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A B S T R A C T   

Background: Mounting evidence underscores the importance of cell communication within the tumor microen-
vironment, which is pivotal in tumor proliferation, invasion, and metastasis. Exosomes play a crucial role in cell- 
to-cell communication. Although single-cell RNA sequencing (scRNA-seq) provides insights into individual cell 
transcriptional characteristics, it falls short of comprehensively capturing exosome-mediated intercellular 
communication. 
Method: We analyzed Pancreatic Ductal Adenocarcinoma (PDAC) tissues, separating supernatant and precipitate 
for exosome purification and single-cell nucleus suspension. We then constructed Single-nucleus RNA sequencing 
(snRNA-seq) and small RNA-seq libraries from these components. Our bioinformatic analysis integrated these 
sequences with ligand-receptor analysis and public miRNA data to map the cell communication network. 
Results: We established intercellular communication networks using bioinformatic analysis to track exosome 
miRNA effects and ligand-receptor pairs. Significantly, hsa-miR-1293 emerged as a prognostic biomarker for 
pancreatic cancer, linked to immune evasion, increased myeloid-derived suppressor cells, and poorer prognosis. 
Targeting this miRNA may enhance anti-tumor immunity and improve outcomes. 
Conclusion: Our study offers a novel approach to constructing intercellular communication networks using 
snRNA-seq and exosome-small RNA sequencing. By integrating miRNA tracing with ligand-receptor analysis, we 
illuminate the complex interactions in the pancreatic cancer microenvironment, highlighting the pivotal role of 
miRNAs and identifying potential biomarkers and therapeutic targets.   

1. Introduction 

Intercellular communication plays a crucial role in the proliferation, 
invasion, and metastasis processes of tumors [1,41]. There is increasing 
evidence indicating the close cell-to-cell communication within the 
tumor microenvironment [2,14]. However, studying the communica-
tion between cells has always been a significant challenge. The appli-
cation of single-cell RNA sequencing (scRNA-seq) allows us to predict 

cell-to-cell communication by analyzing the expression of ligand and 
receptor genes [10]. Nevertheless, cell communication takes various 
forms, and ligand-receptor analysis represents just one perspective in 
analyzing this complex phenomenon. 

Exosomes, a specific type of extracellular vesicle with an average 
diameter of approximately 100 nanometers, are generated within cells 
and facilitate intercellular communication [12,24]. miRNAs are among 
the most important constituents of exosomes [9]. A growing body of 
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research highlighted the biological effects of miRNAs within exosomes, 
originating from source cells and impacting target cells within the tumor 
microenvironment. For instance, Zhang et al. reported that 
cancer-associated fibroblasts can secrete miR-522, which suppresses 
ferroptosis and promotes acquired chemoresistance in gastric cancer 
[45]. Mechanistically, miRNAs could bind to the motif sequence of its 
target mRNA and trigger degradation or translation blockage [15,31]. 
The conservative motif information can serve as the foundation for 
constructing the miRNA-mRNA regulation network, contributing to 
prediction of intercellular communication. However, the origin and 
distribution of miRNAs in bulk tumor tissues are complex, making it 
challenging to systematically investigate the miRNA-target regulatory 
network at the intercellular level using traditional detection methods. 
The advent of scRNA-seq technologies has enabled the detection of 
primary miRNAs at single-cell resolution [16,37], allowing us to trace 
the source and target of miRNAs through the integration of exosome 
sequencing in a high-throughput manner. 

Approximately 80% of patients with PDAC lost surgical opportu-
nities due to rapid disease progression and late diagnosis. The expected 
five-year survival rate for patients with PDAC was below 10%, which 
reflected inadequate efficacy of current treatment modalities for PDAC 
[34]. Numerous studies have highlighted that targeting and disrupting 
the communication between cells is a crucial approach to inhibit the 
progression of PDAC. Therefore, recent studies have shifted focus to the 
communication and interactions among cells in the pancreatic cancer 
microenvironment[23,28,32]. Here, we integrated single-nucleus RNA 
and exosome small RNA sequencing from the same tumor tissue sample 
to infer cell-cell communication networks based on miRNA-target and 
ligand-receptor pairs in PDAC. Furthermore, we identified a novel 
miRNA biomarker with potential prognostic significance that may be 
involved in PDAC immune evasion. 

2. Materials and methods 

2.1. Sample processing for integrated sequencing 

The “exo+snRNA-seq” technique uses frozen PDAC tissue (preserved 
in a − 80 ◦C freezer) as the sample and performed by the company 
Oebiotch. First, RNA quality control is performed based on the sample 
conditions to detect whether RNA degradation has occurred during the 
sampling or collection process (RIN > 7). Next, a specific buffer is used 
to immerse the sample, followed by lysis and homogenization to release 
the cell nucleus and exosomes. The supernatant and precipitate are 
collected separately after centrifugation, and exosome purification and 
single-cell nucleus suspension preparation are performed. Exosome 
purification and RNA extraction are carried out using related reagents 
(QIAGEN) to ensure stable quality. The extracted miRNA is then pro-
cessed for library preparation and sequencing using standard proced-
ures. For the precipitate, the cell nucleus preparation lysis buffer is used 
for resuspension, and after purification and other steps, snRNA-seq is 
performed using the 10x Genomics protocol. 

2.2. Single-nucleus RNA sequencing 

The 10x Genomics platform uses microfluidic technology to encap-
sulate cells and Cell Barcode-labeled beads in droplets. The droplets 
containing cells are collected, and the cells are lysed within the droplets, 
allowing the mRNA within the cells to bind to the Cell Barcode on the 
beads and form Single Cell GEMs. Reverse transcription is then per-
formed within the droplets to create cDNA libraries. The sample index 
on the library sequences is used to distinguish the origin of the target 
sequence. Cells with a gene count and UMI count within the range of the 
mean ± 2 times the standard deviation and a mitochondrial gene pro-
portion of less than 10% are considered high-quality cells for down-
stream analysis. 

The dimensionality reduction algorithms used in this project are 

Principal Components Analysis (PCA). The dimensionality reduction 
results based on PCA are visualized using t-distributed Stochastic 
Neighbor Embedding (t-SNE) for single-cell clustering. The clustering 
algorithm used is SNN, and the optimal cell subgroups are obtained. The 
definition of a marker gene is a gene that is highly expressed in the vast 
majority of cells in a specific cell population, but only expressed in a 
small proportion of cells in other cell populations, and the gene is 
significantly upregulated in this cell population compared to other cell 
populations. Annotations of cell combined strategies including autono-
mous (SingleR) and manual annotations (Literature-based). The bimo-
dality test method is used to perform differential testing between the 
specified cell population and all other cell populations, thus screening 
for specific marker genes for each cell population. Other software used 
in the analyses were listed as follows: Cell Ranger (5.0.0), Seurat (3.1.1), 
Monocle2, Fastqc (0.11.7), Destiny (2.10.2), Scran (1.8.4) and MAGIC 
(1.2.1). 

2.3. Observation of exosome samples using transmission electron 
microscopic 

Exosome was extracted using ultracentrifugation separation, which 
can accurately and repeatedly obtain exosomes while minimizing co- 
purification of protein aggregates and other membrane particles .10 
μL exosome sample was aspirated and added dropwise onto a copper 
mesh with precipitation for 1 min, and filter paper was used to suck off 
the floating liquid. Then, 10 μl uranium dioxide acetate was added 
dropwise onto a copper mesh and floating liquid was cleaned as well. 
Dry at room temperature for a few minutes. Electron microscopic ex-
amination and imaging were performed at 100 kv (Hitachi, HT-7700). 
The size of exosome sample was measured using a particle size 
analyzer (NanoFCM, N30E). 

