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Abstract

In this paper, a reweighted ,1-minimization based Compressed Sensing (CS) algorithm incorporating the Integral Pulse
Frequency Modulation (IPFM) model for spectral estimation of HRV is introduced. Knowing as a novel sensing/sampling
paradigm, the theory of CS asserts certain signals that are considered sparse or compressible can be possibly reconstructed
from substantially fewer measurements than those required by traditional methods. Our study aims to employ a novel
reweighted ,1-minimization CS method for deriving the spectrum of the modulating signal of IPFM model from incomplete
RR measurements for HRV assessments. To evaluate the performance of HRV spectral estimation, a quantitative measure,
referred to as the Percent Error Power (PEP) that measures the percentage of difference between the true spectrum and the
spectrum derived from the incomplete RR dataset, was used. We studied the performance of spectral reconstruction from
incomplete simulated and real HRV signals by experimentally truncating a number of RR data accordingly in the top portion,
in the bottom portion, and in a random order from the original RR column vector. As a result, for up to 20% data truncation/
loss the proposed reweighted ,1-minimization CS method produced, on average, 2.34%, 2.27%, and 4.55% PEP in the top,
bottom, and random data-truncation cases, respectively, on Autoregressive (AR) model derived simulated HRV signals.
Similarly, for up to 20% data loss the proposed method produced 5.15%, 4.33%, and 0.39% PEP in the top, bottom, and
random data-truncation cases, respectively, on a real HRV database drawn from PhysioNet. Moreover, results generated by a
number of intensive numerical experiments all indicated that the reweighted ,1-minimization CS method always achieved
the most accurate and high-fidelity HRV spectral estimates in every aspect, compared with the ,1-minimization based
method and Lomb’s method used for estimating the spectrum of HRV from unevenly sampled RR data.
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Introduction

It is known that the ruling action of Autonomic Nervous System

(ANS) is not static [1]. For example, inspecting the beat-to-beat

interval, or the so-called RR interval, time series that are directly

derived from the Electrocardiogram (ECG), one may notice there

exists a certain degree of variation in the RR data sequence. Such

intriguing interbeat variations in Heart Rate (HR) actually result

from the ANS control. Therefore, one may speculate that the

investigations into the modulation of ANS activity may be sought

via the analysis of this interbeat variability, or alternatively referred

to as the Heart Rate Variability (HRV) [2], [3]. In fact, the

analysis results of HRV can be applied for evaluating the condition

of the patient’s heart in many aspects of clinical applications.

Among all these applications, the beat-to-beat variations are

generally quantified simply by processing the interbeat interval

sequence on time and/or frequency domain. In frequency-domain

analysis, for example, the Power Spectral Density (PSD) of HR or

RR signal is usually divided into two main frequency components:

the Lower Frequency (LF) band ranging from 0.04 Hz to 0.15 Hz,

and the Higher Frequency (HF) one ranging from 0.15 Hz to

0.4 Hz. While the HF power is used to serve as an HRV index

that reflects the vagal tone, the LF power is considered to reflect

the modulation of both the sympathetic and vagal activities [2],

[3]. The LF-to-HF power ratio is thus used to reflect the

autonomic or sympatho-vagal balance status [4–6].

In addition to direct beat-to-beat interval analysis, one may also

obtain the information related to ANS control that is not directly

measurable simply using a model-based analysis. In this aspect, the

Integral Pulse Frequency Modulation (IPFM) model has been used

to generate the discrete beat occurrence times from a continuous-

time modulating signal that represents the ANS influences on

sinoatrial (SA) node [7–9]. In fact, the IPFM model has been

widely discussed and applied for the generation and analysis of

HRV spectra in a number of previous researches in literature [10–

16]. Among these works, Mitov, Chen and Zhang proposed two

IPFM-based methods for HRV spectral analysis, respectively, that

both employed unevenly sampled raw RR data as the input [12],

[13]. However, both works did not discuss about how to deal with

the cases of data deficiency on RR intervals caused by ectopic

beats. In addition, Mateo and Laguna defined a novel heart timing

signal based on the IPFM model and estimated HRV spectra via

various types of Fourier transform of interpolated heart timing
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signal [14]. Moreover, Mateo and Laguna [15], Solem et al [16]

further developed two robust HRV spectral estimation algorithms,

respectively, that can detect and recover ectopic beats in heart

timing signal.

On the other hand, knowing as a novel sensing/sampling

paradigm, the theory of Compressed Sensing (CS) asserts certain

signals that are considered sparse or compressible can be possibly

reconstructed from substantially fewer measurements than those

required by traditional methods [17], [18]. Continued research

investigations have addressed important issues across many

applications spanning from data compression [19], channel coding

[20], data acquisition [21], to biomedical signal and image

processing. In biomedical signal/image processing, although CS

has been successfully applied to a variety of topics, such as

Computed Tomography (CT) reconstruction [22] and Magnetic

Resonance Imaging (MRI) [23], there still remains a lack in its

applications into HRV or the related analysis.

