BIOLOGY

©PLOS

COMPUTATIONAL

CrossMark

click for updates

E OPEN ACCESS

Citation: Clapham HE, Quyen TH, Kien DTH,
Dorigatti I, Simmons CP, Ferguson NM (2016)
Modelling Virus and Antibody Dynamics during
Dengue Virus Infection Suggests a Role for Antibody
in Virus Clearance. PLoS Comput Biol 12(5):
€1004951. doi:10.1371/journal.pcbi. 1004951

Editor: Rustom Antia, Emory University, UNITED
STATES

Received: October 6, 2015
Accepted: April 29, 2016
Published: May 23, 2016

Copyright: © 2016 Clapham et al. This is an open
access article distributed under the terms of the
Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The data used for this
analysis are provided in an excel worksheet in the
Supporting Information to the paper.

Funding: NMF, HEC and ID thank the Medical
Research Council UK for centre funding. The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Modelling Virus and Antibody Dynamics
during Dengue Virus Infection Suggests a
Role for Antibody in Virus Clearance

Hannah E Clapham'"*, Than Ha Quyen?, Duong Thi Hue Kien?, llaria Dorigatti', Cameron
P Simmons®3*, Neil M Ferguson'

1 MRC Centre for Outbreak Analysis and Modelling, DIDE, Imperial College, London, United Kingdom,

2 Oxford University Clinical Research Unit-Wellcome Trust Major Overseas Programme, Ho Chi Minh City,
Vietnam, 3 Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom, 4 Department of
Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute, Melbourne, Australia

o Current address: JHSPH, Department of Epidemiology, Baltimore, Maryland, United States of America
* hclapha1 @jhu.edu; hannah.e.clapham @gmail.com

Abstract

Dengue is an infection of increasing global importance, yet uncertainty remains regard-
ing critical aspects of its virology, immunology and epidemiology. One unanswered
question is how infection is controlled and cleared during a dengue infection. Antibody is
thought to play a role, but little past work has examined the kinetics of both virus and anti-
body during natural infections. We present data on multiple virus and antibody titres
measurements recorded sequentially during infection from 53 Vietnamese dengue
patients. We fit mechanistic mathematical models of the dynamics of viral replication and
the host immune response to these data. These models fit the data well. The model with
antibody removing virus fits the data best, but with a role suggested for ADCC or other
infected cell clearance mechanisms. Our analysis therefore shows that the observed
viral and antibody kinetics are consistent with antibody playing a key role in controlling
viral replication. This work gives quantitative insight into the relationship between anti-
body levels and the efficiency of viral clearance. It will inform the future development of
mechanistic models of how vaccines and antivirals might modify the course of natural
dengue infection.

Author Summary

Dengue is a globally important viral disease. Despite this, there is still much unknown
about the immunology, virology and epidemiology of dengue. As for all viral infections,
the interaction between virus and immune response is a complex one. Using data collected
from patients, we model how the virus replicates in an infected individual and how the
human antibody response acts to control that replication. We show that the timing and
magnitude of the growth and decline of virus and antibody levels in dengue-infected
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patients are consistent with antibody playing a key role in controlling infection. Our
results are of use in the evaluation of potential antiviral drugs and vaccines.

Introduction

In contrast to malaria, dengue is a vector-borne infection with a growing geographical range,
which is therefore responsible for an increasing burden of disease [1]. Much remains to be
understood about the epidemiology and pathogenesis of infection, notably how infection with
one serotype modifies viral replication and disease in a later infection with a different serotype.
Multiple studies have examined the role of antibody in enhancing infection [2], antigenic sin in
T or B cells [2, 3] and protection afforded against infection or disease [4]. However, only a lim-
ited amount of past work has examined how the kinetics of the antibody response interact with
the dynamics of viral replication within the infected patient, and investigated the causes of viral
clearance during infection. Previous viral dynamic modelling work for dengue has fit mecha-
nistic models of various immune responses to viral titres [5, 6]. Here we extend this work to fit
to both viral and antibody titres during infection.

