoluted renal tubules, and the
liver [21,22].

When taken orally, SVCT1 in the apical membrane of the small intestinal epithelial lumen
(Figure 2) actively transports vitamin C into the epithelial cells [21]. Additionally, in the intestinal
lumen, an oxidized form of vitamin C (dehydroascorbic acid (DHA)), is transported by the abundant
facilitative glucose transporters GLUT into the intestinal epithelium [21]. More specifically, GLUT2
and GLUTS, which are expressed on the apical (luminal) membrane of the intestinal epithelium, are
integral to DHA uptake [23]. Following absorption, the water-soluble vitamin C molecule distributes
in the blood and the extracellular compartment. Tissues then take up the vitamin C via the SVCT2
transporters (Figure 2) [23]. Red blood cells are an exception, as they take up DHA and reduce it via
the glutaredoxin protein or glutathione [24]. Finally, the kidneys freely filter vitamin C and reabsorb it
via SVCT1 in the proximal convoluted renal tubules [23].
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Figure 2. Ascorbic Acid (AA) and dehydroascorbic Acid (DHA) transporters (left). Concentration of
AA and DHA in human organs and cells in uM (right). Inspired by Padayatty and Levine [25].

Pathologically, vitamin C deficiency presents as scurvy, but many disease states alter vitamin C
homeostasis. Vitamin C concentrations are often low in acute illnesses such as myocardial infarction,
acute pancreatitis, sepsis, and critical illness in general [26-28]. Moreover, aging humans (who have a
higher baseline critical illness mortality) require more dietary vitamin C to reach a desired plasma
ascorbate concentration. These observations are confirmed in animal studies that show diminished
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SVCT1 mRNA expression with aging, resulting in a decline in the capacity of cells to absorb vitamin
C[28,29].

The pharmacokinetics of vitamin C absorption were explored in a landmark study of human
volunteers [30]. The bioavailability, which is the percentage (%) of the drug that reaches the systemic
circulation, is 100% for a single oral dose of 200 mg but decreases to 33% with a single dose of
1250 mg [30]. This is because the intestinal SVCT1 transporter achieves maximal saturation around
500-1000 mg (Figure 3). In addition, the bioavailability does not decrease linearly because of alterations
in renal vitamin C excretion [30]. Overall, the maximum peak plasma concentration that was achieved
with long-term, high-dose oral dosing (i.e., 3 g every 4 h) is 220 uM [31]. Intravenous vitamin C
administration, however, can bypass the limitations of SVCT1-induced bioavailability to achieve
70-fold higher plasma concentrations compared to oral administration [31]. In contrast to oral intake,
intravenous administration can achieve a peak plasma concentration up to 15,000 uM [31]. It is key to
understand that most of the earlier trials did not appreciate the differential pharmacokinetics of vitamin
C and made assumptions that the plasma levels achieved with oral administration are equivalent with
the intravenous administration.
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Figure 3. Infographic of differential vitamin C peak plasma concentrations based on alternative routes
of administration and dosage.

2.2. Pleiotropic Physiologic Functions of Vitamin C

Vitamin C has numerable physiologic molecular functions due to its role as an electron
donor/reducing agent [25]. These include direct antioxidant properties and cofactor properties
for a wide array of enzymes in a wide variety of cellular structures and organelles, resulting in varied
tissue and organ-system effects (Table 1).
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Table 1. Pleiotropic physiologic functions of vitamin C.

Reverses the oxidation of lipids by the neutrophil reactive oxygen species (ROS) [32,33].
The key antioxidant of thebody =~ Reduces depletion of other antioxidants (e.g., vitamin E and glutathione) to prevent oxidation
of lipids, proteins and DNA [34-40].

Cofactor for Dopamine $-Hydroxylase, catalyzing the formation of norepinephrine
Norepinephrine biosynthesis from dopamine.
Enhances adrenergic receptor activity [41].

Facilitates recycling of the enzyme cofactor tetrahydrobiopterin (BH4); a required and

Dopamine biosynthesis rate-limiting step in the hydroxylation of L-tyrosine to form L-DOPA [42,43].

Cofactor for peptidylglycine x-amidating monooxygenase (PAM), involved in vasopressin

Vasopressin biosynthesis biosynthesis [44].

Vital in wound healing; cofactor for Propyl 3-hydroxylase, prolyl 4-hydroxylase, and lysyl
hydroxylase which catalyze the formation of procollagen and elastin biosynthesis [45,46].
Catalyzes the hydroxylation of procollagen to form the collagen triple-helix [47].

Induces fibroblast collagen gene expression, stimulating the production of new collagen [48].

