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Multimodal single-cell omics analysis identifies
epithelium–immune cell interactions and immune vulnerability
associated with sex differences in COVID-19
Yuan Hou1, Yadi Zhou1, Michaela U. Gack2, Justin D. Lathia3,4, Asha Kallianpur1,4,5, Reena Mehra4,6, Timothy A. Chan4,7, Jae U. Jung4,8,
Lara Jehi4,6, Charis Eng1,4,9,10 and Feixiong Cheng1,4,10✉

Sex differences in the susceptibility of SARS-CoV-2 infection and severity have been controversial, and the underlying mechanisms
of COVID-19 in a sex-specific manner remain understudied. Here we inspected sex differences in SARS-CoV-2 infection,
hospitalization, admission to the intensive care unit (ICU), sera inflammatory biomarker profiling, and single-cell RNA-sequencing
(scRNA-seq) profiles across nasal, bronchoalveolar lavage fluid (BALF), and peripheral blood mononuclear cells (PBMCs) from
COVID-19 patients with varying degrees of disease severities. Our propensity score-matching observations revealed that male
individuals have a 29% elevated likelihood of SARS-CoV-2 positivity, with a hazard ratio (HR) 1.32 (95% confidence interval [CI]
1.18–1.48) for hospitalization and HR 1.51 (95% CI 1.24–1.84) for admission to ICU. Sera from male patients at hospital admission
had elevated neutrophil–lymphocyte ratio and elevated expression of inflammatory markers (C-reactive protein and procalcitonin).
We found that SARS-CoV-2 entry factors, including ACE2, TMPRSS2, FURIN, and NRP1, have elevated expression in nasal squamous
cells from male individuals with moderate and severe COVID-19. We observed male-biased transcriptional activation in SARS-CoV-2-
infected macrophages from BALF and sputum samples, which offers potential molecular mechanism for sex-biased susceptibility to
viral infection. Cell–cell interaction network analysis reveals potential epithelium–immune cell interactions and immune
vulnerability underlying male-elevated disease severity and mortality in COVID-19. Mechanistically, monocyte-elevated expression
of Toll-like receptor 7 (TLR7) and Bruton tyrosine kinase (BTK) is associated with severe outcomes in males with COVID-19. In
summary, these findings provide basis to decipher immune responses underlying sex differences and designing sex-specific
targeted interventions and patient care for COVID-19.
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INTRODUCTION
Coronavirus disease 2019 (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-COV-2), is a complex
disorder with multisystem involvement across different organs.1–3

SARS-CoV-2 has infected >31 million people and 565,298 have
died in the United States (US) since December, 2019 (as of April
15, 2021).4 Approximately 14% of COVID-19-positive patients
show severe symptoms associated with advanced age,1 sex,5 host
genetics,6,7 disease comorbidities,1,8 and other risk factors. Yet,
the mechanisms at the cellular and molecular levels underlying
these risk factors remain unclear, especially for sex that impacts
disease severity.
Sex differences in outcomes have been manifested in multiple

infectious diseases, such as influenza,9 hepatitis A and C viruses,10

and human immunodeficiency virus 1 (HIV1).11,12 In addition, HIV1
and hepatitis C virus generally show a higher viral load in men
compared to women.13 Moreover, women may mount higher

immune responses to viral infection and vaccination.14 An
epidemiologic survey from 1965 through 1997 in the US revealed
that 80% of cases across 24 autoimmune diseases occurred in
women.15 Furthermore, in healthy populations, males have an
elevated abundance of CD8+ T cells, whereas women
have elevated proportion of CD4+ T cells and B cells in blood.16,17

These studies support a hypothesis that sex differences in immune
responses may play crucial roles in the incidence, progression, and
outcomes of certain human diseases, including COVID-19.5

During the COVID-19 pandemic, men showed a 6.6% increased
mortality rate compared to women in the US based on a report of
114,411 COVID-19-related deaths in the National Vital Statistics
System from May 1 to August 31, 2020.18 Similar observations
were also made in United Kingdom, where men had a 1.78 hazard
ratio (HR) of COVID-19-related deaths compared to women.1

Moreover, male COVID-19 patients have a higher percentage of
non-classical monocytes (monocytes-nC) and elevated interleukin
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(IL)-8 and IL-18 levels in plasma.5 Recent animal studies showed
elevated viral titer in nasal washings in male hamsters with severe
symptoms than in female hamsters.19 Owing to heterogeneity of
immune cells in the human body, the detailed genetic basis and
molecular mechanism of sex differences for sex-specific risk of
SARS-CoV-2 infection and disease severity remain unknown. Sex
differences in immune responses in COVID-19 may have a direct
impact on the efficacy of vaccination and immune-related
treatments. Hence, there is a pressing need to better understand
the sex-specific heterogeneities of cell subpopulations of the
human immune systems and its role in the severity of COVID-19.
In this study, we investigated sex differences in the suscept-

ibility of SARS-CoV-2 infection and severity by combining
observations from large-scale patient data from a COVID-19
registry and multimodal single-cell omics analysis of COVID-19
patient samples with varying degrees of disease severity. We
identified that male individuals had an elevated susceptibility to
severe COVID-19 using propensity score (PS)-adjusted observa-
tional analyses. By analysis of laboratory testing data, we found
that male individuals had elevated circulating
neutrophil–lymphocyte ratio and elevated expression of inflam-
matory markers compared to females with COVID-19. We further
performed multimodal single-cell omics data analysis of nasal
tissues and peripheral blood mononuclear cells (PBMCs) isolated
from COVID-19 patients to identify differential cell subpopulations
contributing to sex differences of human immune responses in
COVID-19. In summary, this study provides novel immunological
insights into the observed sex-biased susceptibility and disease
severity, which may offer precision medicine approaches for the
prevention and treatment of male and female individuals with
COVID-19.