One previous study [7] analysed a small number of serial antibody measurements from pri-
mary dengue infections to examine whether antibody titres, along with NS1 measurements,
could be used as an alternative diagnostic method for detecting infection. The study showed
that IgM antibodies were detectable in 43% of cases on day 3 of symptoms, though in some
individuals they were detectable from day 1 and were detectable in 100% of individuals by day
8. Some individuals also had detectable IgG antibodies by day 8. Though generally only two
measurements were available per patient, the study highlighted high levels of heterogeneity
between patients in antibody responses.

These results echo what was seen in an older study [8] which showed that in primary
infection IgM antibody developed more quickly and to higher levels than IgG, but that the
reverse was true in secondary infection. This work led to the use of the ratio of IgG vs. IgM
titres to classify primary and secondary infection. IgM was also noted to become detectable
at around the same time point as virus became undetectable, but since the main focus of the
work was the use of antibody titre measurements as a diagnostic tool, mechanistic explana-
tions of antibody and virus dynamics were not considered. Zompi and colleagues [9] consid-
ered the kinetics of antibody and B cell populations during acute secondary DENV3
infection in Nicaragua. Early in infection they found that the majority of antibody was
cross- reactive with more antibody directed towards DENV2 than DENV3. Most recently, a
study of Mexican patients compared (at a single time-point) viral titres in patients with or
without detectable IgM [10]. Lower virus titres were observed in individuals with detectable
IgM.

There are two mechanisms by which dengue infection can be controlled: limiting the
rate of production of new virus particles (by blocking virus entering the cell or preventing
the cell from releasing virus) or increasing the clearance of infected cells or virus (neutrali-
sation or opsonisation and clearance). Antibody can play a role in the clearance of virus
through neutralisation [11] and in the clearance of infected cells through antibody depen-
dent cell cytotoxicity (ADCC) [12]. In this paper, we explore whether sequential antibody
and virus measurements from a closely observed set of Vietnamese dengue patients are
temporally and mechanistically consistent with either or both of these mechanisms for
antibody action.
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Results

Virus and antibody titres were measured throughout DENV1 and 2 infections (Figs 1 and 2). A
summary of characteristics of the dataset is given in Table 1. The levels of IgG titres in patients
with primary infection were too low during infection for IgG to play a role in viral clearance.
We therefore fitted the IgG data only to data from patients with secondary infections and the
IgM titres to both primary and secondary infections. Since measurements only started after
patients sought healthcare (and therefore after symptoms had started), data are only typically
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Fig 1. Measured RNA and antibody titres over time for DENV1-infected subjects. The left hand axis shows logio RNA copies/ml of
plasma in black. The right hand axis shows IgG titres in red and IgM titres in purple (both on a linear scale). Each box represents the viral and
antibody measurements of a different individual. Unfilled marker symbols show measurements below the assay limit of detection for virus and

above the upper limit of reliable (linear) quantification for IgG and IgM [13]. Subjects classified as primary infections are outlined in green.
Patient 15, who shows the lowest RNA titres overall, is outlined in black.

doi:10.1371/journal.pcbi.1004951.g001
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Fig 2. As Fig 1 but for DENV2-infected subjects. The left hand axis shows log4g viral copies/ml of plasma in black. The right hand axis shows
1gG titres in red and IgM titres in purple (both on a linear scale). Each box represents the viral and antibody measurements of a different

individual. Unfilled marker symbols show measurements below the assay limit of detection for virus and above the upper limit of reliable (linear)
quantification for IgG and IgM [13]. All subjects were classified as secondary infections.

doi:10.1371/journal.pcbi.1004951.9002

available from around the time of peak RNA titres. A peak in RNA titre (defined as an observed
increase in titre relative to the first measurement, followed by a decline) was observed in 12 out
of the 32 DENV1 patients and 7 of 21 DENV?2 patients. Subject 15 (marked in black in Fig 1)
was an outlier in having very low peak RNA titres and therefore we excluded this patient from

the model fitting.