In fact, we may hypothesize that a spectrum of HRV can be

described as a sparse or compressible signal since it is widely

accepted that major characteristics of a standard HRV spectrum

are determined by the amplitudes of three main frequency

components only (two are located at the frequency ,0.15 Hz;

while one is at that .0.15 Hz), and the remainders can be

ignored. Therefore, we may take the advantage of using the CS

framework to solve for the problem of HRV spectral estimation

from substantially fewer measurements. In this aspect, we have

combined the use of ,1-minimization based CS framework and the

collaboration of IPFM model for deriving the amplitude spectrum

of the modulating signal for HRV assessments in a previous work

[24]. The primary purpose of our previous work is to establish a

CS-based theoretical procedure that can be used to quantitatively

characterize the spectrum of HRV using the unevenly sampled

RR data. As a result, it was indicated by our previous study that

the CS analysis was capable of robustly capturing the spectral

information of the fluctuations associated with RR time series of

normal heartbeats, even under the situation of a degree of

incompleteness in the RR data caused by ectopic or missing beats.

It is also worth noting that such a CS-based spectral estimation

was unprecedented in HRV analysis.

This study aims at seeking for an enhancement of performance

in spectral estimation of HRV by employing a reweighted ,1-

minimization based CS method for compressible spectrum

recovery that may outperform ,1-minimization in actual practice.

First, it should be noted that for most CS algorithms, their

successful reconstruction is based on some probability. That is, one

cannot ensure each run of algorithms can necessarily get correct

reconstruction. However, one can get the correct reconstruction

with large probability if some assumptions are satisfied. In

contrast, the probability will be smaller when there is noise, or

when the sensing matrix is coherent, or when the number of

nonzero entries in the true signal is large, i.e., the signal is not

sparse enough…etc. In particular, it is known that the global

minimum of the ,1-minimization algorithm is not necessary the

true optimal solution if the ideal assumptions stated above are not

all satisfied. In this aspect, Candès et al. proposed an empirical

method which tries to solve this problem by employing reweighted

,1-minimization [25].

Since obtaining the true optimal solution in a more practical

situation is desired and crucial in our work, seeking for more

appropriate choice of algorithm thus motivates this study.

Therefore, in this study we further hypothesized that the

reweighted ,1-minimization based CS method may be more

suitable for spectral estimation of HRV in more practical

situations, such as the presence of noise, the coherent sensing

matrix, and/or not very sparse HRV spectrum. The objective of

this study is to achieve a substantial improvement and enhance-

ment of performance in spectral estimation of HRV using such a

novel method. This paper presents a reweighted ,1-minimization

based CS algorithm incorporating the IPFM model for spectral

estimation of HRV. In fact, the novel method involves solving a

sequence of weighted ,1-minimization problems where the weights

used for the next iteration are simply computed from the value of

the current solution. Numerical experimental results produced by

both Autoregressive (AR) model derived simulated signals and a

real HRV database of PhysioNet demonstrated that the proposed

method can robustly generate the most accurate and high-fidelity

HRV spectral estimates, in comparison to our previous ,1-

minimization based CS work and Lomb’s method used for

estimating spectrum of HRV from unevenly sampled RR data.

Materials and Methods

1.1. Integral Pulse Frequency Modulation (IPFM) Model
based Spectral Analysis of HRV

Being able to generate impulses from modulating signals, the

IPFM model has been widely used as a model underlying the

generation of HRV signals. According to the model, first the

modulating signal is integrated. When the integral value reaches to

a fixed threshold, an impulse is emitted and the integrator is then

reset to zero. The model actually provides a functional description

of the mechanism by which the ANS modulates HR [11]. Suppose

there are L of RR intervals, denoted as RRi = ti2ti21, where ti is the

occurrence time of the ith interval, i = 1, …, L and t0 = 0. IPFM

model suggests a linear relation among ti, modulating signal m(t)

and an IPFM threshold TR:

ðti

0

1zm tð Þ½ � dt~iTR: ð1Þ

Inspired by the discrete Fourier transform (DFT), we assume

m tð Þ~
XK

k~1

mk tð Þ ð2Þ

and

mk tð Þ~ak cos vktð Þzbk sin vktð Þ ð3Þ

where vk = 2pk/T, T is the period of mk(t) while ak and bk are real

coefficients of cosine wave and sine wave at frequency vk,

respectively. As a result, (1) becomes

XK

k~1

ak

k
sin vktið Þz bk

k
1{ cos vktið Þð Þ

� �
~

2p

T
iTR{tið Þ: ð4Þ

In the context of DFT, the period of m(t) is equal to the available

length of m(t), i.e., T = tL. Thus, when i = L we can compute

TR~
tL

L
~

1

L

XL

i~1

RRi: ð5Þ

Therefore, ti, T and TR can be easily computed, and there are still

L21 equations in (4) left, which can be compactly written into the

matrix form, y = Ax, where

A Reweighted L1-Minimization CS for HRV Spectrum
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y~
2p

T

1:TR{t1

..

.

L{1ð Þ:TR{tL{1

2
664

3
775 ð6Þ

A~

sin v1t1ð Þ 1{ cos v1t1ð Þ � � � sin vK t1ð Þ 1{ cos vK t1ð Þ
..
. ..

. ..
. ..