RESULTS
Sex differences of COVID-19 outcomes impacted by age
In total, 27,659 individuals (8361 COVID-19 positive) were tested
between March 8 and July 27, 2020 within the Cleveland Clinic
Health System in Ohio and Florida, United States (Table 1). We
observed that demographic factors (including age and race) have
significantly different distributions between men and women in
the total cohort of the COVID-19-positive subgroup (Table 1). We
found that female (n= 16,354) and male (n= 11,305) individuals
have different percentage of comorbidities relevant to severity of
COVID-19,1,8 including smoking (p < 0.001, two-tailed Fisher’s

exact test), diabetes (p < 0.001), hypertension (p < 0.001), and
coronary artery disease (p < 0.001). Interestingly, the fraction of
COVID-19-positive females (n= 4680, 56.0%) was higher than
males (n= 3681, 44.0%, p < 0.001, two-tailed Fisher’s exact test).
We found that the sex difference in the occurrence of SARS-CoV-2-
positive tests differed by age. For example, the prevalence of
COVID-19 positivity was greater in females than that in males only
in the age groups >80 years (80–90 years [p= 0.006] and >90
years [p= 0.029], two-tailed Fisher’s exact test, Supplementary Fig.
1a and Supplementary Table 1). One possible explanation of
overall high incidence of SARS-CoV-2 infection in very older
female individuals (56.0%) compared to male individuals (44.0%) is
that females have longer life span than males.20

We found that 26% of male patients (n= 957, p < 0.001, two-
tailed Fisher’s exact test, Table 1) vs. 19% (n= 889) of females
were hospitalized for COVID-19; 9.9% (n= 365, p < 0.001, two-
tailed Fisher’s exact test) of males vs. 5.2% (245) of females were in
intensive care units (ICUs); and 4.7% (n= 174, p < 0.001, two-tailed
Fisher’s exact test) of males vs. 2.1% (n= 99) of females had to be
mechanically ventilated in the ICU. Specifically, the male-biased
risks of hospitalization and ICU admission were observed in
COVID-19 patients aged from 50 to 90 years (Supplementary Fig.
1a and Supplementary Table 1).

Sex is linked with elevated susceptibility of SARS-CoV-2 infection
and severity
We used adjusted odds ratio (OR) analysis to evaluate the
association between sex difference and COVID-19 outcome after
adjusting confounding factors using a PS-matching approach. We
investigated four types of COVID-19 outcomes: (i) the SARS-CoV-2-
positive rate by real-time reverse transcription polymerase chain
reaction (RT-PCR), (ii) hospitalization, (iii) ICU admission, and (iv)
mechanical ventilation uses in the ICU setting. To reduce risk of
confounding factors, we adjusted for age, race, smoking, and four
types of disease comorbidities (diabetes, hypertension, chronic
obstructive pulmonary disease [COPD], emphysema, and coronary
artery disease) based on our sizeable efforts, using the PS-
matching method (see “Methods and materials”). We found that
male individuals were significantly associated with an increased
likelihood of a positive laboratory test result by RT-PCR for SARS-
CoV-2 (OR= 1.29, 95% confidence interval [CI] 1.18–1.41, Fig. 1a),
COVID-19-related hospitalization (OR= 1.56, 95% CI 1.32–1.85),
ICU admission (OR= 1.98, 95% CI 1.47–2.68), and requirement for
mechanical ventilation (OR= 1.75, 95% CI 1.15–2.66) after

Table 1. Cohort description with the number of patients by sex in a COVID-19 registry

Total cohort p value COVID-19 positive p value

Female Male Female Male

Patients (N) 16,354 11,305 4680 3681

Age, years (mean (SD)) 48.9 (20.6) 50.0 (21.0) <0.001 49.6 (21.5) 50.6 (19.6) 0.029

White (%) 10,391 (63.5) 7080 (62.6) 0.126 2461 (52.6) 2019 (54.8) 0.042

Black (%) 3822 (23.4) 2489 (22.0) 0.009 1659 (35.4) 1157 (31.4) <0.001

Race other (%) 828 (5.1) 626 (5.5) 0.087 245 (5.2) 227 (6.2) 0.074

Smoking (%) 1766 (12.3) 1585 (16.6) <0.001 279 (7.0) 349 (11.7) <0.001

COPD and emphysema (%) 1217 (10.6) 893 (11.7) 0.016 286 (11.3) 211 (10.8) 0.682

Diabetes (%) 2860 (23.8) 2429 (30.0) <0.001 771 (28.5) 769 (35.5) <0.001

Hypertension (%) 6032 (47.3) 4876 (55.8) <0.001 1787 (57.6) 1548 (62.4) <0.001

Coronary artery disease (%) 1405 (12.1) 1722 (21.9) <0.001 364 (14.3) 448 (22.1) <0.001

Hospitalization (%) — — — 889 (19.0) 957 (26.0) <0.001

ICU admission (%) — — — 245 (5.2) 365 (9.9) <0.001

ICU mechanical ventilators (%) — — — 99 (2.1) 174 (4.7) <0.001

COPD chronic obstructive pulmonary disease, ICU intensive care unit, SD standard deviation
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adjusting for confounding factors. These observations together
suggest that male individuals have an elevated incidence of SARS-
CoV-2 infection and an elevated likelihood of severe COVID-19
outcome compared to females.
To better evaluate sex differences on COVID-19 clinical out-

comes, we performed Kaplan–Meier analysis to estimate the

cumulative hazard between men and women for admission to
hospital and ICU (Fig. 1b and Supplementary Fig. 1b). Men who
tested positive for COVID-19 had a higher cumulative hazard for
hospitalization than women using both PS-matching (HR= 1.32,
95% CI 1.18–1.48, p < 1.5 × 10−6, Log-rank test, Fig. 1b) and non-PS-
matching methods (HR= 1.43, 95% CI 1.10–1.56, p < 1.9 × 10−14,
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Log-rank test, Supplementary Fig. 1b). We found that male patients
had a longer duration of hospitalization than female patients
(mean [±standard deviation [SD]], 7.6 [±7.8] days vs. 6.2 [±6.7] days,
p= 0.001, Wilcoxon rank-sum test, Fig. 1c). Specifically, males with
COVID-19 have an elevated cumulative hazard for ICU admission
compared to females (HR= 1.15, 95% CI 1.24–1.84, p < 2.0 × 10−16,
PS-matching Log-rank test, Fig. 1b). The average duration of ICU
stays by male patients was 8.2 (SD= ± 8.9) days, which is
significantly longer than 6.2 (SD= ± 7.2) days for female patients
(p= 0.015, Fig. 1c). Altogether, our analysis suggests that men are
significantly associated with severe COVID-19 outcomes compared
to women.

Male-biased COVID-19 severity is associated with elevated
inflammation
Hyperinflammation has been reported as a major factor predis-
posing to a higher mortality in severe COVID-19 patients,21 and
there is an established sex difference in immune responses.14 We
next interrogated sex differences in inflammation-related clinical
variables available in the COVID-19 registry. We found that the
peripheral lymphocyte count was significantly lower in hospita-
lized male patients (p= 1.6 × 10−7, Wilcoxon rank-sum test,
Fig. 1d) than in hospitalized females. In contrast, the circulating
neutrophil levels in hospitalized male patients were higher than
that of females (p= 0.044, Fig. 1d). In addition, two other
inflammatory parameters, C-reactive protein (CRP) and procalci-
tonin (PCT), were significantly elevated in hospitalized males
compared to females, respectively (p= 1.3 × 10−9 [CRP] and p=
8.5 × 10−9 [PCT], Fig. 1d). Inflammatory markers, including CRP and
PCT, and cell levels of lymphocyte and neutrophil were associated
with severity of COVID-19.22 Taken together, the elevated levels of
CRP and PCT indicated that the male-biased inflammation is
potentially associated with poor COVID-19 outcome. In addition,
neutrophils have been reported as an essential effector in SARS-
CoV-2 infection23 and loss of lymphocyte counts has been
associated with severity and death of COVID-19 patients.24

Altogether, the elevated neutrophil–lymphocyte ratio (Fig. 1d
and Supplementary Fig. 1c) implies inflammatory immuno-
pathogenesis-mediated severe COVID-19 outcomes in male
individuals.25 Yet, the underlying mechanisms of male-biased
inflammatory responses for COVID-19 patients remain unknown.
We therefore turned to investigate the COVID-19 sex difference in
human immune systems using multimodal analysis of single-cell
RNA-sequencing (scRNA-seq) data.