We explored models of virus replication and immune control with two extreme cases for the
action of antibody: direct neutralisation of free virus, and killing of infected cells (e.g. via ADCC).
We found that either assumption was able to fit the data well, pointing towards a dominant role
for antibody in shaping DENV RN Aemia dynamics, in particular IgM. Though both models fit
qualitatively well, the fit of the virus neutralisation model was statistically significantly better
(judged by the log likelihood difference) than the ADCC model (Tables 2 and 3). This model fit

Table 1. Summary of data characteristics.

DENV1 DENV2
No. of patients 32 21
No. of measurements per person virus, IgG, IgM (mean, s.d.) 11.4,0.5 11.4,0.5
Day symptoms at first measurement (mean, median, s.d.) 1.6,1.7,0.35 1.5, 1.6, 0.30
% Secondary 84 100
RNA decrease rate logq, per day (mean, median, s.d.) -1.2,-1.3,0.70 -1.5,-1.4,0.40
RNA titre at start of decrease log,, (mean, median, s.d.) 9.0,9.3,1.2 8.2,8.1,0.9
Day of RNA decrease start (symptoms) (mean, median, s.d.) 42,43,14 3.9,37,15
IgM at start of decrease (mean, median, s.d.) 3.8,2.4,37 41,23,4.9
IgG at start of decrease (mean, median, s.d.) 1.7,0.9,2.8 45,1.6,11.6
doi:10.1371/journal.pcbi.1004951.t001
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Table 2. Parameter estimates for the model with virus neutralisation, in which antibody removes
virus (Model 2). The model was separately fitted to IgM data for DENV1 and DENV2 infections. Forimmune
response parameters and the incubation period which are patient specific parameters, median (IQR) and min
and max are reported. For the group-level parameter 8, the median and (95% Cl) are reported. Parameters
2o, N1, N2, IP and SF were fitted as patient specific and others as common to all patients in the fitted group.

Serotype Parameter Parameter Estimates
DENV1 70 0.121[0.0401, 0.351] {1.70x10°3, 1.24}
ny 1.19[1.03, 1.38] {0.496, 2.13}
P 5.51[4.68, 6.66] {3.88, 8.29}
SF 0.177 [0.0987, 0.293] {0.017, 1.41}
N2 2.41x10° [7.63x10%, 2.28x10°] {1.40, 1.11x10%
5 3.30 (3.07, 3.48)
Log-likelihood -539
DENV2 Zo 0.177 [0.0712, 0.471] {9.54x103, 0.941}
N 1.04 [0.815, 1.22] {0.562, 1.99}
P 5.57 [4.57, 6.44] {3.54, 7.86}
SF 0.151 [0.0616, 0.192] {0.0346, 0.748}
N 1.62x10% [4.42x10°, 1.66x10°] {41.6, 1.22x107}
(4] 3.54 (3.38, 3.67)
Log-likelihood -647

doi:10.1371/journal.pcbi.1004951.t002

better for 24 out of 31 individuals. We also see in comparing the fit of the antibody neutralization
model to the virus and IgM antibody titres (Figs 3 and 4) with the model fit of the ADCC model
(Figs 5 and 6), that the first model captures the magnitude and timing of the early viral titres bet-
ter than the second. Parameter estimates for both model variants are given in Tables 2 and 3.The
model fits for both models to the virus and IgG titres are shown in the Figs A-D in S1 Text with
the parameters in Tables A-B in S1 Text.

Table 3. Parameter estimates for the model with ADCC, in which antibody removes infected cells
(Model 1). The model was separately fitted to IgM data for DENV1 and DENV2 infections. For patient specific
parameters (i.e. the immune response parameters and the incubation period, IP), median [IQR] and {mini-
mum, maximumy} estimates across subjects are reported. For parameters assumed to be the same for all
infections with the same serotype (k), the median posterior estimate and 95% Cl are reported. Parameters z,,
n1, N2, IP and SF were fitted as patient-specific and others as common to all patients in the fitted group.