2.4. Preprocessing of small RNA sequencing data 

The raw files obtained from high-throughput sequencing are con-
verted into raw sequencing reads through base calling analysis. These 
raw sequencing reads, also known as RawData or RawReads, are then 
stored in the FASTQ file format, which contains the sequence informa-
tion of the reads as well as their corresponding sequencing quality in-
formation. The raw FASTQ files need to be processed to remove adapter 
and primer sequences, followed by quality control and length filtering of 
the sequencing reads to select reliable ones. Then, the types (represented 
by "unique") and quantities (represented by "total") of small RNAs 
(sRNAs) are counted, and length distribution analysis is performed for 
miRNAs. Generally, the length of sRNAs falls within the range of 18–30 
nt, and the peak of the length distribution can help identify the type of 
sRNA. For example, the length of miRNAs is typically concentrated in 
the range of 21–25 nt. Quality control methods and software were 
employed as described below: [1]. Cutadapt (version 1.14) was used to 
remove adapter sequences, and a custom script was used to filter out 
reads shorter than 15 nt or longer than 41 nt. Fastx_toolkit (version 
0.0.13) was used to perform Q20 filtering to retain reads with Q20 
scores of 80% or higher. NGSQCToolkit (version 2.3.3) was used to filter 
out reads containing N bases. The resulting high-quality reads were used 
for subsequent analysis and referred to as CleanReads. [4]. Fastx_toolkit 
(version 0.0.13) was used to count the number of unique reads in 
CleanReads. [5]. Bowtie software was used to align CleanReads se-
quences to the Rfam database (version 10.0), annotating rRNA, scRNA, 
Cis-reg, snRNA, and tRNA sequences, and filtering them out. Bowtie 
software was used to align Rfam-filtered reads to transcriptome se-
quences with a maximum of one base mismatch allowed. Reads with 
lengths between 15–26 nt in the alignment results were extracted and 
combined with reads that could not be aligned to the transcriptome 
sequence. These reads were used for subsequent analysis of known 
miRNA alignment and the prediction of new miRNAs. Bowtie software 
was used to align the transcriptome degradation fragment-filtered 
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sequences to the Repbase database to identify potential repetitive se-
quences. These sequences were filtered out and not used for subsequent 
analysis of known miRNA alignment and prediction of new miRNAs. 

By aligning sequencing data to the miRBase database, known miR-
NAs can be identified and annotated. After filtering out repetitive se-
quences using the previous step, the filtered reads were aligned to the 
mature miRNA sequences in miRBase using the Bowtie software with a 
maximum of one base mismatch allowed. Sequences that were aligned 
were considered known miRNAs. These known miRNAs were used to 
quantify miRNA expression levels and for subsequent differential 
analysis. 

2.5. Integrated analysis of snRNA-seq and exosome miRNA-seq 

Based on the miRNA_primary_transcript gtf of miRBase, single-cell 
nuclear primary_miRNA analysis was performed to extract the miRNA 
expression and the marker miRNA of all cell types. Then, the correlation 
between exosomal miRNA expression and single-cell gene mRNA 
expression was analyzed using the Pearson correlation test. The detected 
cells were subjected to a random partitioning process, resulting in their 
division into three equal subsets. Similarly, the tissues designated for 
exosome miRNA detection were also evenly distributed into three 
identical portions. This meticulous allocation strategy adhered to the 
essential criterion of generating three distinct replicates for each of the 
two sample types involved in the study. Significant correlation was 
observed when the adjusted p-value was less than 0.05 and the absolute 
value of the Pearson coefficient (R) was greater than 0.8. The miR-
NA_v22 database was used to refer to the targets for every miRNA with 
potential interaction. Targets with an adjusted p-value of less than 0.05 
and an R less than − 0.8 were considered as downstream of the miRNA 
with high confidence. The targets for hsa-miR-1293 were determined by 
the intersection of Diana_microt, PITA and TargetScan (TOP35%). 
Transcription factor list was derived from cisTarget (https://resources. 
aertslab.org/cistarget/). KEGG analysis was performed using the R 
package clusterProfiler (version 3.14.3). The source of miRNA was 
determined by single-cell nuclear primary_miRNA analysis, which 
identified the cells that expressed its primary RNA. We can determine 
the source of exosome miRNA by detecting which miRNAs are secreted 
into exosomes and by referring to the cell type-primary miRNA pairs. 
Network analysis was visualized using Cytoscape software (3.9.0). Some 
elements of ideograph were created with biorender (https://www.biore 
nder.com/). 

2.6. Bulk miRNA expression in samples of PDAC 

The miRNA-Seq-miRNA expression quantification data was obtained 
from The Cancer Genome Atlas Program (TCGA) database 
(https://www.cancer.gov/ccg/access-data). Moreover, clinical follow- 
up data was also collected from the same database. Logrank test was 
performed to compare the survival differences (OS) between miR-1293- 
high and -low groups. The differentially expressed genes between miR- 
1293-high and -low PDACs were identified using DESeq2 algorithm. 

3. In vitro experiments 

3.1. Patient-derived Organoids 

Human PDAC tissues from three patients were collected and digested 
into single-cell suspensions for organoid construction using PDAC 
dissociation reagent. The components of the reagent and procedures for 
digestion as well as culture media preparation were described in a 
previous publication [8]. Organoids were 3D cultured in Cultrex Path-
Clear BME (R&D). 

3.2. Co-culture system 

Fibroblast cells in PDAC were separated and cultured as described in 
our previous study [38]. Peripheral blood was collected from PDAC 
patients before surgery with approval from the Clinical Research Ethics 
Committee of Fudan University Shanghai Cancer Center (FUSCC). To 
isolate T cells, PBMCs were subjected to magnetic cell sorting (Miltenyi 
Biotec, 130–096-535) to remove B cells, monocytes, natural killer cells, 
dendritic cells, early erythroid cells, platelets, and basophils. Human 
CD8 + T cells were then isolated from PBMCs through positive selection 
(Miltenyi Biotec, 130–045-201). T-cell activation was achieved using a 
T-Cell Activation/Expansion Kit (Miltenyi Biotec, 130–091-441). The T 
cells were cultured in RPMI 1640 (Gibco) supplemented with 20 IU/ml 
IL-2. A co-culture system of PDAC organoid, CAF and immune cells were 
conducted according to a previous study [13]. 