Sex-biased cell subpopulations in nasal tissues of critical COVID-19
cases
We investigated the scRNA-seq profiles26 of nasal tissues in the
upper airway from SARS-CoV-2-positive patients vs. healthy
donors (Fig. 2a). The samples comprised 11 critical COVID-19
patients, 8 moderate COVID-19 patients, and 5 healthy donors
(Supplementary Table 2), as described in a previous study.26 In
total, this scRNA-seq dataset contains 135,600 cells (Fig. 2a) across
22 annotated cell types within two main cell populations
(Supplementary Table 3): epithelial cells (9 cell types) and immune
cells (13 cell types, Fig. 2b).

From the analysis of relative proportion of each cell type, we
observed differential cell types between male and female patients
with COVID-19 (Fig. 2b). Compared to the female patients with critical
COVID-19, men with critical COVID-19 have elevated abundances
across five epithelial cell types: ciliated-differentiating (ciliated-diff;
p< 2.0 × 10−16, Fisher’s exact test), FOXN4-positive cells (FOXN4+;
p= 6.1 × 10−5), secretory (p < 2.0 × 10−16), secretory-differentiating
(secretory-diff; p< 2.0 × 10−16), and squamous cells (p < 2.0 × 10−16).
For immune cells, men with critical COVID-19 have elevated
abundances of cytotoxic T cell (CTL; p< 2.0 × 10−16) and non-
resident macrophage (nrMa; p< 2.0 × 10−16) compared to women
(Fig. 2b). In contrast, the abundances of regulatory T cell (Treg; p<
2.0 × 10−16), natural killer (NK; p= 1.2 × 10−7), plasmacytoid dendritic
cell (pDC; p< 2.0 × 10−16), and resident macrophage (rMa;
p< 2.0 × 10−16) were decreased in critically ill men compared to
critically ill women. These observations suggest differential epithelial
and immune cell subpopulations between men and women with
COVID-19.

Male-biased epithelial–immune cell interactions in COVID-19
severity
We next turned to inspect transcriptional activities in sex-biased
cell subpopulations from nasal tissues with varying degrees of
COVID-19 severity. We performed the gene-set enrichment
analysis (GSEA) to evaluate the enrichment of 22 immune
pathways at single-cell levels in nasal samples. We defined the
differentially upregulated genes in male patients compared with
females as male-biased genes based on a previous study.27 The
differentially downregulated genes in male patients compared
with females were defined as female-biased genes. We defined a
sex-biased immune cell type in which sex-biased genes are
significantly enriched in at least one immune pathway (false
discovery rate [FDR] < 0.05, Supplementary Table 4 and Fig. 2c).
We found multiple sex-biased immune cells in moderate and
critical COVID-19 patients but not in healthy donors. In critical
COVID-19 patients, two male-biased rMa and Treg cells have
elevated expression in pro-inflammation-related pathways, such
as chemokine signaling and cytokines and growth factor pathways
(Fig. 2c).
We further inspected cell–cell interactions using the CellPho-

neDB algorithm.28 First, we quantified the number of significant
ligand–receptor interactions (adjusted p value <0.05) between cell
pairs using scRNA-seq data from nasal tissues (Supplementary
Fig. 2b). Meanwhile, we computed three network topological
characteristics to measure the cell–cell interaction network (see
“Methods and materials,” Supplementary Table 5): (a) number of
node, (b) number of edge, and (c) edge-to-node ratio (ENR). We
observed that COVID-19 patients have a stronger cell–cell
interaction network connectivity (higher number of node and
edge) compared to healthy donors (Fig. 2d and Supplementary
Table 5). Interestingly, much denser cell–cell interaction networks
were observed for both moderate (male ENR= 6.08 vs. female
ENR= 2) and critical (male ENR= 4.50 vs. female ENR= 3.57) male
COVID-19 patients (Fig. 2d and Supplementary Table 5). In
particular, nrMa, Treg, and CTL were highly connected with
several epithelial cell types, including squamous, secretory, and

Fig. 1 Male individuals are associated with severe COVID-19 outcomes. a Odds ratio (OR) analysis between males and females across four
COVID-19 outcomes: COVID-19-positive testing by reverse transcription polymerase chain reaction (RT-PCR), hospitalization, intensive care
unit (ICU) admission, and usage of ICU mechanical ventilators. Crude cohort means that the OR value was computed based on raw data. PS-
adjusted OR analysis: we used propensity score (PS) matching (1:1) population with similar covariate conditions (age, race, smoking, diabetes,
hypertension, chronic obstructive pulmonary disease [COPD], emphysema, and coronary artery disease; see “Methods and materials”). See
Table 1 for cohort description and sample numbers. b Cumulative hazard of hospitalization and ICU admission. All results were computed in
the PS-matched groups. Log-rank test with the Benjamini and Hochberg (BH)51 adjustment was used to compare the statistical significance of
cumulative hazard of hospitalization and ICU admission between males and females. Shadow represents 95% confidence interval (CI). Hazard
ratio (HR) was computed using Cox proportional hazards model. c Boxplots of the duration of stay in hospital and ICU between male and
female individuals. d Laboratory testing values for inflammatory markers between male (n= 957) and female (n= 889) individuals. p value was
computed by two-sided Wilcoxon rank-sum test
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ciliated cells in male COVID-19 patients (higher clustering
coefficient and degree, Supplementary Table 6). Altogether, these
comprehensive network analyses suggest potentially functional
roles of epithelial–immune cell interactions underlying male-
biased disease severity of COVID-19.