Serotype Parameter Parameter Estimates
DENV1 Z 0.0319 [0.0118, 0.169] {6.79x10™*, 0.658}
Ny 1.15 [0.932, 1.380] {0.489, 1.83}
P 6.26 [5.25, 7.21] {4.09, 8.55}
SF 0.411[0.22, 0.621] {0.0408, 3.65}
ns 15.1 [3.29, 2.62x10?] {4.31x10*, 2.7x10°}
K 4.01 (3.92, 4.10)
Log-likelihood -675
DENV2 20 0.0418 [0.0242, 0.10] {0.00101, 0.455}
Ny 0.987 [0.803, 1.20] {0.479, 1.83}
P 5.95 [4.98, 6.56] {4.09, 9.10}
SF 0.224[0.151, 0.362] {0.0423, 0.714}
No 0.625 [0.0806, 8.93] {4.54x107*, 2.75x10°%}
K 3.99 (3.90, 4.14)
Log-likelihood -685

doi:10.1371/journal.pcbi.1004951.1003
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Fig 3. Fit of the model to virus and IgM measurements for DENV1-infected subjects for the model variant in which antibody removed
virus. Each plot shows an individual patient. Virus data is shown in black and IgM data in purple. Parameters zy, 17, 1, IP and SF fitted as
patient specific, other parameters fitted per group. Mauve, grey and blue curves show 100 samples from the posterior distributions of antibody,
virus and target cell trajectories, respectively. Median fits are shown as bold lines (purple shows IgM, black shows virus). Parameter estimates
are shown in Table 2. Subjects classified as primary infections highlighted with green outline.

doi:10.1371/journal.pcbi.1004951.9003

The scaling factor, SF, relating ELISA measured antibody levels to actual effective antibody
titres, was fitted independently for each patient; this is equivalent to assuming that a specific
density of antibody has differing effectiveness in clearing virus or infected cell clearance across
subjects. However, the estimated differences between individuals in the value of SF were not
large, and it is possible to fit the data reasonably (though less well, with more predicted target

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004951 May 23, 2016 6/15
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Zp, N1, N2, IP and SF fitted as patient specific, other parameters fitted per group. Mauve, grey and blue curves show 100 samples from the

posterior distributions of antibody, virus and target cell trajectories, respectively. Median fits are shown as bold lines (purple shows IgM, black
shows virus). Parameter estimates are shown in Table 2. All subjects were classified as secondary infections.

doi:10.1371/journal.pcbi.1004951.g004

cell limitation) assuming this parameter takes the same value for all individuals (see Figs E and

Fin S1 Text).

Discussion

In this paper, we used dynamical modelling to show that the measured titres of antibody and
virus throughout dengue infection are consistent with antibody playing a dominant role in

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004951
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Table 3. Subjects classified as primary infections highlighted with green outline.

doi:10.1371/journal.pcbi.1004951.9005

shaping virus dynamics. Antibody kinetics as measured by IgG and IgM ELISA were able to
explain infection dynamics and clearance in secondary dengue cases, while only IgM kinetics
were able to for primary cases. That only IgM can explain the clearance in primary cases points
towards a clear role for IgM in RNA clearance. The strength of this modelling approach is that
we can take into account the feedback processes between viral kinetics and the immune

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004951 May 23, 2016 8/15
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response; the immune response is stimulated by the virus and then acts to control viral
replication.

We found that the viral and antibody data are consistent with models in which antibody
acts on either the virus or infected cells. This is consistent with previous modelling work that
suggested that models of target cell limitation was not able to explain viral dynamics [6]. The
fit was better for the model which assumed antibody directly neutralises free virus. However

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004951 May 23, 2016 9/15
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the estimated infected cell lifespan was a third of a day for this model variant, a low value com-
pared with other viral infections (e.g. HIV [14]). Such a short lifespan might suggest an addi-
tional important role for dengue infection lysing cells, ADCC or T cells in clearing infected
cells later in infection (i.e. from the peak of RNA titre on) or for other immune actions still to
be understood; unfortunately we do not have data on RNA or antibody titres prior to the onset
of symptoms, or on measures of T cell activation.