3.3. Oligonucleotides Transduction 

RNA was extracted from fibroblast with indicated treatment using 
the SteadyPure Universal RNA Extraction Kit (AG21017). Reverse 
transcription was applied by C11027–2 riboSCRIPT Reverse Transcrip-
tion Kit. The primers Bulge-LoopTM hsa-miR-1293 qPCR Primer Set 
(MQPS0000574–1-100) and Bulge-LoopTM U6 qPCR Primer Set 
(MQPS0000002–1-100) were used for qPCR. Hsa-miR-1293 and Has- 
miR-1291 mimic (Cat# miR10005883; Cat# miR20005881–1-5) and 
inhibitor (Cat# miR20005883, Cat# miR10005881–1-5) were used to 
upregulate or inhibit the hsa-miR-1293. The control group of trans-
fections used equal miRNA mimic and / or inhibitor Negative control 
(Cat# miR1N0000001–1-5; Cat# miR2N0000001–1-5). All these prod-
ucts were provided by RIBOBIO. Fibroblast or panc-1 cells were trans-
fected with miRNA mimic, inhibitor or control vector according to 
guidance of manufacturer’s instructions. Briefly, cells were transfected 
approximately 80% confluence using Lipofectamine 3000 transfection 
reagent (Invitrogen) according to the manufacturer’s protocol. 

3.4. Cell Counting Kit-8 (CCK-8) and LDH release detection 

For CCK-8 assay, the treated PDAC cells were seeded into 96-well 
plates at a concentration of 3 × 103/well. Then, 10 μL of CCK-8 assay 
solution (BIMAKE) was added and incubated in the dark for 2 h. The 
absorbance at 450 nm was measured every 24 h with a microplate 
reader (BioTek Instruments). 

The LDH release assay was performed using an LDH Cytotoxicity 
Assay Kit (Cayman, 601170). “E” refers to signaling value for every well 
with indicated treatment, “S” refers to spontaneous release of well 
without treatment and M refers to the maximum release of LDH induced 
by triton. The percentage of relative LDH release was defined as (E-S)/ 
(M-S). 

3.5. Flowcytometry 

Flowcytometry analysis was performed using the MoFlo XDP cy-
tometer (Beckman Coulter, USA) and analyzed using FlowJo (V.10.6.1) 
or CytExpert. For xenograft tumors in mice, given the limitation of 
acquiring sufficient cells from certain smaller tumor masses, we aggre-
gated tumor bulks within the same group and subsequently divided 
them into five random portions to ensure technical replication. The 
dissociation of xenograft tumors was conducted utilizing a mixture of 
Collagenase IV, hyaluronidase, and DNase I. This process was followed 
by filtration through a 70-micron pore-size filter. Our objective was to 
ascertain the proportion of CD3 + human T cells within xenograft tu-
mors. To achieve this, cells were stained using the FITC Mouse Anti- 
Human CD3 antibody from BD. To assess PD-1 expression in T cells 
within a co-culture context, we employed anti-CD3 antibody in combi-
nation with anti-PD-1 (PerCP anti-human PD-1, Biolegend) staining 
(4 ◦C, 30 min). The protocols for flow cytometry procedures were 
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referenced from our previous publication [19]. 

3.6. Fluorescence in situ hybridization (FISH) assay and PDAC tissue 
slices 

The protocol for FISH we conducted was referred to our previous 
study [30]. Briefly, the experiment involved tissue fixation, dehydra-
tion, and sectioning, followed by a series of hybridization, washing, and 
staining steps. Pre-hybridization, hybridization with probes, and signal 
hybridization were conducted in a humidity chamber, with washes in 
SSC buffers at varying temperatures. Finally, cell nuclei were stained 
with DAPI, and microscopic examination and photography were con-
ducted using a fluorescence microscope (NIKON ECLIPSE CI;) with 
different excitation and emission wavelengths for each fluorophore. The 
expression level of miR-1293 in PDAC tissues was evaluated by FISH in 
PDAC tissues from 176 patients who were diagnosed with PDAC at the 
FUSCC between 2012 to 2018. Differential expression analysis of 
miR-1293 between cancerous and normal regions was performed using 
57 pairs of tumor and adjacent pancreatic tissue slices. All samples were 
evaluated by two independent pathologists. The intensity of miR-1293 
staining was scored as follows: 0, no staining; 1, low staining; and 2, 
high staining. The percentage of positively stained cells was scored as 
follows: 0, 0% (no stained cells); 1, 1 ~ 24%; 2, 25 ~ 49%; 3, 50 ~ 74%; 
and 4, 75 ~ 100%. The final score was calculated by multiplying the 
scores for the staining intensity and the percentage of positively stained 
cells. Subsequently, the samples were divided into two groups: the low 
expression group (score 0–3) and the high expression group (score 4–8). 
The FISH probe of miR-1293 was purchased from Vazyme Biotech Co, 
Ltd (5′-GCACAAATCTCCAGACCACCCA-3′). 

3.7. Targeted metabolome 

Samples were taken out at − 80 ◦C, slowly thawed at 4 ◦C, and then 
0.5 ml of a methanol-acetonitrile-water solution (2:2:1, v/v) was added. 
Next, 10 μL of SUCCINIC ACID-D6 internal standard (10 mMol/L) was 
added, followed by 60 s of vortexing and 30 min of low-temperature 
sonication, repeated twice. The samples were then left at − 20 ◦C for 
1 h to precipitate proteins. After centrifugation at 14,000 rcf at 4 ◦C for 
20 min, the supernatant was collected, freeze-dried, and stored at −
80 ◦C. 

Chromatography Conditions were listed as follows: Samples were 
separated using an Agilent 1290 Infinity LC Ultra-High Performance 
Liquid Chromatography system. The samples were kept in an automatic 
sampler at 4 ◦C, the column temperature was set at 35 ◦C, and the mobile 
phase A consisted of a 50 mM ammonium acetate aqueous solution with 
1.2% ammonium hydroxide, while mobile phase B consisted of a 1% 
acetonitrile solution of acetone. The flow rate was 300 μL/min, and the 
injection volume was 2 μL. In the sample queue, a QC sample was set at 
regular intervals to monitor and evaluate system stability and repeat-
ability. A standard mixture of target substances was also included in the 
sample queue for calibration of chromatographic retention times. Mass 
spectrometry analysis was performed using a 5500 QTRAP mass spec-
trometer (SCIEX) in negative ion mode. The ESI source conditions for the 
5500 QTRAP were as follows: source temperature 450 ◦C, Ion Source 
Gas1 (Gas1): 45, Ion Source Gas2 (Gas2): 45, Curtain gas (CUR): 30, ion 
Spray Voltage Floating (ISVF) − 4500 V. The Multiquant 3.0.2 software 
was used to extract peak areas and retention times from the chromato-
grams. Chromatographic retention times were corrected using standards 
of target substances for metabolite identification. Principal Component 
Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) 
were performed to visualize the difference of metabolites landscape 
between two groups. 

3.8. Luciferase reporter assay 

The Dual-Luciferase Reporter Assay System (Promega) was used to 

detect firefly and renilla luciferase from the pmirGLO-FOXO3 plasmids 
and pmirGLO-FOXO3 Mut (mutated site) plasmid in mimic and empty 
vector miR-1293-transfected cells. These plasmids were synthesized by 
RIBOBIO. Twenty-four hours following transduction with recombinant 
plasmids using Lipofectamine 3000, the cells were rinsed with PBS in 
preparation for cell lysis. The cells were ensured to be no more than 95% 
confluent at the time of lysis. After lysis, firefly and renilla luciferase 
activity were sequentially measured according to the instruction of 
manufacturer. The luciferase activity (firefly luciferase / renilla lucif-
erase) was normalized to the group with empty vector. 