Male-biased activation of squamous cells upon SARS-CoV-2
infection
Entry of SARS-CoV-2 into host cells depends on the expression
level of the surface receptor angiotensin-converting enzyme 2
(ACE2),29 as well as TMPRSS2,30 FURIN,31 and NRP1.32 Yet, the
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expression levels of ACE2 with either one of the entry factors were
unclear at single-cell levels between male and female individuals.
We found that the epithelial cells had a higher expression of ACE2
than immune cells in both men and women (Supplementary
Fig. 3a). ACE2 (adjusted p value [q]= 0.053, Fig. 3a and
Supplementary Table 7), as well as TMPRSS2 (q= 8.1 × 10−10)
and FURIN (q= 4.2 × 10−6, Supplementary Fig. 3b), have elevated
expression in squamous cells from male patients with both
moderate and critical COVID-19 compared to females. Figure 3b
shows that ACE2 is significantly co-expressed with TMPRSS2 (p <
2.0 × 10−16), FURIN (p < 2.0 × 10−16), and NRP1 (p= 2.3 × 10−6) in
squamous cells from male patients with critical COVID-19 (Fig. 3b).
Yet, ACE2 is not significantly co-expressed with TMPRSS2, FURIN,
and NRP1 in females (p > 0.05).
We further performed GSEA for sex-biased genes of squamous

cells from patients with critical COVID-19. We found that sex-
biased genes in squamous cells from critically ill male patients
were significantly enriched by 3 immune pathways (Fig. 2c),
including the IL-17 signaling pathway (FDR= 0.001), cytokines and
growth factors (FDR= 0.001), and antigen processing and
presentation (FDR= 0.047). We next turned to identify network
modules (defined by the largest connect component [LCC]) for the
male-biased immune gene set (upregulated immune genes in
men compared to women) of squamous cells. We found that
male-biased immune genes formed LCC (p= 0.04, permutation
test, Fig. 3c) in the human protein–protein interactome network.
The proteins in the IL-17 signaling pathway were highly
connected to the proteins in the antigen processing and
presentation pathway through JUN, which was a male-biased
transcription factor reported in Genotype-Tissue Expression (GTEx)
database.33 TAB3 is an activator of JUN in the IL-17 signaling
pathway, and an elevated RNA expression of TAB3 (q= 7.5 × 10−9)
is observed in squamous cells of male patients with critical COVID-
19 (Fig. 3c, d). We found that TAB3 (also called MAP3K7IP3) is an X
chromosome-link (X-link) inactivated gene,33 and 97% of TAB3
expression is inactivated by XCI (X chromosome inactivation) in
females.34 These findings suggest that random X chromosome
activation may partially explain sex difference of COVID-19
severity.
Notably, JUN and NFKB1 were enriched among male-biased

genes in the GTEx revealed by chromatin immunoprecipitation
sequencing in promoter regions.33 Specifically, JUN and NFKB1
were highly expressed, with a broader distribution in squamous
cells of men compared to women with critical COVID-19 (Fig. 3d
and Supplementary Fig. 3c). JUN and NFKB1 were found to induce
the expression of multiple pro-inflammatory cytokines/chemo-
kines and their receptors in male squamous cells, including
IFNGR1, IFNGR2, TGFB2, CXCL2, and IL18 (Fig. 3c, d and
Supplementary Fig. 3c). We also found that the elevated pro-
inflammatory cytokines (IFNGR1, IFNGR2, and TGFB2) were

significantly co-expressed with ACE2 in male squamous cells from
critically ill COVID-19 patients (Fig. 3e). Altogether, these observa-
tions suggest that squamous cells play potential roles in male-
biased COVID-19 severity. Further independent cohort validation
and functional observations are highly warranted.

Male-biased immune cell subpopulations in PBMCs from severe
COVID-19
We further utilized a scRNA-seq dataset from PBMCs of COVID-19
patients (n= 9) and healthy donors (n= 4, Fig. 4a and Supple-
mentary Table 2) to further inspect immune phenotypes after
SARS-CoV-2 infection. In total, we analyzed 49,054 cells and
clustered them into 13 annotated cell types based on well-defined
marker genes35 (Supplementary Fig. 4) and 3 un-annotated cell
types (see “Methods and materials”). Compared to females, the
male patients with severe and mild COVID-19 had elevated
abundances of monocytes-nC (p < 2.0 × 10−16 [mild] and p= 3.7 ×
10−5 [severe], Fig. 4b). In parallel, we found that male patients with
severe COVID-19 have elevated abundances of B cells (lgG− [lgG
non-expressed B cell], p= 4.7 × 10−11 and lgG+ [lgG expressed B
cell], p= 1.7 × 10−9) and CD4-T EM (effector memory-like CD4
T cells, p= 1.3 × 10−9) but lower abundances of CD4-T nEM cells
(non-effector memory-like CD4 T cells, p= 1.1 × 10−7) and DCs
(p= 0.016).
We further evaluated immune pathway enrichments across

each cell type of PBMCs using GSEA (Supplementary Table 8). We
found several sex-biased immune cell types in PBMCs across
healthy donors and COVID-19 mild and severe patients as well
(Fig. 4c). For example, female-biased monocyte-nC, B cell lgG+,
and CD4-T EM cells were observed in mild COVID-19 or healthy
donors; yet, male-biased monocytes (including 14 enriched
immune pathways [Toll-like receptor (TLR) signaling pathways,
RIG-I-like receptor signaling pathway, cytokines and growth
factors, and the IL-17 signaling pathway], FDR < 0.05) and NK cells
were remarkably observed in severe COVID-19 patients only.
These observations suggest elevated pro-inflammatory responses
(i.e., monocytes) in male severe COVID-19 patients than in females.
We next inspected the cell–cell interactions of PBMCs using

CellPhoneDB.28 We found a similar cell–cell interaction network
for both female and male patients with mild COVID-19 compared
to healthy donors (Fig. 4d and Supplementary 5a). Yet, male
patients with severe COVID-19 have elevated pro-inflammatory
responses (monocytes, Fig. 4c) and stronger immune cell–cell
interactions compared to females (Supplementary Tables 9 and
10), indicating potential immune vulnerability associated with
male-biased COVID-19 mortality. For example, the highly immune-
activated monocyte (Fig. 4c) interaction with CD8+ T cells were
predominantly observed in cell–cell interactions of male-
derived PBMCs with severe COVID-19 compared to females
(Fig. 4d).

