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Background.  With the limited availability of testing for the presence of the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) virus and concerns surrounding the accuracy of existing methods, other means of identifying patients are urgently 
needed. Previous studies showing a correlation between certain laboratory tests and diagnosis suggest an alternative method based 
on an ensemble of tests.

Methods.  We have trained a machine learning model to analyze the correlation between SARS-CoV-2 test results and 20 rou-
tine laboratory tests collected within a 2-day period around the SARS-CoV-2 test date. We used the model to compare SARS-CoV-2 
positive and negative patients.

Results.  In a cohort of 75 991 veteran inpatients and outpatients who tested for SARS-CoV-2 in the months of March through 
July 2020, 7335 of whom were positive by reverse transcription polymerase chain reaction (RT-PCR) or antigen testing, and who had 
at least 15 of 20 lab results within the window period, our model predicted the results of the SARS-CoV-2 test with a specificity of 
86.8%, a sensitivity of 82.4%, and an overall accuracy of 86.4% (with a 95% confidence interval of [86.0%, 86.9%]).

Conclusions.  Although molecular-based and antibody tests remain the reference standard method for confirming a SARS-
CoV-2 diagnosis, their clinical sensitivity is not well known. The model described herein may provide a complementary method of 
determining SARS-CoV-2 infection status, based on a fully independent set of indicators, that can help confirm results from other 
tests as well as identify positive cases missed by molecular testing.

Keywords.   machine learning; human coronavirus; polymerase chain reaction; viral pneumonia.

The rapid emergence and spread of the virus severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) and its 
associated disease coronavirus disease 2019 (COVID-19), 
combined with the limited availability of testing as exempli-
fied by the recently promoted use of pooled testing [1], have 
driven the search for alternative screening methods [2–4]. 
Computed tomography (CT) scans are a proven alternative, 
but unnecessary irradiation and overuse of a limited resource 
for the purpose of screening are significant drawbacks [5]. 
And although protein-based antibody and antigen tests that 
deliver results on shorter timescales are now emerging, con-
cerns about their accuracy persist [2–4].

The combination of vital signs with common laboratory 
tests presents a promising alternative means of SARS-CoV-2 
diagnosis, particularly for those with active symptoms. In 
public settings such as airports, for example, the use of body 
temperature alone is a convenient if blunt diagnostic tool but 
has high false negative rates [6]. Meanwhile, various studies 
have noted that COVID-19 patients have characteristically 
low counts of white blood cells, lymphocytes, and platelets [1, 
7–9] and elevated measures of serum ferritin and C-reactive 
protein (CRP) [10–12]. Therefore, we hypothesize that with 
the assistance of machine learning, small differences across a 
suite of commonly administered laboratory tests can, in ag-
gregate, carry enough information to accurately infer active 
SARS-CoV-2 infection.

Such a method would have significant advantages. In many 
cases it would require no additional material outlay, as the 
necessary data are already present in the patients’ medical re-
cords. In other cases, the data could be readily obtained using 
existing laboratory equipment and reagents with the same 
cost and turnaround time as standard blood panels. This 
would allow large numbers of patients to be rapidly analyzed. 
For inpatients, results could be generated in near real-time 
to compute a probability score that could be automatically 
updated as additional data become available. Entire inpatient 
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populations could be thus monitored, with alerts issued when 
the probability of SARS-CoV-2 infection crosses a predefined 
threshold. Outpatients would also benefit from rapid predic-
tive analysis. Note that we believe the sensitivity and spec-
ificity of our method qualifies it as a complement to, rather 
than a replacement for, molecular diagnosis. Below we de-
scribe a model that can identify patients with SARS-CoV-2 
based on patient temperature and a suite of commonly or-
dered laboratory tests.

METHODS

Data

The US Department of Veterans Affairs (VA) healthcare 
system serves over 9 million veterans at over 1200 Veterans 
Health Administration sites of care throughout the United 
States and US territories [13]. All VA facilities were included 
in this analysis. We collected data from 75  991 US veteran 
inpatients and outpatients who had received at least 1 SARS-
CoV-2 RT-PCR or rapid antigen test during the period  
8 March through 22 July 2020. Relevant data sources from 
VA sites were maintained and integrated using the Bitscopic 
Praedico® platform [14].

Normalization

As a preliminary step, we normalized vital sign names, labo-
ratory test names, specimen site locations, and measurement 
units to ensure that test results were commensurate between 
all facilities from which our cohorts were derived. This resulted 
in an initial list of 70 features comprising age and sex (2), vital 
signs (6), hematology (7), blood chemistries (49), and 4 com-
posite features believed to have potential predictive value: the 
platelet: lymphocyte, neutrophil: lymphocyte, CRP: albumin, 
and PaO2:FIO2 ratios [15, 16]. The initial suite of predictors for 
the machine learning algorithm was later reduced to 20 features 
as described below.