The small but significant differences in estimates of the SF parameter (effectively antibody
efficacy) between individuals seen in the best fit model could reflect limitations of the ELISA
assay, which captures all anti-dengue antibody. This crude measure of all anti-dengue antibody
will most likely include multiple different levels of responses (with different epitope-specific
affinities) to each serotype. The efficacy of this response will depend on the previous infecting
serotype, and how long ago this infection occurred, so will likely vary between individuals. Fur-
ther work with serotype specific neutralizing titres or epitope specific measures will be of inter-
est here.

We find that even relatively low-levels of antibody (measured by ELISA) were able to begin
to control infection, possibly suggesting that the immune response substantially overshoots (in
terms of antibody levels attained) compared with the minimum response required for control.
Our ability to quantify the relationship between antibody and RNA titres is limited by the fact
that ELISA assays give results on a linear scale, while RNA titre measurements (quantified via
PCR) have a dynamic range of 5 or 6 orders of magnitude, given their measurement errors are
on a logarithmic scale. Our analysis suggests antibodies start to control dengue replication at
concentrations below the lower limit of quantification of the ELISA assay. Use of antibody dilu-
tion assays would therefore provide better resolution of the detailed relationship between virus
and antibody kinetics and would therefore allow us to explore more rigorously whether anti-
body trends are consistent with antibody playing the dominant role in viral control, or whether
another aspect of the immune response (e.g. the innate response) must also be playing an
important role. In addition, this ‘RNAemia’ as measured by RT-PCR is an imperfect proxy of
infectious virus titre, and the relationship between titre and infectiousness may well break
down in the latter stages of infection- close to defervescence. Non-infectious (e.g. because it is
bound to neutralising Ab) virus will nonetheless continue to give a signal in the PCR assay.
Measures of infectivity of individuals throughout and particularly in the latter stages of infec-
tion will be of use to clarify the magnitude of this effect.

Previous early work by Innis et al. [8] also considered IgG and IgM dynamics during infec-
tion. We adopted the criterion proposed by that work in classifying patients without quantifi-
able (<10) IgG antibodies by the end of infection as primary infections and the remainder as
secondary. For secondary infections, Innis et al noted IgG developing more quickly than IgM.
In our data, however, we observe a range of IgG and IgM kinetics for secondary cases (Figs 1
and 2). Though IgG reaches high levels ultimately in all secondary cases, in some individuals
IgG and IgM growth is concurrent, or IgM actually develops more quickly than IgG. This indi-
vidual heterogeneity is consistent with observations in a recent work by Hu et al. [7]. It implies
that primary/secondary classification using the IgG to IgM ratio might be highly sensitive to
the timings of the measurements used.

In incorporating a single monolithic immunity variable and the one to one relationship of
clearance, our model makes highly simplifying assumptions about the development and bind-
ing of the immune response to dengue virus. In reality there are probably multiple arms of the
immune response contributing to the control of viral replication and a more complex binding
process occurring [15]. For example, in addition to B-cell mediated responses considered here,
there is evidence from mice that the innate immune response may assist in viral clearance and
that T-cells may be important [16]. Our model currently predicts some role for target cell

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004951 May 23, 2016 10/15
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depletion in infection dynamics, which may be the result of our model fits adjusting to cope
with the absence of data on other parts of the immune response. Measurements of anti-viral
innate immune responses (such as nonspecific Type I interferon activation) and T cell response
dynamics throughout infection, paired with virus titres, will therefore be informative in disen-
tangling which arms of the immune response play the dominant role at which stage of patho-
genesis. To understand the antibody response further, multiple antigen-specific antibody
measurements (possibly coupled with measurements of the capacity of sera to neutralise/
enhance) would be highly informative. It would be particularly valuable to obtain such data
(from human challenge models or otherwise) from early in infection, as currently we have little
data on the early growth kinetics of virus or the immune response.

An understanding of how the dynamics of virus replication and the immune response inter-
act during infection gives insight into pathogenesis and how disease course might be modu-
lated. In this paper, the fit of mathematical models of immune system and viral dynamics to
dengue patient data, sheds light on this key relationship. We have presented the first study
which quantitatively and mechanistically links measured dengue virus and antibody dynamics
throughout infection. We found a mathematical model of dengue antibody playing a role in
controlling infection was consistent with the RNA and antibody titres throughout dengue
infection.