Fig. 2 Sex-biased differential cell subpopulation and transcriptional analysis for the upper airway nasal tissues. a Sample information of
single-cell RNA-sequencing analysis of nasopharynx and pharynx tissues by sex. This dataset includes 135,600 cells from 11 severe COVID-19
patients (3 females and 8 males), 8 mild COVID-19 patients (1 female and 7 males), and 5 healthy controls (3 females and 2 males,
Supplementary Table S2). b Bar plots showing the log2 fold change of cell subpopulation abundances between male vs. female across healthy
donors, moderate, and critical COVID-19 patients. Two-tailed Fisher’s exact test was conducted for each cell type by sex. *p < 0.05. c Gene-set
enrichment analysis (GSEA) of 22 immune pathways for differentially expressed genes (DEGs) across each cell type of nasal tissues. Cell types
having DEGs enriched by at least one significant immune pathway (false discovery rate [FDR] < 0.05) were illustrated in the heatmap. Male-
biased genes: the upregulated DEGs in male patients compared to females. Female-biased genes: the downregulated DEGs in male patients
compared with females. The gradient color bar shows the normalized enrichment score (NES) scores. Red (NES score > 0) indicates male-
biased genes are significantly enriched by immune pathways in a specific cell type. Blue (NES score < 0) indicates female-biased genes are
significantly enriched by immune pathways in a specific cell type. Black dots denote FDR < 0.05 (GSEA results are provided in Supplementary
Table 4). d Sex-biased cell–cell interaction network analyses for nasal single-cell dataset in healthy donors and COVID-19 patients. Significance
of ligand–receptor interactions in each cell-type pair were estimated by permutation test with Benjamini–Hochberg-based multiple test
correction (FDR < 0.05, see “Methods and materials”). Number of significant interactions in each cell-type pair >30 (top 20%) was used as cutoff
to generate the cell–cell interaction network. Circle represents epithelial cell type and square represents immune cell type. The size of nodes
denotes the degree (number of connections). Edge colors represent the epithelial–immune cell connections in healthy (green), moderate
(orange), and critical (purple) COVID-19 disease condition. Other inter-connections between immune cells or epithelial cells are in gray
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Male-biased activation of monocytes and macrophages in severe
COVID-19
We further performed human protein–protein interactome net-
work analysis to investigate the immunological mechanisms
underlying male-biased COVID-19 severity. We found that the
male-biased genes in monocytes formed the significant network

module (Fig. 5a, p < 0.001, Permutation test), which was sig-
nificantly enriched by several key immune pathways, including
TLR pathway (gold), IL-17 signaling pathway (red), cytokines and
growth factors (blue), and antigen processing and presentation
(green) (Fig. 5a). Several hub genes (including JUN, NFKB1, CCR1,
and SATA1) are highly connected among different immune

Multimodal single-cell omics analysis identifies. . .
Hou et al.

7

Signal Transduction and Targeted Therapy           (2021) 6:292 



pathways. Specifically, JUN and NFKB1 are significantly upregu-
lated in male monocytes with severe COVID-19 compared to
females (q < 2.0 × 10−16).
We next selected genes using subject matter expertise based

on a combination of factors: (i) sex-biased expression in GTEx,33 (ii)
expression quantitative trait locus (eQTL) data availability, (iii) well-
annotated immune genes from Kyoto Encyclopedia of Genes and
Genomes (KEGG) database,36 and (iv) available evidences of X-link
genes. Applying these criteria resulted in two top predicted sex-
biased genes, including TLR7 and Bruton tyrosine kinase (BTK),
which may explain the sex-specific disease severity of COVID-19.
Both TLR7 and BTK are X-link inactive genes; 84% of TLR7 and 98%
BTK expression are inactivated by XCI in females.34 A recent study
found a male-biased single-nucleotide polymorphism (SNP)
rs2071223 in BTK (p= 0.005).33 Meanwhile, a rare loss-of-
function variant (c.2129_2132del) of TLR7 was reported in 4
young men with severe COVID-19, which is associated with
impaired type I and II interferon responses.37 We found that TLR7
(q= 8.9 × 10−8) and BTK expression (q= 0.001) in monocytes are
significantly elevated in men with severe COVID-19 compared to
women (Fig. 5b). Furthermore, the downstream factors of TLR7
and BTK in TLR pathway, such as MYD88, IRF7, NFKB1, and JUN, and
cytokines (TNF, IL1B, and IL18) were elevated in men with severe
COVID-19 (Fig. 5b and Supplementary Fig. 5b). Altogether,
monocyte-specific expression of TLR7 and BTK may provide
potential explanations for the male-biased disease severity in
COVID-19.
Since the main symptoms of SARS-CoV-2 occurs in human

respiratory systems, we further analyzed 3085 SARS-CoV-2-
infected positive single cells38 of bronchoalveolar lavage fluid
(BALF) and sputum samples (n= 6 male and n= 2 female severe/
critical COVID-19 patients). In total, 8 cell types were investigated,
including secretory, squamous, ciliated, macrophage, neutrophil,
NK, T cell, and plasma, based on the original study.38 Antigen
processing and presentation impairs the adaptive immune
responses against the virus.39 Among the eight cell types, we
found that male-biased differentially expressed genes (DEGs) of
macrophages (another member of the mononuclear phagocyte
system in a component of innate immunity in addition
to monocytes) were significantly enriched in the antigen
processing and presentation pathway (Supplementary Fig. 6a). In
addition, cell–cell interaction analysis using CellPhoneDB28

revealed significant ligand–receptor interactions for the
squamous–macrophage pair in SARS-CoV-2-positive cells isolated
from BALF and sputum of male patients (Supplementary Fig. 6b).
Recent studies showed that macrophages contribute to SARS-CoV-
2 transmission40,41 and elevated inflammation.42 In summary,
these observations show that macrophages may play important
roles in sex differences of SARS-CoV-2 pathogenesis.

DISCUSSION
In this study, we investigated the sex differences in disease
severity and mortality between male and female individuals, using
large-scale COVID-19 patient registry, multimodal analysis of
scRNA-seq profiles, and cell–cell interaction network analysis. We
identified that male patients with COVID-19 had a higher rate of
hospitalization and ICU admission and a longer stay time in

hospital or ICU compared to female individuals (Fig. 1), which is
consistent with an observational study using 17 million COVID-19
tested populations.1 Via analysis of laboratory testing data in the
COVID-19 patient registry database, we found that serum of male
individuals has elevated inflammatory markers (CRP and PCT)
compared to females with COVID-19, suggesting sex-specific
inflammatory responses underlying sex differences between male
and female individuals with COVID-19. We also tested T cell and B
cell profiles of lymphocytes using a flow cytometry dataset43 from
patients with mild (16 males vs. 11 females) and severe COVID-19
(22 males vs. 18 females). We found that there is no significant
difference of T cells and B cells between female and male patients
with mild or severe COVID-19 (Supplementary Fig. 8), consistent
with a recent study.5