Cohort

Our initial cohort comprised 188 132 patients tested for SARS-
CoV-2 using emergency use authorization (EUA) approved mo-
lecular SARS-CoV-2 tests between 8 March and 22 July 2020. 
This was immediately reduced to 75 991 patients after imposing 
a constraint of possessing any 15 or more completed lab tests 
from the list described below in a window period around the 
SARS-CoV-2 test. The latter tests were primarily RT-PCR tests 
performed on nasopharyngeal swabs but also included serum 
PCR tests, rapid tests such as those performed on Cepheid ma-
chines, and antigen-based tests. As a result, the SARS-CoV-2 
tests utilized for our analysis comprised a diverse and inclu-
sive set. As some individuals received multiple tests, the total 
number of testing encounters available for training and testing 
our machine learning algorithm were 7335 positive and 84 919 
negative cases. In total, 7191 (7.8%) of the tests were from fe-
male patients, and 85 063 (92.2%) of the tests were from male 
patients; 7.1% of the tests from female patients were positive 
and 8.0% of the tests from male patients were positive. The 
mean ages for tested patients were 66 for male patients and 53 
for female patients (Table 1). We also examined comorbidities 
in patients using ICD10 codes collected over the prior 3 years 
to calculate Charlson and Elixhauser comorbidity indices [17].

Time Windowing and Completeness Requirements

Laboratory data were collected against each SARS-CoV-2 
testing encounter within a 48-hour window (±24 hours) of the 
SARS-CoV-2 testing date. Where multiple laboratory test re-
sults or vital signs were present within the time window, the 
median value was taken.

Outlier Exclusion

Extreme outliers within each feature were eliminated based on 
empirical analysis of test result distributions. Data excluded in 
this way, which may have included erroneous or improperly 

Table 1.  Summary of the Numbers of Patient Encounter Test Results and Demographic Information Relating the Number and Median Ages Broken Out by 
Sex of Unique Patients and Tests for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Positive and Negative Patients

Unique Patient Tests/Encounters

Tested SARS-CoV-2-positive SARS-CoV-2-negative SARS-CoV-2-positive and negative

Total 92 254 7335 84 919 N/A

Unique patients

 Tested SARS-CoV-2 only positive SARS-CoV-2 only negative SARS-CoV-2 positive and negative

Male 69 634 5003 63 841 790

Female 6357 437 5881 39

Total 75 991 5440 69 722 829

Demographic information

Mean age (male) 65.82 65.72 65.79 68.80

Mean age (female) 52.77 52.62 52.76 56.26

Mean age (all) 64.73 64.67 64.69 68.21

Abbreviation: N/A, not applicable.



COVID-19 Prediction From Standard Tests  •  cid  2021:73  (1 November)  •  e2903

calibrated measurements, represented <0.2% of the total 
number of laboratory measurements.

Feature Reduction

To simplify the analysis and facilitate the potential creation of 
an inexpensive and scalable test, it would be desirable to reduce 
the initial list of 70 features as much as possible without severely 
impacting prediction accuracy. Toward this end, pairwise cor-
relations between all features were computed, and features with 
correlations at the ≥90% level were eliminated. Among the re-
maining features, a missingness of up to 93% was tolerated be-
fore a feature was excluded from further consideration. For the 
remaining 54 features, an initial run of our algorithm described 
below produced a list ranked by importance, from which we 
further reduced our included feature set to the top 20 [18]. The 
Charlson and Elixhauser comorbidity indices had minimal or 
even negative importance and were therefore not included as 
part of the final set of features.

Machine Learning: Algorithm Selection, Training, Tuning, and Prediction

From the general nature of the problem (binary classification, 
with a moderate number of mostly normally distributed pre-
dictors), a number of standard machine learning approaches 
could be deployed. We chose XGBoost because of its accuracy in 
the test set as well as its high tolerance for missing data without 
the need for imputation (this was particularly significant for 
features such as ferritin with both high missingness and high 
importance) [19]. An initial round of hyperparameter tuning 
led to the selection of a learning rate (eta) of 0.1 and maximum 
tree depth of 4, with 500 maximum iterations. Three-quarters of 
the data in the minority class were used for training and cross-
validation, and one-quarter were held out for testing. The dom-
inant negative class was undersampled to balance the training 
set, whereas the test set was likewise undersampled to pre-
serve the original response class ratio (which was moderately 
imbalanced at 8.0% SARS-CoV-2 positive). The training cohort 
comprised 5501 positive and 5501 negative encounters, and 
the testing cohort comprised 1834 positive and 20  929 nega-
tive encounters. Due to the undersampling, not all of the 84 919 
eligible negative encounters were included in the training and 
testing. All statistical analyses were performed using R (version 
3.6.0) [20].