. ..
.

sin v1tL{1ð Þ 1{ cos v1tL{1ð Þ � � � sin vK tL{1ð Þ 1{ cos vK tL{1ð Þ

2
664

3
775 ð7Þ

and

x~ a1=1, b1=1, � � � , aK=K, bK=K

h iT

: ð8Þ

According to the dimension of A, the linear systems can be

classified as overdetermined, squared and underdetermined, that

is,

y~Ax is

overdetermined

squared

underdetermined

8><
>: , if

Kv L{1ð Þ=2

K~ L{1ð Þ=2

Kw L{1ð Þ=2

8><
>: : ð9Þ

Obviously, IPFM-based HRV spectra can be estimated by

solving the linear system as indicated in (9). Previous studies in

literature [12], [13] have developed methods used to estimate

IPFM-based HRV spectra in the overdetermined and squared

cases, respectively. In this study, we showed that the IPFM-based

HRV spectra can be also successfully estimated in the under-

determined case simply by taking advantage of compressed

sensing, of which backgrounds and methodology are presented

in the subsequent subsections.

1.2. Compressed Sensing (CS) Method: by Reweighted ,1

Minimization
Compressed sensing has been shown to be able to estimate

sparse or compressible signals from incomplete measurements

[17], [18]. Consider a signal x in RN. x is called sparse if most

elements of x are zero. Similarly, x is compressible if most

elements of x are near zero. Specifically, x is S-sparse if ||x||0#S,

where S is a positive integer and ||?||p is the ,p-norm operator

defined as

xk kp : ~
XN

i~1

Dxi Dp
 !1=p

ð10Þ

where p is non-negative integers. Let us further define the set of S-

sparse vectors:

SS : ~ x[RN : xk k0ƒS
� �

, VS[ 1, . . . , Nf g: ð11Þ

Then, a vector x9 in RN can be approximated by a vector x in SS,

and the approximation error of x9 in ,p-norm, sS(x9)p, is

sS x’ð Þp~ inf
x[SS

x’{xk kp ð12Þ

where inf(?) is the infimum operator. If sS(x9)p is small enough for

S, then x9 is S-compressible. Regarding the sampling scheme of

CS, unlike the uniform sampling in the Nyquist/Shannon theory,

CS employs a linear measurement model by taking a weighted

linear combination of samples as

y~Wx ð13Þ

where y in RM is the measurement vector, and W in RM6N is the

measurement matrix. The interest of CS is that M,,N, which is

considered an underdetermined linear system. This implies that

there are infinite solutions. But, on the other hand, one should

keep in mind that x is sparse or compressible. According to our

previous study [24], by taking advantage of the sparsity of x we

have shown that the spectrum of HRV can be solved in the

underdetermined case using the ,1-minimization under the CS

framework, where the ,1-minimization is defined as

min
x

xk k1 subject to y~Wx: ð14Þ

In this study, a reweighted ,1-minimization [25] is proposed to

estimate HRV spectrum since it may require substantially fewer

measurements or samples for the task of spectral reconstruction, in

comparison to the conventional ,1-minimization, so the CS

technique may be more capable of combating the cases of data loss

caused by ectopic or missing beats in HRV spectral estimation. In

general, reweighted ,1-minimization is a simple iterative algorithm

that alternates between estimating x and redefining the weights W.

The iterative algorithm constructs the weights that are propor-

tional to the reciprocal of the magnitudes of elements of x obtained

from previous iteration in order to allow for successively better

estimation of small but nonzero elements of x. This improved

signal estimation is sufficient to allow perfect spectral reconstruc-

tion from even fewer measurements. The complete reweighted ,1-

minimization algorithm is described as follows:

1. Set iteration count k to zero and wi
(0) = 1, i = 1, …, N.

2. Solve the weighted ,1-minimization problem, where

x kð Þ~ arg min W kð Þx
�� ��

1
subject to y~Wx: ð15Þ

3. Update the weights: for each i = 1, …, N,

w
kz1ð Þ

i ~
1

Dx kð Þ
i Dz"

: ð16Þ

4. Stop when the solution is converged or when k exceeds an

allowed maximum number of iterations, denoted as kmax;

otherwise, set krk+1, and go to step 2.

Note that wi
(k) represents the ith weighting coefficient at the kth

iteration, W(k) is a diagonal matrix composed of wi
(k), x(k) is the

estimate of x, composed of xi
(k), obtained from the kth iteration, and

e is a positive constant used to prevent wi
(k+1) from becoming

infinite. The empirical choice of e is 0.1 to 1 and that of kmax is 4 to

8 [25]. It is also worth noting that the weighted ,1-minimization

problem in step 2 is actually equivalent to

(7)
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z kð Þ~ arg min zk k1 subject to y~W W kð Þ
� �{1

z, ð17Þ

so the reweighted ,1-minimization described above can be

reduced to an ,1-minimization problem as expressed in (17) and

thus simply solved by an ,1-minimization solver first. Then, we

have x(k) = (W(k))21z. It should be also noted that here we adopted

the Gradient Projection for Sparse Reconstruction (GPSR)

algorithm [26] as the ,1-minimization solver, which has been

already proved to be able to estimate HRV spectra in our previous

study [24]. Furthermore, the IPFM-based spectral estimation

problem as expressed in (9) can be exactly fit by the linear

measurement model of CS as indicated in (13) simply by letting

W = A.