3.9. Western blotting analysis 

Western blotting was performed as described in our previous study 
[39]. In brief, proteins were extracted from PDAC cells using RIPA buffer 
supplemented with protease and phosphatase inhibitors. For exosome 
samples: Thaw the exosomes at 37 ◦C and rapidly add 5 × RIPA lysis 
buffer. After mixing, lyse on ice for 30 min, mixing periodically. Then, 
calculate the protein concentration of the sample based on the standard 
curve with BCA methods. Equal amounts of protein were separated on 
10% SDS-PAGE gels and transferred onto PVDF membranes (Millipore), 
which were then blocked for 2 h in 5% skim milk. The membranes were 
subsequently probed with primary antibodies targeting the following 
proteins: FOXO3A (Proteintech, 66428–1-Ig), TSG101 (Abcam, 
ab125011), Calnexin (SAB, 12186), CD86 (41779), CD9 (Boster, 
BM4212) and β-actin (66009–1-lg, Proteintech). The membranes were 
then incubated with appropriate secondary antibodies (Proteintech, 
China) for 1 h. After three washes, the target proteins were visualized 
using enhanced chemiluminescence (ECL) reagent (Millipore, MA, 
USA). β-actin served as the loading control in this study. 

3.10. Animal studies 

NPSG mice were housed in ventilated caging units in the Shanghai 
Cancer Center Specific Pathogen Free (SPF) facility with standard 
housing and husbandry and free access to food and water. To generate 
immunologically humanized patient-derived xenografts (PDXs), we first 
established a PDX model following the procedures outlined in our pre-
vious study [18]. Briefly, every surgically resected PDAC sample divided 
into five equal blocks of approximately 10 mm3 each for subcutaneous 
transplantation into the flanks of female NPSG mice (6–8 weeks old). 
Meanwhile, 5 × 105 CAFs with mimics of has-miR-1293 or control 
vector were co-transplanted with tumor blocks. A week later, 2 × 107 

PBMC isolated human PBMCs were resuspended in 500 μL PBS and 
intravenously injected into PDX mice. Then, mice (n = 5 for each group) 
were treated with Durvalumab intraperitoneally at the dosage of 0.5 
mg/kg twice a week. Tumor volume was measured every 7 days using 
calipers and calculated with the formula: volume = 0.5 ×

length×width2. 

3.11. Statistical analysis 

To compare continuous variables, we conducted either a paired or 
unpaired t-test based on whether the two groups were matched. To 
assess the overall survival duration of patients, we employed the log- 
rank test. The association between two sets of data was evaluated 
using Pearson correlation. In all experiments, statistical significance was 
determined at a threshold of P < 0.05. All graphs and statistical com-
putations for the experimental data were generated using Prism 9.0.0 
(GraphPad). 
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4. Results 

4.1. snRNA-seq revealed primary miRNA expression in single-cell 
resolution 

We obtained both snRNA-seq and small RNA-seq libraries from the 
same bulk of two tumor tissues, following the workflow outlined in  
Fig. 1A. Human pancreatic cancer tissues were surgically resected, 
dissociated, and homogenized before being centrifuged. Post- 
centrifugation, the upper layer contained the supernatant while the 
lower layer held the precipitate. The supernatant was used for exosome 

purification and small RNA sequencing, while the precipitate was 
employed for snRNA-seq. After quality control measures eliminated 
ineligible cells, 8841 cells were analyzed using the Seurat pipeline. We 
initially annotated three major cell types: epithelial cells, stromal cells, 
and immune cells (Fig. 1B). As anticipated, epithelial cells were the most 
abundant cell type in pancreatic cancer tissue (61.1%) according to 
snRNA-seq data (Fig. S1A). This percentage was significantly higher 
than that observed in traditional scRNA-seq, as demonstrated by a large 
scRNA-seq-based cohort (Fig. S1B-C). We further annotated six distinct 
cell subclusters, with PDAC cells being divided into two subtypes 
(Fig. 1C). Differential expression analysis was performed for ductal cell- 

Fig. 1. Analysis of single-cell RNA sequencing in pancreatic cancer tissues. (A) Workflow of snRNA-seq and small RNA-seq library preparation from surgically 
resected human pancreatic cancer tissues. (B) UMAP plot showing three major cell types: epithelial cells, stromal cells, and immune cells. (C) Further annotation for 
cell subclusters in UMAP approach. (D) t-SNE analysis based on primary miRNA expression. (E) Heatmap showed cell type-specific primary miRNA expression. (F-G) 
Violin plot showed increased abundance and expression of primary miRNAs in ductal cell type 1. 
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1 and − 2 clusters. Genes upregulated in ductal cell-1 (logfc>2, 
adjP<0.05) were enriched in cAMP signaling, Ras signaling, and other 
pathways, while those upregulated in ductal cell-2 were enriched in 
metabolic pathways, such as oxidative phosphorylation (Fig. S1D-E). 
Although cells displayed a scattered distribution when compared by cell 
marker dimensions (Fig. 1D), we also observed that many primary 
miRNAs exhibited cell type-specific expression, of which most primary 
miRNAs were detected in ductal and fibroblast cells (Fig. 1E). Notably, 
ductal cell-1exhibited the higher abundance and level of primary miR-
NAs compared with ductal cell-2 counterparts (Fig. 1F-G). 

4.2. Construction of cell-cell communication networks via miRNA tracing 
and miRNA-target effect 

As previously described, we obtained the supernatant from dissoci-
ated tumor tissues. We then extracted exosomes from the supernatant 
using ultracentrifugation separation (Fig. 2A and Fig. S2A). The size and 
concentration of the exosomes were measured to ensure a successful 
extraction process and confirm that the exosomes were of high quality 
(Fig. 2B-C and Fig. S2B-C). Western blot further validated the identity 
and purity of exosomes (Fig. S2D). The distribution of miRNA lengths 
was plotted in curves for various samples (Fig. S2E). We defined 
downstream cells as those that receive exosome miRNAs, which inter-
fere with the target mRNA containing corresponding motifs in these cells 
(Fig. 2D). To achieve this, we analyzed the quantitative correlation be-
tween exosome miRNA expression and single-cell mRNA expression. 
Using a threshold of r < − 0.8 and an adjusted P value < 0.05, we 
identified numerous negatively correlated miRNA-mRNA pairs in each 
cell type. Additionally, we constrained the miRNA-mRNA pairs to those 
with motif matches. The results revealed that the ductal-2 celltype had 
the highest number of miRNA-mRNA pairs with negative expression and 
motif matches. This finding suggests that the ductal-2 cell is the primary 
downstream cell type that can be widely regulated by exosome miRNAs 
(Fig. 2E). 

We defined upstream cells as those that release corresponding miR-
NAs into the extracellular microenvironment via exosomes. These 
miRNAs are then received by downstream cells and exert inhibitory 
effects on target genes (Fig. 2F). To accomplish this, we intersected 
exosome miRNAs with primary miRNAs detected in snRNA-seq. The 
intersected miRNAs were secreted into exosomes by specific cell types. 
Interestingly, we found that the ductal-1 cell type had the most abun-
dant secretion of miRNAs, suggesting it as the major source of miRNA 
secretion (Fig. 2G). T cells and macrophages exhibited less miRNA 
communication with other cells, indicating that miRNA regulation may 
play a less role in immune cells. Conversely, fibroblasts appeared to be 
active both as exosome RNA sources and receivers. 