We further performed multimodal analysis of scRNA-seq data
from nasal tissues, PBMCs, BALF, and sputum with varying degrees
of COVID-19 pathology. We identified that sex-biased, differential
immune cell types and gene transcriptional networks provide
potential molecular mechanisms for the male-biased susceptibility
of SARS-CoV-2 infection and severity. For example, male-biased
genes identified in squamous and nrMa cells are significantly
enriched in the cytokines and growth factors and IL-17 signaling
pathway (Figs. 2c and 3), revealing the elevated pro-inflammation
in male patients with severe COVID-19. Compared to female
patients, we observed that male patients with moderate or severe
COVID-19 showed differentil abundances of NKT, B cells, and Neu.
For example, a longitudinal study revealed that the individuals
with moderate COVID-19 had productive innate (Neu) and
adaptive immune (B cell) responses (NKT involving in both innate
and adaptive immunity); yet, severe COVID-19 patients showed
dysregulated immune responses.44 As shown in Fig. 2b, male-
decreased abundances of Neu and NKT (productive innate
immunity) in critical COVD-19 compared to moderate patients
revealed that the loss of innate immunity may be associated with
COVID-19 severity. Male-decreased B cells in critical COVD-19
compared to moderate patients suggested that impairment of the
adaptive immune responses against the virus may be associated
with COVID-19 severity as well.
In this study, we found elevated immune responses in both

male and female individuals; yet, we observed more elevated pro-
inflammatory responses in males (Fig. 4c). In agreement with
recent studies,21,45 hyper-inflammation (induced by pro-
inflammatory cytokines and chemokines) is a major factor
predisposing to high mortality in severe COVID-19 patients. We
found more elevated pro-inflammatory responses in male PBMC
samples with severe COVID-19 (Figs. 4 and 5). For example, pro-
inflammatory cytokines and chemokines CXCL8 (q < 2.0 × 10−16,
Fig. 5b), IL18 (q= 0.009), and IL1B (q < 2.0 × 10−16, Supplementary
Fig. 5b) were elevated in monocytes from male patients with
severe COVID-19 compared to females. The predisposition to a
pro-inflammatory state is a major contributor to immune
vulnerability.46 In summary, these observations suggest that
immune vulnerability may be associated with male-biased
morbidity and mortality in severe COVID-19, such as elevated
monocyte-related pro-inflammatory responses.
TMPRSS2, an S-protein priming protease, facilitates viral entry

into the human upper respiratory tract. Its high expression is a
predictor of an enhanced efficiency of SARS-CoV-2 infection and

Fig. 3 Male-biased transcriptional and network analysis of squamous cells of COVID-19 patients. a ACE2 and TMPRSS2 expression in epithelial
cell types by sex. Dot size denotes the percentage of cells expressing ACE2 or TMPRSSE. The gradient color bar represents the average
expression of genes in each cell type. b Co-expression analysis of ACE2 with TMPRSS2, FURIN, and NRP1. Dot size denotes the Pearson
Correlation Coefficient (PCC) values. The gradient color bar represents the p value (F-statistics) of PCC. c A highlighted protein–protein
interaction subnetwork for male-biased differentially expressed immune genes in squamous cells from the patients with critical COVID-19. The
colors for nodes and edges represent different immune pathways. d The expression of selected male-biased genes of squamous cells from
patients with critical COVID-19. Each dot represents one cell, and the plot only show the cells with positive expression for the genes. Boxplots
represent the interquartile range (IQR). Adjusted p value (q) were computed by the Benjamini–Hochberg method.51 e Co-expression dot plot
of ACE2 with selected immune genes. Dot size denotes the PCC values. The gradient color bar represents the p value of PCC
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greater severity of COVID-19.30 Aligned with the observation in
nasal samples, TMPRSS2 (q= 9.8 × 10−7) showed significant
upregulation in SARS-CoV-2-positive squamous cells isolated from
male BALF and sputum comparing to females (Supplementary Fig.
7a); yet, TMPRSS2 expression did not correlate with SARS-CoV-2
viral load (viral reads per million, Supplementary Fig. 7b). In

addition, other SARS-CoV-2 entry factors, such as ACE2, FURIN, and
NRP1, do not show differential expression in SARS-CoV-2-positive
squamous cells between males and females (Supplementary Fig.
7a). There are several possible explanations. For example, SARS-
CoV-2 may be cleared by human after disease progression during
viral load measure. In addition, there may be unknown, sex-
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specific host factors of SARS-CoV-2, in addition to ACE2, FURIN, and
NRP1.
TLR7 and BTK are male-biased genes in peripheral monocytes

with severe COVID-19. TLR7 escapes the XCI in female B cell,
resulting in the higher expression levels in women than in men.47

Young men with severe COVID-19 were found to carry the four
nucleotide deletion in TLR7 (c.2129_2132del; pGln710Argfs*18),
while the affected family members carried only one missense
variant on TLR7 (c.2383G>T; pVal795Phe).37 This evidence
supports the potential role of TLR7 in the male-biased mortality
in severe COVID-19 patients (Fig. 5b). BTK, a tyrosine kinase, was
identified as a top male-biased gene in monocytes of severe
COVID-19 patients. BTK is an X-linked gene and 98% of its
expression is inactivated by XCI34 in females. By analyzing gene
expression profiles of 838 subjects from the GETx,33 we found an
eQTL SNP (rs2071223) on BTK in male-derived lymphocytes (p=
0.005), further supporting the male-specific role of BTK in COVID-
19. Several BTK inhibitors (e.g., acalabrutinib and ibruitinib, which
blocks TLR7-dependent NF-κB activation in monocytes) have been
shown to be potentially promising in treatment of patients with
severe COVID-19. Altogether, these observations emphasize that
sex is a key biological variable in predicting the efficacy of
pharmacologic treatments (such as BTK inhibitors) in people
diagnosed with COVID-19.
We acknowledge several potential limitations. Due to the sex-

biased mortality in COVID-19, small sample size of female patients
from scRNA-seq datasets used in this study may influence the
findings. Thus, the sex-biased cell types and gene transcriptional
networks we identified should be validated further in a large
cohort of both male and female individuals. We observed that the
male patients aged between 30 and 80 years have a greater risk of
SARS-CoV-2 infection (Supplementary Fig. 1a); yet, older female
individuals aged ≥80 years have a higher incidence of SARS-CoV-2
infection. Exploring sex differences and underlying immune
mechanisms in younger COVID-19 patients, including the pediatric
population, may provide more actionable biomarkers and immune
targets for disease prevention and vaccine development.48,49 Yet,
the underlying molecular mechanisms and genetic factors for
COVID-19 sex differences are warranted further studies and clinical
validations. For example, genetic basis of sex differences should
be investigated in the future using the genetic datasets from the
growing, diverse COVID-19 population, such as the genome-wide
association studies from COVID-19 Host Genetics Initiative.50

Taken together, our analysis provides a comprehensive under-
standing of the clinical characteristics and immunological
mechanisms underlying sex differences in COVID-19. We found
that the male-biased genes identified in squamous (including
TAB3, TGFB2, and IL18) from nasal samples and in monocyte cells
(TLR7, BTK, and CXCL8) from PBMC samples are significantly
enriched in the cytokines and growth factors and TLR pathway
(Figs. 2c, 3, 4c, and 5), revealing that male-elevated pro-
inflammation was associated with disease severity of COVID-19.
Mechanistically, epithelium–immune cell interactions and immune
vulnerability from cell–cell interaction network analysis further
support inflammation-associated disease severity and mortality in

male COVID-19 patients. In particular, monocyte-elevated expres-
sion of two key inflammation-associated genes, TLR7 and BTK, is
associated with severe outcomes in males with COVID-19. If
broadly applied, these findings will offer a path toward sex-
specific molecularly targeted prevention and therapeutic devel-
opment for COVID-19, which will be essential against the COVID-
19 pandemic and future pandemics from other emerging
pathogens in a sex-specific manner.