Results and Discussion

Results on IPFM-synthesized Simulated HRV Signals
In order to demonstrate the ability of reweighted ,1-minimiza-

tion in estimating the IPFM-based HRV spectra under the CS

framework, first we employed simulated HRV signals generated

by the IPFM model. This is because real HRV signals are not

adequate for performance evaluation since there is no way for one

to know exactly what their actual spectra look like. Since a

previous research in literature indicates that time-varying ARMA

models may serve as a more realistic alternative for synthesizing

the simulated HRV signals [27], in this study we analyzed spectra

of HRV on AR derived simulated signals. Here, we simply used a

similar AR model as suggested by [7] for simulating sequences of

the modulating signal m(t). Denoting the discrete-time version of

the modulating signal as m(n), we have employed the seventh order

AR model for generating m(n), expressed as

m(n)~
XP

k~1

akm(n{k)zw(n) ð18Þ

where ak’s represent the model coefficients, P represents the model

order (P = 7), and w(n) is the white noise with zero mean. All the

numerical values of parameters related to this AR model are

provided in Table 1. Here, the value used for sampling frequency

is 1 Hz. This is because for HRV spectral analysis all the

frequencies of interest generally fall below 0.5 Hz, thus setting the

sampling frequency to 1 Hz is adequate. Fig. 1(a) shows the

theoretical AR(7) model spectrum. According to Table 1, the

seven poles are determined from the roots of the algebraic

equation: 1–a1z212a2z222…2a7z27 = 0, thus yielding the peak

frequencies at 0 Hz, 0.0810 Hz, 0.1881 Hz, 0.3484 Hz, respec-

tively.

The RR series were synthesized by inputting the simulated

modulating signal m(n) into the IPFM model for obtaining the

sequence of beat occurrence times. We generated 1024 heart beats

in total for our numerical experiments. Fig. 1(b) shows an unevenly

sampled RR signal corresponding to the AR model as indicated in

(18). In order to evaluate the algorithm performance on the

simulated RR signal from a comparative point of view, we here

applied three methods for HRV spectral estimation as follows: the

Lomb method, the ,1-minimization based CS method, and the

proposed reweighted ,1-minimization based CS method. It should

be noted that the Lomb power spectral estimation method was

developed based on least-squares analysis [28]. It can be

generalized to HRV spectral estimation on unevenly sampled

data, thus avoiding the spectrum distortion due to the low-pass

filtering effect resulting from the resampling process which is

usually employed by classical FFT- or AR-based methods [7].

Fig. 2 provides the mean spectra averaged over 100 realizations

obtained from Lomb estimates, ,1-minimization based, and

reweighted ,1-minimization based CS estimates, respectively. In

fact, it is clearly revealed from Fig. 2 that while Lomb method

introduces more high frequency contamination, both the ,1-

minimization based and reweighted ,1-minimization based CS

estimates can not only preserve the lower frequency components

of HRV, but also attenuate the high frequency contamination. We

then tested and evaluated these spectral estimates of unevenly

sampled data using the Correlation Coefficient (CC). Given two

vectors, denoted as u and v, respectively, the CC between them is

calculated as

CC~

PN
i~1

ui{muð Þ vi{mvð Þ

PN
i~1

ui{muð Þ2
PN
i~1

vi{mvð Þ2
� �1=2

ð19Þ

where ui and vi are the elements of u and v, respectively; mu and mv

are the mean values of ui and vi, respectively. Note that CC can be

used to measure the similarity between the estimated spectrum

and true spectrum. As a result, the performances, in terms of CC,

obtained from Lomb, ,1-minimization and reweighted ,1-mini-

mization were 0.9853, 0.9922 and 0.9922, respectively, suggesting

that the CS framework, no matter based on ,1-minimization or

reweighted ,1-minimization criteria, might achieve a better

performance in spectral estimation than might the Lomb method.

In order to further demonstrate the power, in depth, of the

reweighted ,1-minimization based CS in estimating HRV spectra

from the incomplete set of RR measurements, we substantially

shortened the simulated RR time series by removing a number of

the RR intervals and then evaluated the algorithm performance by

measuring the percent difference between the true spectrum and

the spectrum derived from the incomplete simulated RR dataset.

In this aspect, we experimentally studied the performance of

spectral estimation on incomplete simulated HRV signals gener-

ated by the IPFM model to evaluate the robustness of the

proposed reweighted ,1-minimization based CS method com-

pared with other methods. First, a quantity used to represent the

data loss rate, denoted as R, is defined as

R~
# of lost data

# of total data
: ð20Þ

Our analysis scheme is devised as follows. Given an R, we

removed a certain number of RR intervals accordingly in the top

portion, in the bottom portion, and in a random order from the

original simulated RR column vector to form incomplete RR

datasets corresponding to the above three data-truncation cases,

respectively. A schematic diagram, as shown in Fig. 3, is used to

illustrate how the proposed reweighted ,1-minimization based CS

procedure, as formulated in (9), is applied to HRV spectral

estimation in the three data-truncation cases. Observing the

diagram in Fig. 3, first note that in (a) y is a column vector formed

by a given set of RR series and beat occurrence times as defined in

(6); x denotes a sparse or compressible vector consisting of entries

related to spectral estimates of the modulating signal and is as

defined in (8). The HRV spectrum, in terms of x, is estimated

using the reweighted ,1-minimization under CS framework. In the

diagram, the upper leftmost plot gives an example of y obtained

A Reweighted L1-Minimization CS for HRV Spectrum
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from a complete set of RR data and the bottom leftmost plot

shows its corresponding spectrum derived from the CS estimates

x. We then experimentally studied the performances of spectral

estimation on incomplete RR datasets formed by removing a

number of RR data in the top portion, in the bottom portion, and

in a random order from the original RR data vector as illustrated

in (b), (c), and (d), respectively.