Numerous studies have revealed that miRNAs play a significant role 
in endothelial cells by regulating their proliferation and migration, 
which are involved in angiogenesis and inflammation [11,21,42,44]. 
For cancerous diseases, endothelial cells-derived miRNAs exerted 
important role in tumor drug resistance, growth, and metastasis [25,26, 
43]. Here, we found that endothelial cells were the third-largest source 
of miRNAs among all identified cell types. However, given that the 
relatively lower number of miRNA-target pairs discovered, endothelial 
cells themselves may be less regulated by exosome-miRNAs. Next, we 
constructed an intercellular communication network by depicting up-
stream cells, exosome-miRNAs, and downstream cells (Fig. 2H). 
Exosome-derived hsa-miR-1248 was predicted to originate from both 
ductal 1 and 2 cells based on the network, suggesting that hsa-miR-1248 
is conserved in the pancreatic ductal structure during differentiation. 
Fibroblast, endothelial, and ductal 2 cells themselves were potential 
downstream cells via the hsa-miR-1248-PIP5K1A pair. Similarly, 
hsa-miR-1267 was also secreted by both ductal 1 and 2 cells and pro-
jected to influence downstream fibroblast cells by interfering with 
ITGA6. 

Notably, hsa-miR-4647, originating from ductal 1, ductal 2, and 

fibroblast cells, could exert effects on all downstream cells by targeting 
ATF7, CCSER2, RELL1, SSBP2, and USP47. This finding suggests a po-
tential role of hsa-miR-4647 as a messenger in the tumor microenvi-
ronment. A recent study revealed hsa-miR-4647 was one of two 
significantly upregulated miRNAs in gallbladder carcinoma and associ-
ated with patients’ unfavorable prognosis [36], suggesting 
hsa-miR-4647 could be a promising target for developing novel treat-
ment modality for gallbladder carcinoma. 

4.3. Enrichment analyses for gene targets in cells when served as upstream 
and downstream of exosome-miRNAs 

We identified specific targets for exosome-miRNAs potentially orig-
inating from ductal-1 and − 2 cells through motif matching (Fig. 3A). 
Enrichment analyses revealed that gene targets of ductal-1-related 
miRNAs were primarily involved in pathways related to cancer, Ras 
signaling, HIF signaling, and Hippo signaling. In contrast, gene targets of 
ductal-2-related miRNAs were more enriched in pathways associated 
with normal pancreatic functions, such as insulin secretion (Fig. 3B-C). 
Additionally, we performed enrichment analysis for gene targets when 
cells served as downstream recipients of exosome-miRNAs. This analysis 
showed that exosome-miRNAs might regulate gene targets involved in 
ferroptosis in ductal-1 cells, while modulating adherens junctions and 
ErbB signaling pathways in ductal-2 cells (Fig. S3A-B). Furthermore, it 
was hypothesized that T cell-derived exosome-miRNAs regulate Hippo 
signaling, while the exosome-miRNAs they receive regulate ferroptosis, 
pyrimidine metabolism, and inositol metabolism (Fig. 3D and Fig. S3C). 
For fibroblasts, their secreted exosome-miRNAs may regulate genes 
involved in MAPK signaling and PI3K-Akt signaling, which have been 
widely reported as oncogenic pathways in cancer [33,35,46] (Fig. 3E). 
When fibroblasts served as recipients for exosome-miRNAs, pathways 
including cell adhesion molecules and Wnt signaling were potentially 
regulated (Fig. 3F). In contrast, when endothelial cells served as 
downstream recipients, MAPK signaling was enriched in target genes for 
exosome-miRNAs, while Wnt signaling was enriched when endothelial 
cells served as both upstream and downstream components (Fig. S3D-E). 
The exosome-miRNAs that macrophages most likely received may 
regulate genes involved in ferroptosis and pyrimidine metabolism, while 
the exosome-miRNAs they released may regulate genes related to the 
sulfur relay system and dopaminergic synapses (Fig. S3F-G). 

4.4. Construction of cell-cell communication networks via miRNA-target 
effect and ligand-receptor pair analysis 

Ligand-receptor pair-based analysis has been widely applied to un-
cover cell-cell communication in various fields, particularly in the tumor 
microenvironment [1,10,14]. We utilized the CellChat algorithm to 
investigate intercellular communication among the identified cells. The 
strength and number of interactions have been illustrated using a circus 
plot, which revealed abundant interactions between each cell type, 
particularly between fibroblasts and ductal 1 cell (Fig. 4A-B). In the 
CellChat pipeline, incoming signaling represents the influence of signal 
transduction received by a cell from other cells, while outgoing signaling 
signifies the influence of signal transduction generated by a cell on other 
cells. Overall, fibroblasts exhibited the most abundant outgoing 
signaling patterns compared to other cell types, especially including 
collagen, laminin, NRXN, and ncWNT. In contrast, ductal 1 cell was the 
primary recipients of incoming signaling, encompassing collagen, lam-
inin, FN1, VEGF, CD99, CDH, and others (Fig. 4C). The scatter plot based 
on incoming and outgoing interactions supported these findings and 
further demonstrated that ductal 2 cells had limited interactions with 
other cells via ligands and receptors (Fig. 4D). To cluster cells and 
communication patterns, cophenetic and silhouette methods were 
applied to determine the optimal number of clusters (Fig. 4E and 
Fig. S4A). For both incoming and outgoing signaling, we identified three 
clusters as the optimal choice for clustering. Interestingly, stromal cells 
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Fig. 2. Construction of intercellular communication networks via miRNA tracing and miRNA-target effect. (A) Transmission electron microscopic image of exosome 
extracted from the supernatant of dissociated tumor tissues (sample 1). (B-C) Measurement of particle size for Exosome. (D) Schematic of defining downstream cells 
based on exosome miRNA expression and single-cell level mRNA expression. (E) miRNA-mRNA pairs with negative expression and motif match in each cell type. (F) 
Schematic of defining upstream cells based on miRNA secretion. (G) Tracing the source of exosome miRNA by intersection with primary miRNAs detected using 
snRNA-seq. (H) Network presented the upstream and downstream of exosome-miRNAs to showcase cell-cell communication. 

R. Tang et al.                                                                                                                                                                                                                                    



Computational and Structural Biotechnology Journal 23 (2024) 1689–1704

1696

(fibroblasts and endothelial cells), immune cells (T cells and macro-
phages), and pancreatic ductal cells (ductal 1 and ductal 2) were 
respectively clustered based on outgoing signaling (Fig. 4F). Clustering 
for communicated ligand-receptor pairs also revealed three patterns 
(Fig. S4B). The outgoing communication patterns of secreting cells are 
shown in Fig. S4C. Overall, the communication patterns for incoming 
and outgoing signaling exhibited several similarities. For instance, 
TGF-b, MHC-II, CADM, CD45, and GRN were conservatively clustered, 

while FN1 and collagen formed another conservative cluster 
(Fig. S4D-E). Furthermore, the patterns of signaling interactions 
received by targeted cells from other cells were visualized (Fig. S4F). 
Next, we established cis- and trans-regulatory networks by combining 
miRNA-target and ligand-receptor information. First, we discovered 442 
significant ligand-receptor pairs using cell-chat algorithm. Among 1129 
genes either ligand or receptor, we further detected 95 motif-matched 
miRNA-target pairs for the construction of cis- and trans- regulation 