RESULTS

Our model was able to reproduce the molecular SARS-CoV-2 
test results with a sensitivity of 82.4% and a specificity of 86.8%, 
and an overall test accuracy of 86.4% (with a 95% confidence 
interval of [86.0%, 86.9%]). The results are summarized in 
Table 2. It must be noted that the accuracy of our method can 
at this time only be measured against reference tests whose 
overall accuracies are themselves not well known; thus the 

potential accuracy of our method, should it become possible to 
train it against a highly accurate reference test, may be higher. 
A summary profile of the 20 selected features, including their 
missingness both before and after imposing a minimum test 
completion rate of 15, is given in Table 3, with the top 10 features 
in descending order of importance being serum ferritin, white 
blood cell count, eosinophil count, patient temperature, CRP, 
serum lactate dehydrogenase (LDH), D-dimer, basophil count, 
monocyte %, and serum aspartate aminotransferase (AST). The 
difference in distributions between SARS-CoV-2 positive and 
negative patients for each feature is shown in Figure 1. Of note, 
our requirement for 15 out of 20 of these commonly tested fea-
tures permitted our eligible training set to cover 40% of the ad-
dressable VA SARS-CoV-2 tested population.

A particular area of concern in present-day SARS-CoV-2 
testing is the false negative rate of molecular tests, with a 
meta-review estimating that the median false-negative rate 
was 38% on the day of symptom onset [21]. One way to ana-
lyze our model’s potential as an independent source of infor-
mation is to examine cases where multiple SARS-CoV-2 tests 
were administered to a single individual with mixed results: 
a negative test result followed within several days by a posi-
tive result may have been a false negative, especially because 
at this time the SARS-CoV-2 test is not typically administered 
in the absence of symptoms. Of the 77 instances where an in-
dividual in our cohort tested positive for SARS-CoV-2 sub-
sequent to a negative test in the prior 3 days, our prediction 
model contradicted the negative molecular finding 54 times, 
or 70% of the time. In the converse case of instances where 
an individual tested negative for SARS-CoV-2 subsequent to a 
positive test in the prior 3 days, our prediction model contra-
dicted the negative test finding 309 out of 788 times, or 39% of 
the time. The high percentage of positive predictions contra-
dicting the negative reference tests (70% of all tested negatives 
soon followed by positives, and 39% of tested negatives soon 

Table 2.  Summary of the XGBoost Machine Learning Prediction Model 
Results

SARS-CoV-2 (+) vs 
SARS-CoV-2 (−)

Min/Max features 15/20

Number of total tests/encounters 92 254

Number of unique patients 75 991

Number of SARS-CoV-2 (+) encounters 7335

Number of unique SARS-CoV-2 (+) patients 6269

Number of encounters in training set 11 002

Number of encounters in test set 22 763

Specificity (%) 86.77

Sensitivity (%) 82.39

Overall accuracy (%) 86.40

Positive predictive value (%) 35.30

Negative predictive value (%) 98.25

Abbreviation: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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following positives), compared to the 8% prevalence of tested 
positives within our cohort, is evidence for the sensitivity of 
our algorithm to factors independent of those measured in the 
standard tests.

The possible effect of comorbidities on diagnosis using this 
method of testing was another area of concern, especially con-
sidering that comorbidities are known to have an important 
bearing on COVID-19 prognosis. We investigated this ques-
tion by producing the composite Charlson and Elixhauser 
comorbidity indices for all patients in our cohort. After 
generating these scores, we confirmed that the 2 scores cor-
related well with each other, with a correlation of 0.77. We 
also determined that, not unexpectedly, they correlated well 
with age as well (0.65 and 0.45, respectively). However, when 
we performed a correlation analysis with our COVID-19 ma-
chine learning predictions, we found negligible correlations 
of −0.02 for both, and we also noted that introduction of the 
indices as features in our model resulted in degraded perfor-
mance and so did not include them.

DISCUSSION

Our results are consistent with other reports suggesting that 
SARS-CoV-2 infection may be identifiable using vital signs, 
certain laboratory test results, or imaging. However, each of 
these taken in isolation lacks sensitivity or specificity. For in-
stance, airport screening for elevated temperatures in travelers 
was estimated to capture only 46% of SARS-CoV-2-positive pa-
tients [6]. One report (in preprint format) described a machine 
learning-based method of diagnosing SARS-CoV-2 using chest 
CT exam features with much better results [22–24].