With R gradually increased from 0 to 1 by a step size of 0.01,

each time we estimated the HRV spectra from the incomplete RR

datasets (i.e., for a given R) using the three different methods (,1-

minimization, reweighted ,1-minimization, and Lomb), respec-

tively. To examine the capability of HRV spectral estimation from

incomplete RR measurements, a quantitative measure, referred to

as the Percent Error Power (PEP), was employed to evaluate the

algorithm performance. It is defined as the percentage of the

magnitude-squared difference between the theoretical spectrum

(i.e., true spectrum) and the spectrum estimated from the

incomplete simulated RR dataset with a specific data loss rate R,

that is,

PEP~
x{x0k k2

2

x0k k2
2

|100%, ð21Þ

where x and x0 represents the estimated spectrum and the true

spectrum, respectively.

Fig. 4 presents the performance comparison in terms of PEP-

versus-R curve among all the three methods in each data-

truncation case as defined previously. Inspecting the plots in

Figs. 4(a)–(c), we may see that in all the three cases, the reweighted

,1-minimization CS method apparently outperformed both the

other two methods (i.e., Lomb and ,1-minimization CS methods)

since its PEP estimates were always the smallest for any R values

ranging from 0 to 1. In fact, we may see from all these plots that

the PEP curves obtained from the reweighted ,1-minimization CS

method always remained steadily the smallest throughout the

entire R axis (ranging from 0 to 1), indicating that the proposed

method could robustly achieve the best performance in HRV

spectral estimation, compared with the other two methods, even

under the situation of substantially fewer RR measurements.

Moreover, it also appeared from Fig. 4 that in all the three data-

truncation cases, the PEP estimates derived from Lomb estimation

were always significantly larger than were those derived from the

other two methods, respectively, under any given R values, thus

showing the worst performance of all the three methods; one may

also notice that while the performances of both the ,1-

minimization and reweighted ,1-minimization CS methods were

generally close to each other in all the three cases, the latter did

outperform the former. On the other hand, it is worth noting that

while all the PEP curves obtained from both the top- and the

bottom-truncated cases (for all the three methods) steadily

remained at certain levels until R = 0.75, those obtained from

Figure 1. The theoretical AR model spectrum of the simulated modulating signal m(n) and its derived RR signal synthesized by
inputting m(n) into the IPFM model: (a) the theoretical AR model spectrum, (b) an RR signal obtained from a realization.
doi:10.1371/journal.pone.0099098.g001

Table 1. The numerical values of parameters related to the AR model used for generating the modulating signal m(n) when driven
by zero-mean white noise w(n).

AR model parameters Numerical values

Model order P = 7

Model coefficients a1 = 2.2683, a2 = 22.5629, a3 = 1.9455, a4 = 21.1488, a5 = 0.8494, a6 = 20.6892, a7 = 0.2923

Noise power of w(n) sw
2 = 0.005184

Signal power of m(n) sm
2 = 0.12937

AR poles 0.9303, 0.73066j0.4075, 0.35406j0.8645, 20.41576j0.5845

Peak frequencies 0 Hz, 0.0810 Hz, 0.1881 Hz, 0.3484 Hz

doi:10.1371/journal.pone.0099098.t001

A Reweighted L1-Minimization CS for HRV Spectrum
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the randomly-truncated case all showed rapid, exponential-like

growth as R increased; the PEP values obtained from the Lomb,

,1-minimization and reweighted ,1-minimization methods finally

exceeded 100% at R<0.5, 0.55, and 0.65, respectively.

Table 2 further provides the numerical results of averaged PEP

produced by applying all the three methods to the AR-derived

simulated HRV signals in each data-truncation case for R,0.2

(i.e., up to 20% data loss). It is revealed from the table that the

proposed reweighted ,1-minimization based method always had

the smallest PEP in all the three cases, indicating that the

reweighted ,1-minimization actually achieved the best spectral

estimation results (i.e., closest to the true spectrum) among all the

three methods.

Furthermore, one may also see from Fig. 4 and Table 2 that no

matter using what methods, the HRV spectral estimation

performance in the random-truncation case was always degraded

more significantly than that in both the top- and bottom-

truncation ones. We may speculate that this should be due to

the stationary nature of the AR-derived signals. Therefore, losing a

significant amount of data in the top or bottom portion of the RR

vector would not severely alter the characteristics of HRV

spectrum. In contrast, the performance obtained from the

randomly truncated RR dataset was continuously degraded when

R was gradually increased, indicating that in the randomly-

truncated case, the more the RR data points were lost, the more

the major HRV spectral characteristics were destroyed.