Fig. 3. The pathway enrichment analysis for exosome-miRNA target gene analysis. (A) Motif match detection of specific targets for exosome-miRNAs in ductal 1 and 
2 cells. (B-C) Pathway enrichment analysis of gene targets for ductal 1 and 2-related miRNAs. (D) T cell-derived exosome-miRNA regulation of Hippo signaling and 
the exosome-miRNA it received regulating ferroptosis, pyrimidine, and inositol metabolism. (E) Fibroblast-secreted exosome-miRNA regulation of MAPK and PI3K- 
Akt signaling pathways. (F) Exosome-miRNA regulation of cell adhesion molecules and Wnt signaling in fibroblasts when serving as a receiver. 
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Fig. 4. Ligand-receptor pair analysis for cell-cell communication networks. (A-B) Circus plot showing the strength and number of interactions between each cell type, 
respectively. (C) Heatmap showing the detailed interactions between among cells in terms of incoming and outgoing signaling patterns. (D) Scatter plot showed 
abundant outgoing signaling patterns in fibroblast cells and incoming signaling patterns in ductal 1 cells. (E) Cophenetic and Sihouette analysis determined the 
cluster number for outgoing signaling patterns. (F) Clustering of cells based on outgoing signaling patterns. (G) The schematic of Cis-regulatory network. (H) 
Construction of cis-regulatory network by combining miRNA-target and ligand-receptor information. (I) The schematic of Trans-regulatory network. (J) Construction 
of trans-regulatory network by combining miRNA-target and ligand-receptor information. 
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network. Cis-regulation is defined as cell A secreting exosome-miRNAs 
that may act on cell A’s ligands/receptors (Fig. 4G). For example, 
ductal 1 cells may secrete exosome-miRNAs containing hsa-mir-1257 
and hsa-mir-1267, which could potentially downregulate the expres-
sion of receptors NLGN1 and ITGA6 on the ductal 1 cells themselves 
(Fig. 4H). In this context, ductal 1 cell would become insensitive to 
NRXN3 from fibroblasts and LAMs from endothelial cells, other ductal 
cells, and fibroblasts. Trans-regulation is defined as cell A secreting 
exosome-miRNAs that may act on cell B’s ligands/receptors (Fig. 4I). 
Here, we demonstrated that ductal cell-2-derived hsa-mir-12136 might 
directly downregulate IGSF11-VSIR interaction, which is the receptor on 
ductal 1 cell (Fig. 4J). 

4.5. Identify the role of prognosis-relevant exosome-miRNAs in immune 
microenvironment of PDAC 

To investigate the expression of exosome-miRNAs and their associ-
ation with the prognosis of PDAC patients, we analyzed transcriptome 
data and clinical outcomes of the PDAC cohort in TCGA. By intersecting 
the exosome-miRNA data we obtained with the TCGA miRNA 
sequencing data, we identified 281 miRNAs that were common to both 
datasets (Fig. 5A). To determine the prognostic value of these miRNAs, 
we performed survival analysis using batched univariate COX regression 
and identified 25 miRNAs that were significantly associated with patient 
survival, with 12 miRNAs showing a survival benefit and 13 miRNAs 
associated with worse survival time (Fig. 5B). By further intersecting 
these miRNAs with the primary miRNAs detected using snRNA-seq in 
PDAC, we identified five miRNAs that were prognostic biomarkers, with 
four of them potentially secreted by ductal-1 cells and one (hsa-miR- 
1293) predominantly traced to fibroblasts (Fig. 5C). Upon re-examining 
the miRNA expression matrix, we found that 98.9%, 88.0%, and 70.5% 
of PDAC samples did not express hsa-mir-1257, hsa-mir-3149, and hsa- 
mir-578, respectively. This high percentage of missing values could 
significantly reduce the reliability of the association between miRNAs 
and patients’ prognosis. Hence, we focused on hsa-mir-1291 and hsa- 
miR-1293. Our results confirmed that higher expression of hsa-miR- 
1293 was associated with a worse prognosis for PDAC patients 
(Fig. 5D). In contrast, there was no significant trend indicating that hsa- 
mir-1291 expression was associated with PDAC patients’ survival time, 
both for the median value cutoff and the optimal cutoff value deter-
mined by the maxstat algorithm (Fig. S4G-H). The ROC curve also 
demonstrated that hsa-miR-1293 had high accuracy for predicting the 
prognosis of PDAC (Fig. 5E). In previous sections, we demonstrated that 
exosome miRNAs play a crucial role in cell-to-cell communication 
within the tumor microenvironment. To further investigate the associ-
ation between miRNA expression and immune cell infiltrates, we esti-
mated the relative abundance of tumor-infiltrating immune cells using 
the CIBERSORT algorithm. Our correlational analyses revealed that 
CD8 + T cells, a major anti-tumor component, were negatively corre-
lated with hsa-miR-1293 expression, but not with hsa-mir-1291 
(Fig. 5F). This finding was consistent across various algorithms for im-
mune cell infiltration estimation, including classic and ABS CIBERSORT 
(Fig. 5G). In addition, we found a strong positive correlation between 
hsa-miR-1293 expression and the score of myeloid-derived suppressor 
cells (MDSCs), which are known to inhibit anti-tumor immunity 
(Fig. 5H). Furthermore, we compared the level of immune regulators in 
PDAC groups with high and low expression of hsa-miR-1293 (Fig. 5I). 
We observed that VEGFA, but not VEGFB, was significantly upregulated 
in PDAC samples with overexpression of hsa-miR-1293, suggesting that 
targeting VEGFA could be a valuable strategy for PDAC patients with 
high hsa-miR-1293 expression. Numerous genomic parameters have 
been reported to be associated with the immune microenvironment in 
PDAC. For instance, tumor mutation burden has emerged as a popular 
biomarker for predicting the efficacy of immunotherapy in many can-
cers and has been found to be independent of T cell-inflamed gene 
expression profiles[5,29]. Our findings suggest that hsa-miR-1293 

expression is highly correlated with high tumor mutation burden 
(TMB), microsatellite instability (MSI), and neoantigen levels, indi-
cating that inhibiting hsa-miR-1293 expression may enhance the effi-
cacy of immunotherapy (Fig. 5J). In addition to genetic biomarkers, 
transcriptome-based molecular subtyping has emerged as an effective 
approach to distinguish cancer patients with distinct molecular char-
acteristics and guide different clinical treatments. For PDAC patients, 
three molecular subtypes have been previously identified, including the 
Moffitt subtype, Collison subtype, and Bailey subtype. We calculated the 
distribution of these subtypes in PDAC patients with high and low 
miR-1293 expression and found no significant differences in the per-
centages of Moffitt and Collison subtypes between the two groups 
(Fig. 5K). However, we observed that more immunogenic subtypes were 
present in the miR-1293-low group, while progenitor and squamous 
subtypes showed downregulated percentages in the same group 
(Fig. 5K). 