Our analysis identified several features as having high im-
portance in spite of relatively high missingness in our dataset. 
Four such features are serum ferritin, CRP, LDH, and D-dimers. 
Indeed, COVID-19 has been classified as a hyperferritinemic 
syndrome due to the frequent finding of high ferritin [25]. 
Similarly, CRP, LDH, and D-dimer have been noted to be high 
in patients [12, 26]. Also of interest was the finding that unu-
sually low blood eosinophil and basophil counts may be rel-
evant to COVID-19 pathophysiology: eosinophil counts of 0, 

Figure 1.  Separation in score distributions for each feature. The histograms represent relative probability density. In case of multiple scores within the time window, the 
median value was used. Red indicates SARS-CoV-2 positive patients and blue SARS-CoV-2 negative patients. See Table 3 for the importance of these and other features. 
Abbreviations: AST, aspartate aminotransferase; BNP, B-type natriuretic peptide; COVID-19, coronavirus disease 2019; LDH, lactate dehydrogenase; MCH, mean corpuscular 
hemoglobin; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; WBC, white blood cell.



e2906  •  cid  2021:73  (1 November)  •  Bayat et al

known as eosinopenia, were observed in a cohort of 50 New 
York-based COVID-19 patients [27]. Lymphopenia has also 
been noted to be common in COVID-19 patients, and we saw 
this in the importance of one of our features, the neutrophil-
lymphocyte ratio, which was well above the normal range (5.52 
vs 0.884) (Table 3) [7, 28, 29].

There are several potentially useful applications for this model 
within healthcare settings. Given the need to protect inpatients 
admitted for non-SARS-CoV-2 medical issues, it could be used 
to monitor inpatients as results of commonly ordered laboratory 
tests become available. The high negative predictive value seen 
in our test (98.25%) could provide added assurance for patients 
and healthcare providers that these patients are and continue to 
be SARS-CoV-2 free and possibly conserve valuable personal 
protective equipment supplies. Healthcare providers could be 
alerted when potentially positive cases are identified to facilitate 
prompt and timely action for confirmatory SARS-CoV-2 PCR 
testing and/or implementing appropriate precautions. However, 
it should be noted that our patient cohort, having all received at 
least 1 SARS-CoV-2 test, were likely to have presented symp-
toms justifying the administration of the test and are therefore 
not representative of a general inpatient population; our algo-
rithm would have to be retrained accordingly for use in such a 
population.

Another promising application is the provision of a method to 
cross-check the reference standard SARS-CoV-2 molecular tests 
such as the RT-PCR test performed on nasopharyngeal swabs. 
Although these tests are highly specific, as mentioned above their 
sensitivity has been questioned [30]. Of particular interest was the 
finding that our prediction model contradicted a negative molec-
ular result 70% of the time when an individual later tested positive 
for SARS-CoV-2 within 3 days’ time. Therefore, it is possible that 
our model can detect SARS-CoV-2 positive patients that received a 
false negative from the molecular test. If this conclusion is borne out 
in future analyses, our estimated true positive predictive value will 
likely be higher than what is reported here.

A third application is early detection of asymptomatic 
SARS-CoV-2 patients. The patient population in whom testing 
is performed will continue to evolve over time. Initially, a high 
percentage of patients being tested were symptomatic. As 
testing becomes more available, this percentage will likely fall 
significantly when more asymptomatic patients are tested for 
exposure or contact tracing. Our model’s potential application 
to the identification of principally asymptomatic SARS-CoV-2 
carriers is as yet unknown.

One potential limitation of our model is that it was trained 
on an older, mostly male patient population, although we noted 
that sex, age, and comorbidity indices are not critical predictors. 
Another limitation is the need for a number of patient labo-
ratory data and vital signs for the most accurate predictions. 
However, the 15 required features are found in over 40% of 

patients tested for SARS-CoV-2, and so it is not a significant 
concern. Although the required laboratory data and vital signs 
are not normally a heavy burden for a hospital, during a pan-
demic they may not always be readily available. However, in 
such cases, a reduced test panel may produce results with only a 
modest penalty to accuracy, as discussed above.

Molecular-based tests are at present the reference standard 
method of confirming a COVID-19 diagnosis; however, it is be-
coming well established that it is a limited standard, with many 
false negatives possibly due to patient status, sample type, and 
testing sensitivity and quality. The machine learning-based 
model described herein, utilizing vital signs and common lab-
oratory test results, may provide an alternate, complementary 
method of accurately identifying COVID-19 patients. The ge-
neric character of our algorithm raises the possibility also noted 
by others, of using commonly performed hospital laboratory 
test results and vital signs to identify other diseases in addition 
to COVID-19 [31].
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