In addition, since the HRV spectrum is normally divided into a

Lower Frequency (LF) band [0.04,0.15] Hz and a Higher

Frequency (HF) band [0.15,0.40] Hz, which correspond to the

sympathetic and vagal activities, respectively [2], [3], in addition

to using the PEP estimates the performance was also evaluated in

terms of clinically relevant parameters, such as power in LF and

HF bands, or in combination. Here, we have compared the

relative spectral power ratio, LF/HF, obtained from each spectral

estimation method with the theoretical value of LF/HF ratio

derived from the original true HRV spectrum of m(n). In order to

perform a quantitative performance evaluation, we defined the

percent error LF/HF ratio (denoted as % error LHR) as

% error LHR~
DLHRR{LHRtrueD

LHRtrue

|100%, ð22Þ

where LHRR denotes the LF/HF ratio estimate derived from the

incomplete sets of RR data with a specific data loss rate R; LHRtrue

Figure 2. The mean spectra averaged over 100 realizations obtained from different methods: (a) Lomb, (b) ,1-minimization based
CS, (c) reweighted ,1-minimization based CS.
doi:10.1371/journal.pone.0099098.g002
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represents the theoretical value of LF/HF ratio obtained from the

original true HRV spectrum (LHRtrue = 2.8693). Fig. 5 presents the

performance comparison in terms of %error-LHR-versus-R curve

among all the three methods in each data-truncation case as

defined previously. Inspecting the plots in Figs. 5(a) and (b) first, we

may see that in both top- and bottom-truncated cases, the

reweighted ,1-minimization CS method apparently outperformed

both the other two methods (i.e., Lomb and ,1-minimization CS

methods) since its % error LHR estimates almost remained the

smallest for any R values ranging from 0 to 0.2. This actually

indicated that the LF/HF ratio estimates obtained from the

reweighted ,1-minimization were generally closest to the theoret-

ical value LHRtrue. On the other hand, one may also see that while

the performances of both the ,1-minimization and reweighted ,1-

minimization CS methods were close to each other, the latter still

outperformed than the former.

Furthermore, it appeared from Fig. 5(c) that in randomly-

truncated case, the %error-LHR-versus-R curves derived from all

the three methods generally displayed a steady growth as R

increased. Observing all the curves in Fig. 5(c), one may see that

for a given R value, the reweighted ,1-minimization CS method

always achieved the smallest % error LHR while the Lomb

method always had the largest % error LHR.

On the other hand, in addition to the LF/HF ratio, we also

calculated the VLF/HF ratio for assessing the proposed method in

a similar way, as indicated in (22), since some medical studies

consider VLF (0.0033,0.04 Hz) as a relevant spectral region.

Tables 3 and 4 provide the numerical results of averaged percent

error in LF/HF ratio and in VLF/HF ratio, respectively,

produced by applying all the three methods to the AR-derived

simulated HRV signals in each data-truncation case (up to 10%

and 20% data losses, respectively). It is revealed from both tables

that no matter for up to 10% or 20% data loss, the proposed

reweighted ,1-minimization based method always had the smallest

percent error in both LF/HF and VLF/HF power ratio estimates

in all the three cases, indicating that the reweighted ,1-

minimization could substantially achieve the best HRV spectral

fidelity among all the three methods. In addition, one may also

notice that in the randomly-truncated case, both the averaged

percent error in LF/HF and VLF/HF power ratio obtained from

all the three methods were significantly increased as the R

parameter was increased from 0.1 to 0.2 (for example, for the

reweighted ,1-minimization method, the averaged percent error

increased from 8.18% to 16.65% for LF/HF, and increased from

5.34% to 11.75% for VLF/HF), indicating the HRV spectral

fidelity might start to be rapidly, severely degraded when R was at

some values between 0.1 and 0.2.

As a result, all the numerical results as shown and described

above actually indicated that the proposed reweighted ,1-

minimization CS method could robustly achieve the best spectral

fidelity in HRV assessment, compared with the other two

methods, even under the situation of substantially fewer RR

measurements. Since our study has shown that the reweighted ,1-

minimization algorithm did achieve the best performance in HRV

spectral estimation, we would further evaluate its performance on

real HRV signals from a statistical point of view. The descriptions

Figure 3. A schematic diagram describing how the proposed reweighted ,1-minimization based CS method is experimentally
applied to HRV spectral estimation in the three data-truncation cases.
doi:10.1371/journal.pone.0099098.g003
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of the numerical experiments conducted on a real RR database of

PhysioNet are presented in the subsequent subsection.

Results on Real HRV Signals
In addition to evaluating the algorithm performance on

simulated HRV signals from a comparative point of view as

described above, in this study we also evaluated the performance

of the reweighted ,1-minimization algorithm on a number of real

HRV datasets from a statistical point of view. In order to achieve

statistical significance, we here employed a set of real RR data

from the interbeat (RR) interval databases of PhysioNet [29] for

comprehensive examinations. In general, PhysioNet collects a

large number of physiological signals and programs used to

manipulate the signals. Almost all of the resources are free of

charge. The testing database we adopted here is called the Normal

Sinus Rhythm RR Interval (NSR-RRI) Database, comprising 54

datasets of RR intervals in total. In fact, the NSR-RRI database

includes beat annotation files derived from 54 long-term ECG

recordings of subjects in normal sinus rhythm (thirty men, aged

28.5 to 76, and twenty-four women, aged 58 to 73). The original

ECG recordings (not available) were sampled and digitized at 128

samples per second, and the beat annotations were obtained by

automated analysis with manual review and correction [30].