4.6. Targeting miR-1293 in CAF boost T cell-mediated anti-tumor 
immunity 

Recently, Koikawa et al. introduced a co-culture system of pancreatic 
cancer organoid, CAFs and immune cells [13]. In this study, we used a 
co-culture system to investigate the impact of miR-1293 expression on T 
cell anti-tumor function (Fig. 6A). We transfected CAFs with miR-1293 
mimic and inhibitor to overexpress or inhibit miR-1293 expression, 
respectively, followed by co-cultured the CAFs with pancreatic cancer 
organoids and activated T cells. PD-1 upregulation in tumor-infiltrating 
T cells is an important mechanism by which tumor cells evade immune 
cell attack. Therefore, we performed flow cytometry to measure PD-1 
expression in T cells in each group. Our results showed that T cells 
co-cultured with miR-1293-mimic CAFs had the highest PD-1 expres-
sion, while inhibition of miR-1293 in CAFs decreased PD-1 expression in 
co-cultured T cells (Fig. 6B-C and Fig. S4I). Next, we investigated 
whether miR-1293 regulation in CAFs would affect T cell-mediated 
tumor killing. T cell-mediated tumor killing primarily occurs through 
apoptosis. To label apoptotic organoids, we used a green-fluorescent 
caspase 3/7 probe reagent and found that the co-culture system with 
miR-1293-overexpressing CAFs had less apoptotic organoids with 
collapsed structures, while organoids co-cultured with wild-type (WT) 
CAFs and CAFs with miR-1293 inhibitor showed higher apoptotic sig-
nals (Fig. 6D). To quantify the altered killing ability of co-cultured T 
cells, we transferred T cells from different groups into a new co-culture 
system with pancreatic cell lines. LDH release assay confirmed that T cell 
killing ability was compromised after co-cultured with CAFs over-
expressing miR-1293, while the opposite effect was observed when 
co-cultured with CAFs with miR-1293 inhibition but not with miR-1291 
(Fig. 6E and Fig. S4J). In addition, our data indicated that miR-1293 
potentially regulates multiple gene targets in pancreatic ductal cells, 
suggesting that miR-1293 may influence the progression of PDAC cells. 
Consequently, we directly overexpressed or inhibited miR-1293 in a 
PDAC cell line to assess its impact on cell proliferation. The results 
demonstrated that miR-1293 mimic moderately promoted cell prolif-
eration, while the miR-1293 inhibitor significantly reduced cell prolif-
eration (Fig. 6F). 

In order to delve into the potential mechanisms underlying the 
relationship between miR-1293, immune evasion, and a moderate in-
crease in cell proliferation, we conducted a gene enrichment analysis to 
elucidate the molecular distinctions between miR-1293-high and -low 
PDACs (Fig. 6G). Notably, the KEGG analysis unveiled that the DEGs 
between the two PDAC groups were intricately linked to the glycolysis/ 
gluconeogenesis pathway. Specifically, key glycolytic enzymes, 
including ENO1, GAPDH, ALDOA, and HK2, exhibited significant 
upregulation in miR-1293-high PDAC samples (Fig. 6H). To further 
validate these findings at the metabolome level, we scrutinized the en-
ergy metabolism metabolites in co-cultures of PDAC organoids and CAFs 
transfected with mimic-1293 or mimic-NC (Fig. 6I). Both PCA and 
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Fig. 5. Prognostic relevance of exosome-miRNAs in immune microenvironment of pancreatic cancer. (A) Overlap of exosome-miRNAs detected in this study and 
TCGA miRNA sequencing data. (B) Survival analysis of prognosis-related miRNAs by univariate COX regression. (C) Prognostic miRNAs intersected with primary 
miRNAs detected in snRNA-seq. (D) Kaplan-Meier curve showing pancreatic cancer patients based on hsa-mir-1291 and hsa-miR-1293 expression (Log-rank test). (E) 
ROC curve for hsa-miR-1293 in predicting prognosis. (F-G) Correlation between CD8 + T cell infiltration and hsa-mir-1291 and hsa-miR-1293 expression. (H) 
Positive correlation between hsa-miR-1293 expression and MDSC score. (I) Expression of immune regulators in high and low hsa-miR-1293 expression groups. (J) 
Correlation between hsa-miR-1293 expression and genomic parameters. (K) The distribution of hsa-miR-1293-high and -low PDAC samples among different mo-
lecular subtypes. 
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PLSDA revealed that the two groups exhibited distinct metabolic land-
scapes (Fig. S5A-B). These results provided robust support for the 
assertion that miR-1293 is intricately associated with the upregulation 
of glycolytic activity, such as lactic acid, which is the end product of 
glycolysis (Fig. S5C). Additionally, in the co-culture group with CAFs 
transfected with mimic-miR-1293, there is an elevation in the intensity 
of glucose-6-phosphate and a reduction in the intensity of malic acid, an 
intermediate product of the TCA cycle, which suggested the utilization 
of glucose, implying an upregulation in overall glucose utilization rate 
and a metabolic flux shifting towards glycolysis (Fig. S5D-E). In this 
particular context, we delved deeper into understanding how miR-1293 
influences glycolysis. To begin, we initiated our investigation by 
analyzing the overlap of predicted downstream genes using data from 
three distinct databases. Subsequently, we honed our focus on tran-
scription factors due to notable alterations observed in numerous en-
zymes within the glycolytic pathway at the transcriptome level. Out of 
the 506 potential downstream genes, a subset of 84 was identified as 
transcription factors. Moving forward, considering the well-established 
elevation of glycolytic activity in tumors and its positive correlation 
with miR-1293 upregulation, our objective was to pinpoint a tran-
scription factor that experiences downregulation in PDAC. This nar-
rowed our search down to just five final candidate transcription factors. 
Among these, only FOXO3 had previously been suggested to exhibit a 
negative association with glycolysis [3,4,47,7] (Fig. 6J). Meanwhile, 
FOXO3 expression was downregulated in PDAC (Fig. 6K). To authenti-
cate the interaction between miR-1293 and FOXO3, we conducted ex-
periments utilizing a luciferase reporter assay. Our findings indicate that 
miR-1293 can bind to the 3′UTR region of FOXO3 mRNA in both CAF 
and Panc-1 cells (Fig. 6L-M). Furthermore, mimic-miR-1293 resulted in 
a reduction in the protein levels of FOXO3, whereas the 
inhibitor-miR-1293 served to restore the expression of FOXO3 (Fig. 6N). 
In conclusion, miR-1293 may increase the accumulation of glycolytic 
products via FOXO3 inhibition, which ultimately fuels immune evasion 
in PDAC. 

4.7. miR-1293 is a biomarker of unfavorable prognosis for PDAC 

To validate the role of hsa-miR-1293 in PDAC progression in an in 
vivo context, we established a PDX model and introduced human PBMC 
into mice (Fig. 7A). We administered PBMC only seven days after 
xenograft transplantation, a regimen typically severely impedes tumor 
growth. As anticipated, xenografts comprised of a mixture of PDAC 
tissue and CAF-mimic-NC did not exhibit rapid growth in the subsequent 
21-day observation period (Fig. 7B-C). In stark contrast, xenografts 
composed of PDAC tissue and CAF-mimic-miR-1293 displayed a signif-
icantly higher rate of proliferation (Fig. 7B-C). Employing flow cytom-
etry to assess human CD3 + T cells, we observed a decreased abundance 
of human T cells in the group treated with CAF-mimic-miR-1293 
compared to the group treated with CAF-mimic-NC (Fig. 7D), suggest-
ing miR-1293 in CAF may impedes the recruitment of T cells. Next, we 
assessed miR-1293 expression using FISH in PDAC tissues. Compared to 
adjacent pancreatic tissue, miR-1293 expression was significantly 
elevated in cancerous regions (P < 0.01) (Fig. 7E-F). However, miR- 
1293 expression is irrelevant with tumor size (Fig. 7G). Furthermore, 
based on a PDAC cohort (Table S1), we examined the relationship be-
tween miR-1293 expression and patient prognosis. By conducting a log- 
rank test on follow-up data, we discovered that higher miR-1293 levels 

in pancreatic cancer tissues correlated with poorer prognosis (HR=1.53, 
P = 0.01) (Fig. 7H). This suggests that miR-1293 could serve as a po-
tential biomarker indicating unfavorable outcomes for pancreatic cancer 
patients independent of tumor size. 