Connective tissue maintenance

Needed for the hydroxylation (thus downregulation) of Hypoxia Induced Factor 1« (HIF-1cx)
by propyl and lysyl hydroxylases and FIF-1 (asparaginyl hydroxylase or factor inhibiting
HIF-1) [49-51].

HIF-1a is a protein-transcription factor that regulates hundreds of genes in response to
hypoxia and cellular stress, and is a marker of cellular hypoxia with increased expression in
states of shock [52].

Regulation of cellular gene
expression in response to hypoxia
and stress

Cofactor for y-butyrobetaine hydroxylase, a dioxygenase involved in carnitine synthesis,
which transports fatty acids into the mitochondria [53,54].

L-Carnitine can down-modulate tumor necrosis factor (TNF-«) by endotoxins, affect lipid
metabolism, and reduce septic shock severity [55].

Carnitine biosynthesis

Severe vitamin C deficiency (scorbutic) results in impaired neutrophilic phagocytosis and ROS

generation [56—60].

In situations of impaired neutrophilic ROS production, vitamin C enhances the hexose

monophosphate shunt (HMPS) and antibody dependent cell cytotoxicity (ADCC) resulting in
Phagocytic cell function increased bacterial killing [60].

Improves chemotaxis [61].

Accumulation in neutrophils may protect them from neutrophil dependent oxidative

bursts [62,63].

Reduces inflammation and ROS via attenuation of NF-«B activation [64—66].

Promotes neutrophil apoptosis, instead of necrosis via activation of caspase-3 proteins [67,68].
Inflammation: Immune High-dose intravenous vitamin C (HDIVC) treatment has been shown to decrease circulating
cell clearance plasma cell-free DNA (resulting from neutrophil extracellular trap (NET) formations, or
NETosis), and have been implicated in sepsis-induced end-organ failure [69-84].

Lymphocytic function May promote lymphocytic proliferation, differentiation, and maturation [85,86].

Cofactor for ten-eleven translocation (TET) enzymes and Jumonji-C domain-containing
histone demethylases (JHDMs); vitamin C increasing enzymatic activity of both, resulting in
increased DNA demethylation and histone demethylation, respectively, which controls gene
transcription and gene activation or repression [87-89].

Epigenetic modulation

High concentrations directly inhibit bacterial growth and exhibits bactericidal activity

Direct antimicrobial activity in vitro [90,91]

Inflammatory mediators Modulates cytokine production and can decrease circulating histamine levels [61,92-94].

HDIVC decreases circulating thrombomodulin, an endothelial membrane protein receptor for
Endothelial function thrombin that converts thrombin to an anticoagulant capable of activating protein C [95].
Decreases plasma Syndecan-1 levels, a by-product of endothelial glycocalyx shedding [96-108].

Alters platelet oxidative states by inhibiting CD40 ligand expression on platelet surfaces [109].
Prolonged platelet exposure to HDIVC increases Thromboxane-B2 and Prostagladin-E2
levels [110,111].

HDIVC stabilizes ADAMTS13 levels and its von-Willebrand factor cleavage activity [112].

Platelet function and Thrombosis

2.3. Vitamin C’s Mechanism of Action in Sepsis and ARDS

Subnormal plasma vitamin C concentrations are common in critically ill patients and, in particular,
patients with sepsis [26,27,32,113]. Furthermore, lower vitamin C levels correlate with higher incidence
of organ failure and worse outcomes in septic patients [93]. In fact, very low plasma vitamin C levels,
averaging around 18 uM, are a predictable feature in severely septic patients [114]. This is caused
by the explosive cytokine release present in sepsis, which interferes with the cellular regulation of
vitamin C absorption. Seno et al. showed that inflammatory cytokines, such as TNFx and IL-1f3,
known to be present in sepsis, negatively regulate endothelial SVCT2 activity; this results in the
depletion of intracellular vitamin C levels [115]. In addition, during this overwhelming disease state of
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oxidative stress and increased reactive oxygen species (ROS) production, there is increased vitamin C
consumption by the somatic cells and by leukocyte turnover [40]. As Figure 2 suggests, leukocytes can
have an up to 100-fold increase in the concentration of vitamin C compared to plasma. The increased
production and turnover of those cells contributes to vitamin C depletion in sepsis [40].