METHODS AND MATERIALS
COVID-19 registry
We used an institutional review board–approved COVID-19
registry dataset, including 27,659 individuals (8274 positive)
tested during March to July 2020 from the Cleveland Clinic Health
System in Florida and Ohio. All tested samples were pooled
nasopharyngeal and oropharyngeal swab specimens. SARS-CoV-2
infection was confirmed by RT-PCR in the Cleveland Clinic Robert
J. Tomsich Pathology and Laboratory Medicine Institute. All SARS-
CoV-2 testing was authorized by the Food and Drug Administra-
tion under an Emergency Use Authorization and accord with the
guidelines established by the Centers for Disease Control and
Prevention.
The COVID-19 registry includes COVID-19 test results, baseline

demographic information, medications, and disease conditions
and others. We conducted a series of retrospective studies to test
the sex difference with four COVID-19 outcomes. Data were
extracted from electronic health records (EPIC Systems) and were
manually checked by a study team trained on uniform sources for
the study variables. We collected and managed all patient data
using REDCap electronic data capturing tools. Statistical analyses
for smoking, diabetes, hypertension, COPD, emphysema, and
coronary artery disease were conducted after adjusting missing
values.

PS-matching analysis
We select case–control PS method to match the four COVID-19
outcomes: (i) positive COVID-19 test: COVID-19-positive patients
were matched to negative patients (n= 19,298) in total COVID-19
testing patients; (ii) Hospitalization: hospitalized patients (n=
1846) were matched to non-hospitalized patients (n= 6515) in
COVID-19-positive patients; (iii) ICU admission: the patients of ICU
admission (n= 610) were matched to non-ICU admission patients
(n= 1236) hospitalized due to COVID-19; (iv) ICU mechanical
ventilator use: the COVID-19 patients used mechanical ventilator
(n= 273) were matched to non-mechanical ventilator user (n=
337) in ICU. To reduce the bias from confounding factors, all PS-
matched patients were adjusted for age, race, smoking, and
presence of diabetes, hypertension, COPD, emphysema, and
coronary artery disease. PS matching was conducted with matchit
package in the R v3.6.3 platform.

Clinical outcome analysis
OR was used to measure the association between the COVID-19
outcomes and sex based on logistic regression model. An OR >

Fig. 4 Sex-biased differential cell subpopulation and transcriptional analysis for peripheral blood mononuclear cells (PBMCs). a A diagram
showing the workflow of single-cell RNA-sequencing analysis of PBMC by sex. This dataset has 49,053 cells from 4 severe patients (2 females
and 2 males) and 5 mild patients (3 females and 2 males) and 4 donors in healthy control (3 females and 1 males). b Bar plots showing the log2
fold change of male vs. female in cell-type abundances of PBMCs isolated from bloods of healthy donors and patients with mild or severe
COVID-19. Two-tailed Fisher’s exact test were conducted for each cell type by sex. *p < 0.05. c Gene-set enrichment analysis (GSEA) of 22
immune pathways for DEGs across each cell type of PBMCs. The heatmap illustrates the cell types having DEGs enriched by at least one
immune pathway (FDR < 0.05). The details are provided in Fig. 2c and all GSEA results are provided in Supplementary Table 6. d Sex-biased
cell–cell interaction network analyses for PBMC single-cell RNA-sequencing dataset in healthy donors and COVID-19 patients. Statistical
analysis is described in Fig. 2d. Number of significant ligand–receptor interactions in each cell pair .30 (top 20%) was used as cutoff to
generate the cell–cell interaction network. Circle represents myeloid cell types and square represent lymphoid cell types. Edge colors
represent the myeloid–lymphoid immune cell connections in healthy (green), mild (orange), and severe (purple) COVID-19 disease condition.
Other inter-connections between myeloid cells or lymphoid cells are in gray
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1 means that male is associated with a higher likelihood of
the outcome, and an OR < 1 indicates lower likelihood of the
outcome for male. Kaplan–Meier method was used to estimate
cumulative hazard of hospitalization and ICU admission of

COVID-19-positive patients by sex. And Cox proportional
regression model was used to quantify the hazard of sex for
COVID-19 outcomes. For hospitalization outcome, time to event
was defined as the duration from the start date of COVID-19

Fig. 5 Elevated monocyte immune responses in male patients with severe COVID-19. a A highlighted protein–protein interaction subnetwork
for male-biased differentially expressed immune genes in monocytes from the patients with severe COVID-19. The colors for nodes and edges
represent different immune pathways. b Expression of selected male-biased immune genes in monocytes from the patients with severe
COVID-19. Each dot denotes one cell, and the plot shows only the cells expressing the genes. Boxplots represent the interquartile range (IQR).
p value was corrected by Benjamini–Hochberg method51
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symptom onset to hospital admission date. For ICU admission
outcome, time to event was defined as the duration from the
date of hospital admission to the date of ICU admission. Log-
rank test was used for comparison among different sex groups
and adjusted using the Benjamini and Hochberg (BH) method.51

All the cumulative hazard analyses were performed using the
Survival and Survminer packages in R v3.6.3.

Single-cell RNA-seq analysis
In this study, we used two single-cell datasets of COVID-19
patients vs. healthy control (Supplementary Table 2) and one
SARS-CoV-2-positive cell dataset.
Dataset-126 (European Genome-phenome Archive repository:

EGAS00001004481). Nasopharyngeal and pharyngeal tissues were
collected from COVID-19-positive patients (11 severe patients with
3:8 female vs. male ratio, and 8 mild patients with 1:7 female vs.
male ratio) and healthy controls (5 healthy donors with 3:2 female
vs. male ratio). The dataset contains 135,600 cells with cell type
annotated. Twenty-two cell types were annotated based on the
marker gene expression (Supplementary Table 3) in the original
study.26 The basal (FABP5, SERPINB3, TMSB4X), secretory (XBP1),
ciliated cells (EFHC1, CCDC153), and their differentiating cell types,
including ciliated-diff (EFHC1, CCDC153, MLF1) and secretory-diff
(XBP1, VMO1), are major epithelial cell types of the airways.
FOXN4+ cell is a transient cell state of multi-ciliated
differentiation52 and ionocytes (FOXI1, CFTR) differentiate from
basal.53 Both of them are typical cell types tracing the dynamics of
epithelial differentiation on SRAS-CoV-2 infection. The squamous
cells were characterized by a strong expression of SPRR3 and
SPRR2A.
Immune cell types rMa (CD74, HLA-DRA, Supplementary Table