Here, we took a 1000-point RR segment from each of the 54

RR datasets for our numerical experimental analysis. Fig. 6 shows

a 1000-point RR segment drawn from an NSR-RRI dataset

(NSR054) and its corresponding normalized PSD derived from the

reweighted ,1-minimization CS method. Note that since there is

no way for us to get the actual spectrum of a real HRV signal, we

here simply used the spectral estimates derived from the original

Figure 4. The PEP-versus-R curves derived from the three methods in each data truncated case: (a) the top-truncated case; (b) the
bottom-truncated case; (c) the randomly-truncated case.
doi:10.1371/journal.pone.0099098.g004

Table 2. The numerical results of averaged PEP produced by
all the three methods for each data-truncation case (up to
20% data loss).

Method Averaged PEP over R = 0,0.2

Top-
truncated

Bottom-
truncated

Randomly-
truncated

Lomb 10.7260% 10.5304% 18.7140%

,1-minimization based CS 3.2279% 3.1482% 6.3028%

Reweighted ,1-minimization
based CS

2.3373% 2.2712% 4.5521%

doi:10.1371/journal.pone.0099098.t002
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Figure 5. The %error-LHR-versus-R curves derived from the three methods in each data truncated case: (a) the top-truncated case;
(b) the bottom-truncated case; (c) the randomly-truncated case.
doi:10.1371/journal.pone.0099098.g005

Table 3. The numerical results of averaged percent error in LF/HF ratio (% error LHR) produced by all the three methods for each
data-truncation case (up to 10% and 20% data losses, respectively).

Method Averaged % error LHR over R = 0,0.1

Top-truncated Bottom-truncated Randomly-truncated

Lomb 28.5885% 28.9245% 36.0012%

,1-minimization based CS 8.6873% 8.3290% 15.8327%

Reweighted ,1-minimization based CS 2.5753% 2.6173% 8.1804%

Method Averaged % error LHR over R = 0,0.2

Top-truncated Bottom-truncated Randomly-truncated

Lomb 28.3798% 28.4378% 41.3909%

,1-minimization based CS 8.4385% 7.5243% 25.2136%

Reweighted ,1-minimization based CS 3.0158% 3.0439% 16.6467%

doi:10.1371/journal.pone.0099098.t003
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complete RR dataset as the true spectrum (i.e., without data loss or

R = 0), and then evaluated the CC between the spectral estimates

derived from the incomplete RR dataset with a given data loss rate

R, ranging from 0.01 to 0.99, and the true spectrum. As a result,

the mean CC-versus-R curve averaged over all the realizations

derived from the 54 RR datasets of the NSR-RRI Database in

each data-truncation case is calculated and illustrated in Fig. 7. It

is indicated from the numerical results as shown in Fig. 7 that with

CC remained above 0.95, the reweighted ,1-minimization based

CS estimation not only can tolerate 17% and 19% data loss in the

top-truncated case and the bottom-truncated case, respectively,

but also can allow even a much higher data loss rate as 48% in the

randomly-truncated case.

Moreover, it should be noted that since CC may not adequately

reflect the small variance associated with a spectrum estimate, we

further used the Mean Squared Error (MSE) based metric PEP, as

indicated in (21), to evaluate the spectral estimation performance

obtained from the reweighted ,1-minimization CS method in each

data-truncation case. Fig. 8 shows the mean PEP-versus-R curve

averaged over all the realizations derived from the 54 RR datasets

of the NSR-RRI Database in each data-truncation case. Note that

here we evaluated PEP by increasing R from 0 to 1. It is indicated

from the numerical results as shown in Fig. 8(a) that with PEP

remaining below 5%, the reweighted ,1-minimization based CS

estimation not only can tolerate 12% and 13% data loss in the top-

truncated case and the bottom-truncated case, respectively, but

also can allow as even a much higher data loss rate as 41% in the

randomly-truncated case. On the other hand, for up to 20% data

loss the proposed method produced, on average, only 5.15%,

4.33%, and 0.39% PEP in the top, bottom, and random data-

truncation cases, respectively.

Furthermore, one may see from Fig. 8(b) that the HRV spectral

estimation performance in both the top- and bottom-truncation

cases was always degraded more significantly than that in the

random-truncation one when the data loss rate R,0.6. We may

speculate that this should be due to the non-stationary nature of

the real RR signals and thus, losing up to 10–20% of data in the

top or bottom portion of the RR vector would severely alter the

characteristics of HRV spectrum. In contrast, the performance

Table 4. The numerical results of averaged percent error in VLF/HF ratio (% error VLHR) produced by all the three methods for
each data-truncation case (up to 10% and 20% data losses, respectively).

Method Averaged % error VLHR over R = 0,0.1

Top-truncated Bottom-truncated Randomly-truncated

Lomb 40.2501% 39.9278% 47.1199%

,1-minimization based CS 8.6467% 7.8905% 14.2949%

Reweighted ,1-minimization based CS 3.2365% 3.3187% 5.3391%

Method Averaged % error VLHR over R = 0,0.2

Top-truncated Bottom-truncated Randomly-truncated

Lomb 39.5630% 39.0032% 53.0711%

,1-minimization based CS 6.5424% 6.0037% 22.2299%

Reweighted ,1-minimization based CS 4.2523% 5.1335% 11.7451%

doi:10.1371/journal.pone.0099098.t004

Figure 7. Mean CC-versus-R curve obtained by taking an
average over the 54 realizations derived from the NSR-RRI
Database of the PhysioNet in each data-truncation case.
doi:10.1371/journal.pone.0099098.g007

Figure 6. A 1000-point RR segment drawn from an NSR RR
dataset (upper panel), and its corresponding normalized PSD
derived from the reweighted ,1-minimization CS method
(lower panel).
doi:10.1371/journal.pone.0099098.g006
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obtained from the randomly truncated RR dataset appeared to be

degraded much more quickly when R became large, say R.0.7,

indicating that in the randomly-truncated case an incomplete RR

dataset with over 70% loss in RR data would not be able to

preserve the major HRV spectral characteristics anymore.