Many of the physiologic roles of vitamin C are important in patients with sepsis. These include
the key antioxidant properties of vitamin C, scavenging reactive oxygen species, repletion
of other crucial body antioxidants vitamin E and glutathione [32,35,38,39,42,49,62,64,66,68,116],
and cardiovascular benefits by supporting endogenous norepinephrine, dopamine, and vasopressin
production [41,117,118]. Furthermore, vitamin C protects against the loss of epithelial and endothelial
barriers and enhances neutrophil function in a multidimensional way. Moreover, vitamin C promotes
lymphocytic and neutrophilic activity while attenuating neutrophil necrosis and NETosis (neutrophil
extracellular trap), which contributes to multiorgan failure [69-83,119-122]. Vitamin C also regulates
nuclear cellular responses to stress and hypoxia by regulating HIF-1« [40,49,52,62,123], produces
NF-«B epigenetic modifications [124] through its ability to de-methylate histones [75,82,87-89,125,126],
regulates pro-inflammatory and coagulation gene expression [28,41,42,44,123,125-127], and orchestrates
the immune system and circulating cytokine homeostasis in pleotropic ways (Table 1). The combination
of vitamin C’s vital functions and its depletion in septic states justifies the use of high-dose intravenous
vitamin C (HDIVC) in the early phases of severe sepsis and septic shock [116].

Vitamin C also has effects in the septic patient that are more specific to sepsis-induced ARDS,
which are summarized in Figure 4. These include enhanced lung epithelial barrier function (i.e.,
via claudins and occludins) and by epigenetic and transcriptional enhancement of protein-channels
which regulate the alveolar fluid clearance, such as aquaporin-5, cystic fibrosis transmembrane regular
(CFTR), epithelial sodium channels (ENaC) and Na*/ K* ATPases [128,129]. There is rising evidence
that HDIVC treatment in sepsis-induced ARDS results in significantly lower levels of circulating
cell-free DNA [108], which have been associated with multiorgan failure. HDIVC treatment also
resulted in significant reduction of plasma circulating syndecan-1, a component of the endothelial
glycocalyx, whose levels closely correlate with and predict mortality in patients with severe sepsis and
ARDS [107].
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Figure 4. Pleiotropic effects of high-dose intravenous vitamin C (HDIVC) in sepsis-induced acute
respiratory distress syndrome (ARDS). The orange star [#] points to possible therapeutic targets of
HDIVC. The figure illustrates a human alveolus with the capillary membrane, and the blood-gas barrier
during sepsis.

3. Clinical Trials

The initial data on the clinical use of vitamin C was obtained in animal models. Subsequently,
several completed clinical trials contributed evidence for the therapeutic effects of HDIVC in human
sepsis. The first study, published in 1986, treated 16 ARDS patients with intravenous vitamin C (1000 mg
IV every 6 h) plus antioxidants (N-acetylcysteine, selenium, and vitamin E) versus 16 ARDS patients
who received the standard care at that time (i.e., control group) [130]. There was a dramatic reduction in
mortality in the vitamin C group—37% versus 71% in the standard care group (p < 0.01) [130]. A phase
I trial in 2014 [114] proved that plasma vitamin C levels in patients with severe sepsis were low, almost
at scorbutic levels, and that HDIVC administration had a dose-dependent effect in the prevention of
multi-organ failure, as measured by the Sequential Organ Failure Assessment (SOFA) scores [131].
Patients who received a total of 200 mg/kg/day of HDIVC for 4 days (administered in 50 mg/kg/dose,
every 6 h), had significantly lower SOFA scores than placebo, and even lower scores than the patients
who received lower-doses of IV vitamin C (50 mg/kg/day administered at 12.5 mg/kg/dose, every 6 h
for 4 days). In this trial, the patients in the HDIVC group (200 mg/kg/day) achieved plasma levels of up
to 3000 uM at day 4. The patients receiving HDIVC also demonstrated statistically lower inflammatory
biomarker levels (C-Reactive protein and procalcitonin) and lower thrombomodulin levels, which is a
marker of endothelial injury [114].

In 2016, a retrospective before-after study of 94 patients with severe sepsis and septic shock [132]
compared patients who received hydrocortisone (50 mg IV every 6 h for 7 days or until ICU discharge),
thiamine (200 mg IV every 12 h for 4 days or until ICU discharge) and HDIVC (6000 mg/day, in 4
divided doses for 4 days or until ICU discharge) to control. This study showed a 31.9% decrease in
absolute hospital mortality between cases who received the triple-therapy and controls (8.5% vs. 40.4%
respectively). A small randomized controlled trial, performed around the same time, of 28 patients
with septic shock who received moderate doses of IV vitamin C (25 mg/kg every 6 h for 3 days) showed
significantly lower mortality in patients who received IV vitamin C—14.3% vs. 64.3% [117]. The same
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trial found a significant reduction in average norepinephrine doses, total norepinephrine doses and
total duration of norepinephrine infusion [117]. A subsequent meta-analysis of the three above studies
found a significant benefit of intravenous vitamin C, with “marked reduction” in mortality and
duration of vasopressor administration [133].