3), nrMa (IL1B, VCAN, CD14), moMa (MD macrophage, CD14,
CXCL10, IFIT1), neutrophil (CD16, LYN, FCGR3B), pDC (CD137, IRF7,
IL3RA), and moDC (MD dendritic cell, CD74, HLA-DRA) are myeloid
cell classes (CD11b+). T cells (cytotoxic T cells labeled by CD4,
GZMA, and GZMB, and T regular labeled by CD3G and KLRB1), B
cells (CD19), NK cells (NCAM1, FCGR3A, and KLRD1), and plasma
cells (CD27, SDC1, and CD79A) are lymphoid cell types.
Dataset-235 (GSE149689) was downloaded from the NCBI GEO

database. This dataset included three groups, patients infected
with influenza A, patients infected with COVID-19, and healthy
controls. We only focused on the COVID-19 and healthy control
populations in this study. For the COVID-19 group, PBMC samples
were collected from 4 severe patients (1:1 female vs. male ratio)
and 5 mild patients (3:2 female vs. male ratio). In addition, the
healthy control group has 4 donors in with 3:1 ratio in female vs.
male. Qualifying cells based on the criteria from the original paper
were used for the single-cell analysis. In total, 49,053 cells were
used to downstream analysis. We used the cell-type markers from
a previous study35 (CD3E, CD4, CCR7, CD8A, NCAM1, CD14,
FCGR3A, NR4A1, CD19, FCER1A, PPBP, and HBB, Supplementary
Fig. 4b).
Dataset-338 is a scRNA-seq dataset from BALF and sputum along

with available viral load data. In total, we analyzed 3085 SARS-CoV-
2-infected positive cells in BALF and sputum samples (male n= 6
vs. female n= 2) from severe/critical COVID-19 patients. We used
eight known cell types, including secretory, squamous, ciliated,
macrophage, neutrophil, NK, T cell, and plasma, based on the
original study.38

All single-cell analyses and visualizations were performed with
the R package Seurat v3.1.4.54 “NormalizeData” was used to
normalize the data. “FindIntegrationAnchors” and “IntegrateData”
functions were used to integrate cells from different samples. tSNE
was used as the dimensionality reduction method for visualization.
“FindAllMarkers” function with the MAST test as the finding
marker method for each cell type. edgeR55 v 3.12 was used to find
the DEGs (log fold change [log2FC] > 0.5 and FDR < 0.05) for each
cell type between males vs. females.

Cell–cell interaction analysis
Cell–cell interaction analysis was performed by CellPhoneDB28

(v2.1.4) (https://github.com/Teichlab/cellphonedb) on python 3.7
platform. Permutation test repeated 1000 times was used to
evaluate the significance for ligand–receptor pairs across each cell
type. All p values were further corrected by the BH method.51 We
also computed several network topological characteristics56 for
the cell–cell interaction networks, including number of nodes,
number of edges, ENR, clustering coefficient, degree, and average
shortest path length (Supplementary Tables 5, 6, 9, and 10) using
the NetworkX package (https://networkx.github.io/) on Python 3.7
platform.

Immune gene set enrichment analysis
To evaluate the immune pathway activity in females and males,
GSEA was conducted as described in the previous work.57 The
immune gene profiles were retrieved from KEGG database.36 We
selected 22 immune-related pathways and 1241 genes from KEGG
belonging to the immune system subtype. For each cell type, we
performed a GSEA on the list of DEGs ranked by the log2FC. The
normalized enrichment score (NES; Eq. 1) was calculated for 22
immune pathways in male- and female-specific gene sets
(Supplementary Fig. 2a):

NES ¼ ES

ESpermutation
(1)

where ES57 denotes enrichment score. Normalization of the
enrichment score reduced the effect of the differences in gene
set size and in correlations between gene sets and the expression
dataset. We defined the upregulated DEGs in male vs. females as
male-biased genes based on a previous study.27 The down-
regulated DEGs in male vs. females were defined as female-biased
genes. NES score >0 and FDR < 0.05 indicates that male-biased
genes in a specific cell type are significantly enriched by immune
pathways, while NES score <0 and FDR < 0.05 indicates that
female-biased genes in a specific cell type are significantly
enriched by immune pathways. Permutation test (1000 times)
was performed to evaluate the significance. All analyses were
performed with the prerank function in GSEApy package (https://
gseapy.readthedocs.io/en/master/index.html) on Python 3.7
platform.

Building the human protein–protein interactome
To build a comprehensive human interactome, we assembled in
total 18 bioinformatics databases to collect protein–protein interac-
tions (PPIs) with five types of experimental evidences: (1) literature-
curated PPIs identified by affinity purification followed by mass
spectrometry (AP-MS) and literature-derived low-throughput experi-
ments from BioGRID,58IntAct,59 Instruct,60 MINT,61 PINA v2.0,62 and
InnateDB63; (2) binary PPIs tested by high-throughput yeast-two-
hybrid (Y2H) systems from two public available high-quality Y2H
datasets64–66; (3) kinase–substrate interactions by literature-derived
low- or high-throughput experiments from Kinome NetworkX,67

Human Protein Resource Database (HPRD),68 PhosphositePlus,69

PhosphoNetworks,70 Phospho.ELM,71 and DbPTM 3.072; (4) signaling
network by literature-derived low-throughput experiments from
SignaLink 2.073; and (5) protein complex data identified by a robust
AP-MS methodology collected from BioPlex v2.0.74 The final human
protein–protein interactome used in this study included 351,444
unique PPIs (edges or links) connecting 17,706 proteins (nodes). The
detailed description for building human protein–protein interac-
tome are provided in our recent studies.66,75

Identification of cell-type-specific and sex-biased immune gene
networks
We picked the overlap genes between sex-specific differential
gene sets and 1241 immune genes (22 immune pathways from
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KEGG36) as sex-biased immune gene set for each cell type. In
addition, we identified immune genes as highly confident sex-
biased genes based on the following criteria: (1) the genes that
were X-chromosome-linked genes from GTEx33 and literature
evidence; (2) sex-biased transcription factors and other genes in
specific tissues or cell types from GTEx; and (3) the genes that
were significantly associated with sex-biased eQTL in specific
tissues or cell types (the solid tissues in which majority cell types
are epithelial cell, blood, and lymphocytes). Thereafter, we picked
the largest connected component from sex-biased immune gene
set based on PPIs as final sex-biased immune gene module in a
specific cell type. This step was performed with the NetworkX
package (https://networkx.github.io/) on Python 3.7 platform.

Statistical analysis and network visualization
Fisher’s exact tests for categorical data were performed by SciPy
1.2.1 (https://www.scipy.org/). One-way analysis of variance was
used to compare the difference of continuous clinical variable by
sex. p < 0.05 were considered significant. Networks were visualized
using Cytoscape.
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