5. Discussion 

Exosomes have been recognized as essential regulators of miRNA 
transmission and communication between cells in tumor microenvi-
ronment. For instance, exosomes miRNA-301a, derived from hypoxic 
pancreatic cancer cells, have been found to induce M2 polarization of 
macrophages. This effect is attributed to the activation of the PTEN/ 
PI3Kγ pathway [40]. Research conducted by Pang et al. demonstrated 
that pancreatic cancer cells produce and secrete miRNA-155 within 
exosomes, which functions to activate fibroblasts [27]. In this context, it 
is crucial to study the sources and destinations of exosome-miRNAs 
through high-throughput sequencing methods to understand the po-
tential biological functions of these miRNAs. In the present study, we 
employed snRNA-seq and exosome-small RNA-seq techniques to explore 
the source of exosome miRNA and their downstream effects in PDAC 
microenvironment. Traditional scRNA-seq is not well-suited for 
combining with exosome small RNA-seq for several reasons. First, dur-
ing tissue dissociation, cells retain metabolic activity and may release 
and absorb exocrine substances, particularly under strong external 
stimulation such as enzymolysis. This can greatly impact the accuracy 
and reliability of the sequenced data. Secondly, the enzymes used in the 
dissociation process can negatively affect exosomes, potentially causing 
the collapse of vesicle structures and making it difficult to purify 
high-quality exosomes. Moreover, the 37 ℃ enzymolysis environment 
might significantly affect the stability of RNA within the vesicles, even if 
the vesicle structures remain undamaged. To address these issues, our 
study employed snRNA-seq [6], which processes samples under 
low-temperature conditions, avoiding unnecessary RNA loss in 
exosomes. 

Based on the pipeline, we constructed a novel intercellular commu-
nication network by integrating miRNA tracing and miRNA-target ef-
fects with ligand-receptor pair analysis, shedding light on the complex 
interplay between various cell types in the PDAC microenvironment. In 
addition, we uncovered a prognosis-relevant exosome miRNA, hsa-miR- 
1293, in the immune microenvironment of PDAC. Prior research has 
indicated that hsa-miR-1293 is overexpressed in hepatocellular cancer 
[48] and serves as an unfavorable prognostic factor for lung cancer [17]. 
On the contrary, hsa-miR-1293 was a tumor suppressive factor for renal 
cancer [20,22]. In this study, we discovered that high level of 
hsa-miR-1293 was associated with elevated MDSC levels, reduced 
CD8 + T cell infiltration, and poorer prognosis, suggesting a potential 
role for hsa-miR-1293 in modulating tumor immune evasion and 
reducing patient survival time. Furthermore, hsa-miR-1293 expression 
positively correlated with TMB, MSI, and neoantigen levels, indicating 
that inhibiting hsa-miR-1293 might enhance immunotherapy efficacy. 
The in-vitro co-culture system and in-vivo preclinical experiments 
employed in our research further showed that targeting hsa-miR-1293 
could improve T cell-mediated anti-tumor immunity and may prolong 
patients’ OS, offering a potential therapeutic strategy for PDAC. 

Although the present study provides valuable insights into the role of 
miRNAs in the PDAC microenvironment, there are some limitations to 
consider. On one hand, the present analysis was mainly based on 

Fig. 6. Targeting miR-1293 may boost T cell-mediated anti-tumor immunity and prolonged prognosis in PDAC. (A) Representative microscopic picture for cocul-
tured PDOs and CAFs (Bright field). (B-C) Transfection of CAFs with miR-1293 mimic and inhibitor affects PD-1 expression in co-cultured T cells (mean ± SD). (D) 
Inhibiting miR-1293 in CAFs enhances apoptosis in co-cultured PDOs under T cell assault. (E) T cells co-cultured with CAFs of varying transfections exhibit distinct 
cytotoxicity (mean ± SD). (F) miR-1293 expression in PDAC cells modestly influences cell proliferation (mean ± SD). (G) KEGG analysis unveiled dysregulation of 
genes associated with glycolysis/gluconeogenesis in correlation with miR-1293 levels. (H) In PDACs exhibiting high miR-1293 levels, four glycolytic genes exhibited 
upregulation. (I) Heatmap showed the differences of metabolites abundance between two groups with indicated treatment. (J-K) Integrated analysis identified 
FOXO3 as a potentially downregulated TF with a potential interaction with miR-1293 in PDACs. (L-M) The results of a luciferase reporter assay provided supporting 
evidence for the binding of miR-1293 to FOXO3 mRNA (mean ± SD). (N) Western blot analysis demonstrated that miR-1293 reduces the expression of FOXO3. 
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Fig. 7. miR1293 serves as a biomarker for unfavorable prognosis in PDAC. (A) Timeline for in vivo experiments: Blue arrows represent intraperitoneal adminis-
tration of Durvalumab at a dose of 0.5 mg/kg twice a week to mice. (B-C) Growth curve and measurement of tumor weight in the group treated with CAF-mimic-miR- 
1293 and the group treated with CAF-mimic-NC (n = 5) (mean ± SD). (D) Reduced infiltration of CD3 + T cells in the group treated with CAF-mimic-miR-1293. (E- 
F) miR-1293 exhibits substantial upregulation in pancreatic cancer tissues compared to adjacent pancreatic tissues. (G) Tumor size showed no differences between 
miR-1293-high and miR-1293-low pancreatic cancer samples (N = 57) (mean ± SD). (H) PDAC patients with elevated miR-1293 expression are associated with 
poorer prognoses (N = 176). 
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computational prediction and in silico analyses, warranting further 
experimental validation to confirm the identified miRNA-target in-
teractions and their functional consequences. In this study, we exem-
plified the immunosuppressive role of miR-1293 in PDAC. On the other 
hand, the relatively small sample size of PDAC tissues used in this study 
may limit the generalizability of our findings. Owing to the limited cell 
number and the characteristics of snRNA-seq discussed in the previous 
section, we were unable to comprehensively identify all cell subtypes in 
this study. Consequently, the exosome miRNA information for some cell 
types with limited proportions may have been overlooked, such as 
endocrine cells. Nevertheless, our study serves as a paradigm for future 
research to design large-scale experiments on conducting snRNA-seq 
and exosome small RNA sequencing using a single bulk of tissue. 
Lastly, the role of miRNAs in modulating the immune microenvironment 
is undoubtedly complex, and our study only explored a limited number 
of miRNAs and their potential targets. 

In conclusion, our study presents a workflow using human PDAC 
tissues that enables the construction of a cell-cell communication 
network based on snRNA-seq, exosome-miRNA detection, and ligand- 
receptor analysis. Further experimental validation and functional 
studies are anticipated to uncover and confirm the therapeutic potential 
of identified miRNAs as biomarkers, which could be translated into 
clinical applications and benefit patients with cancer. 
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