The largest trial completed on vitamin C to date, the CITRIS-ALI trial, was published in 2019 [134].
This multicenter, randomized, double-blinded trial included 167 patients with sepsis and ARDS
who were randomized to receive 50 mg/kg every 6 h of HDIVC for 4 days versus placebo and
showed statistically significant difference in 28-day all-cause mortality. The 28-day mortality was
29.8% in the vitamin C group versus 46.3% in the placebo group, although this was a secondary
outcome. The statistical effect on mortality remained for up to 60 days following trial completion.
The most dramatic reduction in mortality was noted during the period of HDIVC infusion (Figure 5).
Furthermore, the HDIVC group had a strong trend towards more ventilator-free days (13.1 in the
HDIVC group vs 10.6 in the placebo group mean difference, 2.47, 95% CI —0.90-5.85, p = 0.15), ICU-free
days to day 28 (10.7 in HDIVC group vs. 7.7, in the placebo group, p = 0.03), and more hospital-free
days (22.6 in HDIVC group vs. 15.5, respectively, p = 0.04). This trial did not find significant reductions
in the SOFA scores, C-reactive protein, thrombomodulin or procalcitonin. Those biomarkers and scores,
however, were not measured among the patients who “graduated” early from the ICU (a group that
was heavily shifted towards the HDIVC group) or in those patients who died (heavily shifted towards
the placebo group), indicating a strong selection bias, which makes these results difficult to interpret.
Several other randomized controlled trials of HDIVC are under way, such as the VICTAS trial, and the
Clinical Trials Network for the Prevention and Early Treatment of Acute Lung Injury (PETAL Network)
is currently planning a randomized controlled trial of HDIVC for the prevention of ARDS.
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Figure 5. Kaplan-Meier mortality curves in patients with sepsis induced acute respiratory distress
syndrome (ARDS) who were randomized to receive a 4-day course of high-dose intravenous vitamin C
(HDIVC) versus placebo, upon ARDS onset-recognition.

4. Adverse Effects of Vitamin C Therapy

In all the sepsis trials mentioned above, HDIVC was found to be safe and no significant side-effects
were identified. Additionally, two studies in non-medical patients did not report adverse side effects.
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The first was a study of infused vitamin C, 1000 mg every 8 h, combined with oral vitamin E for
28 days in 594 surgically critically ill patients and found a significantly lower incidence of acute lung
injury and multiorgan failure, with no side effects [35]. The second was a study of infused vitamin
C continuously at 66 mg/kg per hour for the first 24 h in patients with greater than 50% surface area
burns showed that the therapy was well-tolerated with no reported side effects [135]. One proposed
side effect of HDIVC is an increased propensity for oxalate kidney stone production, but this has not
been shown in any clinical trials to date.

One consideration in utilizing vitamin C is that it is thought to cause an artefactual rise in
point-of-care blood glucose readings by nearly all point-of-care devices [136,137]. It does not, however,
raise blood glucose readings from a basic metabolic panel or glucose results using blood gas laboratories
that employ hexokinase technology for analysis. This finding has recently been questioned by a review
of five patients where the artifact was not appreciated [138]. For now, care must be taken to assure an
accurate blood glucose level from a metabolic laboratory (i.e., basic metabolic panel (BMP)) or arterial
blood gas panel (ABG) before initiating any insulin therapy, given the risk of hypoglycemia due to
incorrect dosage of insulin from artefactual glucometer readings.

5. Conclusions

A plethora of laboratory, animal, and clinical studies are building a compelling case for a crucial
role of HDIVC in the treatment of sepsis. Given the multitude of mechanisms of action, vitamin C may
succeed where other possible sepsis treatments have previously failed, or facilitate the success of a
multi-modal approach. Not all vitamin C treatments, however, are created equal. Because of limitations
in bioavailability, oral administration does not allow for the therapeutic plasma levels required in
critical conditions such as sepsis, septic shock, and ARDS. Additionally, we intentionally used the
acronym HDIVC to highlight that is an entirely different therapy than oral vitamin C, or low-dose
intravenous administration.

Many HDIVC randomized trials are under way and at the time of publication HDIVC use
in clinical practice can be used compassionately, given that it is safe, but is not yet supported by
the sepsis guidelines. Clinicians should carefully appraise the existing literature, understand the
pharmacokinetics, physiology and clinical evidence of HDIVC in sepsis and other syndromes, and weigh
the risks and benefits of vitamin C infusion jointly with the patient and/or the patient’s family.
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