Discussion

For online or mobile applications, it has been generally accepted

that 5-minute ECG measurement is adequate for short-term HRV

analysis [2], [31]. This choice of analysis time frame was actually

imposed by the need to meet a good compromise between a

sufficient frequency resolution and the signal stationarity which is

required for reliable spectral estimation. However, such a choice

may still be inadequately long. According to our numerical

experimental results obtained from the performance evaluation,

one may see the proposed reweighted ,1-minimization based CS

method can still well recover most of the spectral estimates of

HRV from a highly incomplete RR dataset formed by truncating

a significant portion from the bottom of the original RR data

vector. For example, inspecting the numerical results in terms of

averaged percent error LF/HF ratio obtained by applying the

proposed method to the bottom-truncated case as indicated in

Table 3, we may see even up to 20% data loss would only result in

about 3.04% averaged percent error in LF-to-HF power ratio

estimate. Similarly, it is also indicated from Table 4 that for up to

20% data loss, the averaged percent error VLF/HF ratio was

about only 5.13% in the bottom-truncated case for the proposed

method. This actually implies for online short-term HRV analysis,

while the conventional 5-minute measurement interval may be

reduced up to 4 minutes so the short-time spectrum of HRV can

be updated more quickly than before, about 95% of the spectral

LF/HF or VLF/HF power ratio estimate would still remain

unchanged with the same frequency resolution.

On the other hand, the missing or ectopic beats would cause

abnormal beat-to-beat intervals, alternatively known as the

outliers, which occur randomly and are longer or shorter than

normal RR intervals. This actually represents a major source of

error when analyzing HRV data in both the time and frequency

domain. In particular, spectral estimation of HRV would be

adversely affected by the presence of missing or ectopic beats, even

only a small number of such beats. In fact, the potential impact of

the proposed reweighted ,1-minimization algorithm is it can be

robustly applied for either online or offline high-fidelity HRV

spectral estimation, even under the situation of a certain degree of

incompleteness in the RR data caused by ectopic or missing beats

generated randomly. This has actually been implied by our

numerical experimental results presented earlier in this paper.

First, it is indicated from Tables 3 and 4 that up to 10% data loss

in the randomly-truncated case would result in only about 8.18%

and 5.34% averaged percent errors in LF-to-HF and VLF-to-HF

power ratio estimates, respectively, suggesting that both the

spectral LF/HF and VLF/HF power ratio estimates would still

robustly remain at good estimation accuracy with the same

frequency resolution. Note that such a performance is actually way

better than good enough in actual practice since the typical outlier

occupancy in an HRV signal should be within 5% in most cases.

In addition, most of the existing QRS complex detectors may

achieve even less than 1% false positives and false negatives (or

above 99% detection accuracy) for the task of QRS detection [32].

About the limitations of the study, it should be noted first that in

dealing with the situation involving the presence of outliers it is

essential that an automatic detection of outliers in RR intervals be

demanded before applying the proposed method to spectral

analysis of HRV. In fact, the proposed method can be in

conjunction with an existing RR outlier removal algorithm to

estimate HRV spectra directly from RR intervals under the

presence of outliers caused by ectopic beats. Although there are a

number of RR outlier detection algorithms available [33], we are

also developing such an algorithm that may facilitate the use of the

proposed method in near future. Such an automatic detection

mechanism may be also considered as a connection between the

proposed method and its use for HRV assessment. In addition, it is

also worth noting that the execution time of our method under

MATLAB is generally within 1-2 seconds with 1000 data points.

The processor type we used in generating all the results here was

the X86 Family 6 Model 23 Stepping 10 GenuineIntel 3333 MHz

CPU. Although it is suitable for online HRV analysis, it is still a

little time consuming. In this aspect, since recent developments in

Graphic Processing Unit (GPU) have shown its great potentials in

accessing to high performance computing applications due to its

massive multithreading capability, a GPU-based approach with

the applications into the CS-IPFM based spectral analysis of HRV

Figure 8. Mean PEP-versus-R curve obtained by taking an average over the 54 realizations derived from the NSR-RRI Database of
the PhysioNet in each data-truncation case: (a) zoom-in version, (b) zoom-out version.
doi:10.1371/journal.pone.0099098.g008
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using a unified architecture, called Compute Unified Device

Architecture (CUDA), can be further explored and evaluated in

near future.

Conclusion

In this study, a novel HRV spectral estimation method

developed by combining the use of the IPFM model and the CS

framework is proposed. The numerical results produced by tests

conducted using AR model based simulated unevenly sampled RR

data and a real RR database of PhysioNet both indicated that the

reweighted ,1-minimization based CS technique was capable of

achieving the best HRV spectral fidelity in comparison to the

conventional ,1-minimization based CS and Lomb methods, even

under the situation of substantially fewer measurements caused by

either a reduction in RR data measurement time frame or the

removal of RR outliers due to ectopic or missing beats.
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