Materials and Methods
Ethics statement

The trial protocol was approved by Oxford University Tropical Research Ethical Committee
and the Scientific and Ethical Committee of the Ministry of Health, Vietnam. The trial was reg-
istered at http://www.clinicaltrials.gov (NCT01096576).

Virus and antibody titres

We use RNA titre data presented in a prior publication of a clinical trial of the drug balapavir
to treat dengue infection [13]. Informed consent was obtained from the study participants as
described in [13]. That study saw no differences between treatment arms, so both were com-
bined and used here. Patients were enrolled within 48 hours of fever onset. The trial had 32
subjects with DENV1 infection and 21 with DENV2 infection. All patients had twice daily viral
load measurements [13].

Antibody titre measurements were also measured throughout infection in this study, and
these data are presented for the first time here. IgG and IgM antibodies were measured using
an ELISA assay [17-19] with quantitation via measurement of optical density. The ELISA
assay does not measure antibody to a specific epitope, but overall binding of the antibody to
virus. Measurements are thought to be linearly proportional to total binding levels below 25
optical density units, but above 25 the relationship becomes non-linear as optical density mea-
surements saturate at high levels of binding. We excluded one patient (patient 15 in Fig 1)
from the analysis due to the outlier virus and immune titres seen.

Using the antibody titre measurements, individuals could be classed as primary or second-
ary infections [8]. We categorised patients as primary infections if they had IgG titres less than
10 in the specimen collected at the time of patient discharge from hospital and as secondary (or
later) infections otherwise. Using this algorithm, 5 of the DENV-1 cases were classified as pri-
mary and the remainder as secondary infections. All DENV-2 cases were classed as secondary
infections.
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Mathematical model

We extended an existing mathematical model of dengue virus and immune dynamics within a
host [5] to explore the extent to which antibody kinetics are consistent with a key role for anti-
body in limiting dengue infection. In this model (similar to those used for influenza [20, 21]),
the target cells (x) and free virus (v) interact to infected cells (y), which can then go onto pro-
duce more virus. Whilst this is occurring, antibody levels (z) are increasing with the aim of
halting infection (and in future providing protection against a subsequent infection). The fol-
lowing equations define the model.

dx

i A —yx — fxv

d

—y:ﬁxv—éy—fxzy

dt (1)
v

5T Wy kv ey

%:f(vayvz)

Parameters of the model and their meaning are given in Table 4. We fit two model variants
representing different mechanisms of antibody action: Model 1: antibody acting to kill infected
cells e.g. via antibody dependent cell cytotoxicity (ADCC), and Model 2: antibody neutralising
and clearing the virus. We model antibody acting to kill infected cells by assigning € = 0 and o
> 0 and virus neutralization and clearance by assigning o. = 0 and € > 0.

Table 4. The parameters of the model and values if fixed. References for fixed parameter assignments are given.

Parameter Meaning Value/Estimated Reference
A Constant target cell production/ml/day 1.4x10°
14 Cell death rate/day 1/7 per day
B Infection rate of target cells per virion Model 1: Primary 1.72x10°'° Secondary: 2.5 x10°'° Model 2: Primary:
3.83x107"" Secondary: 5 x 107"
a Removal rate of infected cells/day per Model 1: 1 Model 2: 0 arbitrary
immune cell
£ Removal rate of virus/day per virion Model 1: 0 Model 2: 1 arbitrary
() Infected cell death rate/day Model 1:1/7 per day Model 2: estimated [26]
Production rate of virions/day per infected 1x10* [27]
cell
K Virion clearance rate/day Model 1: estimated Model 2: 3.5 per day From influenza
n4 Proliferation rate of immune cells/day per Estimated -
infected cell
n2 Threshold parameter for the immune Estimated =
response proliferation
SF Scaling factor of immune response Estimated -
Zp Initial population size of immune effector Estimated -
population
Vo Initial inoculum of virus 1/ml arbitrary
Yo Initial population size of infected cells 0 Assuming virus is
inoculated
Xo Initial population size of target cells Model 1: 107 Model 2: 108
P Incubation period Estimated -
doi:10.1371/journal.pcbi.1004951.t004
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Key to modelling the interaction between viral and immune system dynamics is how the dif-
ferent parts of the immune response proliferate in response to infection, represented in the
model by the function f (y, v, z). In preliminary fitting we saw that the mass action formulation
(5], f (9, v, 2) = nyz was unable to fit the IgG and IgM data. Hence we used a more realistic satu-
rating function of infected cell or virus density: f (y, v, z) = (11; y z/ (1, + y)) (infected cell killing
model) or f(y, v, 2) = (1; vz / (1, + v)) (virus neutralisation model), respectively. This func-
tional form implicitly incorporates the processes of B cell maturation and antibody production,
and similar forms have been used to model immune cell proliferation to viral infection in previ-
ous work [22].

We simultaneously fitted both viral titres and antibody levels. In order to assess which anti-
body measures best explained viral dynamics, we fitted the models separately to IgG and IgM
data, fitting the same viral titre data in each case. Since model (1) allows for both target cell-
limited and immune control of the virus, how it fits the data will shed light on the mechanism
driving infection control. If the antibody and the virus dynamics are consistent with a model in
which antibody is controlling virus, we would expect to find a minimal role for target cell limi-
tation [23].

The models were fitted using Markov Chain Monte Carlo (MCMC) methods, implemented
in R [24] and C, as described in previous work [5]. For each subject we estimate the length of
the incubation period (i.e. the time from infection to symptom onset) using the reported day of
symptom onset and an informative prior distribution for the incubation period. Informed by
early human challenge studies [25], the prior distribution used was a left-truncated normal
with mean of 5.7 days and standard deviation of 3 days. Antibody measurements were also
included in the model likelihood, with the upper limit of reliable quantification modelled using
the cumulative distribution function. The likelihood for a single subject is:

H QS(IOg Div|10g(vi)7 avz)liciv(b(log LDv‘log(vi)7 avz)cxv¢(Dia|Sin7 O-az)17mx (1 - (D(LDa|SFZi’ Guz)cal)
i=1

Here ¢ and @ are the probability density function and cumulative density function of the
normal distribution, respectively. The number of observations for a single individual is denoted
by n, Dj, is the ith viral titre measurement and v; is the model prediction of viral titre at the ith
measurement. LD, is the limit of detection of viral titre and o, is the error of viral titre measure-
ments on a logl10 scale, assumed to be 1. The indicator function, ¢, is 0 if D;, > LD, and 1 if
not. In addition, D;, is the ith antibody level measurement, z; is the model prediction of anti-
body level at the ith measurement and SF is a scaling factor for antibody measurements (dis-
cussed below). LD, is the upper limit of reliably quantification of antibody levels and o, is the
error in antibody measurements assumed to be 1. The indicator function, ¢,; = 1 if the ith anti-
body level measurement is above the limit of reliable quantification (LD,), and 0 if not.

Since the optical density based measurements of antibody levels obtained via the ELISA
assay do not provide a direct measurement of antibody density per ml of plasma, we introduce
a fitted multiplicative scaling factor, SF, to transform the state variable z, which represents anti-
body densities in the model, into the same scale as the antibody level measurements.

The full likelihood is given by the product of the likelihood over all patients and we use the
natural logarithm of the likelihood (log-likelihood) as a measure of goodness of fit.

We fit some model parameters as patient-specific and others as group-specific, with the
groups here being defined by the infecting serotype (DENV1 or DENV2). Parameters relating
to the host immune response (zy, 17;, 1, and SF) were treated as patient-specific, whilst virus
parameters (§ and x and ) were assumed to be the same for all subjects. The assignment oz = 1
or € = 1 and does not affect model results; @ and z, are unable to be estimated simultaneously
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since the antibody level measurements available are relative, not absolute measures of antibody
density. We estimated x and fixed § and x, to values from previous work; higher for secondary
than primary cases, however the results are not sensitive to these values, and with different val-
ues for each of the model formulations (required for each model to reach the peak titers) [5].
Table 4 gives a complete list of model parameters and definitions.
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