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Rapid microbial growth in the early phase of plant litter decomposition is viewed as an
important component of soil organic matter (SOM) formation. However, the microbial
taxa and chemical substrates that correlate with carbon storage are not well resolved.
The complexity of microbial communities and diverse substrate chemistries that occur
in natural soils make it difficult to identify links between community membership and
decomposition processes in the soil environment. To identify potential relationships
between microbes, soil organic matter, and their impact on carbon storage, we used
sand microcosms to control for external environmental factors such as changes in
temperature and moisture as well as the variability in available carbon that exist in soil
cores. Using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS)
on microcosm samples from early phase litter decomposition, we found that protein-
and tannin-like compounds exhibited the strongest correlation to dissolved organic
carbon (DOC) concentration. Proteins correlated positively with DOC concentration,
while tannins correlated negatively with DOC. Through random forest, neural network,
and indicator species analyses, we identified 42 bacterial and 9 fungal taxa associated
with DOC concentration. The majority of bacterial taxa (26 out of 42 taxa) belonged to
the phylum Proteobacteria while all fungal taxa belonged to the phylum Ascomycota.
Additionally, we identified significant connections between microorganisms and protein-
like compounds and found that most taxa (12/14) correlated negatively with proteins
indicating that microbial consumption of proteins is likely a significant driver of DOC
concentration. This research links DOC concentration with microbial production and/or
decomposition of specific metabolites to improve our understanding of microbial
metabolism and carbon persistence.
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INTRODUCTION

Through the decomposition process, carbon (C) is either released
as CO2 by microbial respiration, with important feedbacks to
global warming, or retained in soil contributing to carbon storage
and soil nutrient retention (Schimel and Schaeffer, 2012; Trivedi
et al., 2013; Lehmann and Kleber, 2015). The amount of C
stored in the soil matrix is a function of the physical structure
of the soil, chemical compounds in the soil, and metabolism
by the soil microbial community (Krull et al., 2001). Soil
physical structure coupled with the types of chemical compounds
alter the accessibility of soil carbon by governing either the
physical surface area available for interaction or through chemical
sorption of carbon molecules to minerals (Schimel and Schaeffer,
2012; Newcomb et al., 2017). The microbial drivers of carbon
fate are strongly influenced by environmental factors that vary
widely by soil depth, location, and season that alter microbial
composition and function (Torsvik and Øvreås, 2002; Berg and
Smalla, 2009; Fierer, 2017). Simplified microcosms that control
for environmental factors provides a direct way to identify the
impact of microbial metabolism in the soil (Albright et al., 2020).
Further, several experiments have been conducted to determine
the rate and mechanisms by which added substrates are initially
decomposed (Bailey et al., 2006) but less understood is the way
that compounds or compound classes within complex mixtures
correlate with carbon storage (Smith et al., 2007).

The decomposition process results in a pool of degradation
byproducts composed of plant and microbial compounds.
Extracellular enzymes produced by both bacteria and fungi
(Medie et al., 2012; Baldrian, 2017) play a role in degrading
litter and producing consumable forms of carbon necessary
for microbial growth and activity (Caldwell, 2005; Rillig et al.,
2007). Further, microbial turnover contributes necromass to
dissolved organic carbon (DOC) composition with various taxa
releasing a range of microbial products including hydrophobins,
melanin, chitin, β-glucans, glycoproteins, lipids, etc (Trigo and
Ball, 1994; Fernandez and Koide, 2012; Siletti et al., 2017). The
chemical composition of DOC produced during decomposition
may affect the amount of carbon ultimately retained in the
soil, with certain compounds associated with increased carbon
storage either via their affinity for soil adsorption or through their
influence on microbial community metabolism. For example,
Kallenbach et al. (2016) identified microbe-derived proteins and
lipids as being positively associated with increased soil organic
matter potentially due to the presence of carboxyl groups that
bind to soil. Identifying these compounds and their relationship
with microorganisms will provide key insights to mechanisms
of carbon storage.

The objective of this study was to determine if the
accumulation of DOC can be related to the chemical carbon
profile generated by the decomposing substrate and soil
microbes; that is, are certain compounds and compound classes
in DOC predictive of greater concentrations of soil DOC and
carbon storage potential? In the current study, we examine links
between the community composition of microbes, and chemical
composition and concentration of DOC. We extend the work
of Albright et al. (2020); they performed a common garden

microcosm experiment where 206 soil microbial communities
were inoculated on a common substrate of Ponderosa pine litter
and sand in homogeneous laboratory microcosms. Cumulative
DOC was measured after 44 days of decomposition and varied by
5-fold across all microcosms. Microcosm studies allow for a more
reproducible environment where microbial interactions with
metabolites can be isolated from many confounding factors. They
can be used to inform models and new hypotheses that can then
be tested in more complex systems. In this study, we characterized
the chemical composition of a subset of samples collected from
the high and low extremes of the DOC concentration distribution
from the Albright et al. (2020) study. We used Fourier transform
ion cyclotron resonance mass spectrometry (FTICR-MS) and
applied machine learning and indicator species approaches to
the previously identified bacterial and fungal taxonomic dataset
to reveal links between taxa and key compounds that may
govern DOC concentration. Specifically, we asked the following
questions: (1) Do cohorts of high and low DOC samples contain
distinct compounds? (2) What compounds or compound classes
drive patterns of DOC concentration? and (3) What microbial
taxa are associated with DOC concentration and composition?
We show that for the microcosms studied, significant positive and
negative correlations were identified between microorganisms,
chemical compound types, and DOC concentration indicating
that certain chemical compound types are linked with increased
DOC concentrations and carbon storage potential.

MATERIALS AND METHODS

Experimental Setup
As described in Albright et al. (2020) soil samples were collected
from 206 locations throughout the southwestern United States
between February and April 2015. Samples were typically
collected at locations approximately 80 km apart, at least 15 m
from roadways, and from the top 3 cm of the soil surface after
removal of surface litter (if any). Samples were collected in sterile
50-ml screw-cap tubes and immediately stored on ice. Samples
were stored at 6◦C in the laboratory to avoid microbial lysis from
freeze-thaw effects and were used within 6 weeks to inoculate
microcosms. A map of the sampling locations is published in
the Supplementary Material in Albright et al. (2020). Sampling
included sites in Texas, Oklahoma, Kansas, Nebraska, Wyoming,
Colorado, Utah, New Mexico, and Arizona with grassland-shrub
and juniper woodland – grass being the predominant ecosystem
types. Sampling was conducted across a wide geographical area to
collect a diverse consortium of microbial communities to better
power our analysis.

Microcosms were created using 125 mL serum bottles, with
each bottle containing approximately 5 g of sand (Accusand;
Covia Corp., Ottawa, MN, United States). The microcosms,
including 0.02 g of dried pine needles ground in a Wiley
Mill (Thomas Scientific, Swedesboro, NJ, United States), were
sterilized by autoclaving three times for 1 h each, with at least
an 8-h resting interval between each autoclave cycle. Three
microcosms per soil sample (n = 206 soils, 618 microcosms) each
received 1.3 mL of inoculum, pipetted directly onto the initial
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aliquot of 0.02 g of litter (dried pine needles). The microbial
inoculum was extracted from each soil sample (n = 206) by
suspending 1 g of soil in 9 ml of phosphate-buffered saline
(PBS), then generating a 1000-fold dilution in PBS amended
with NH4NO3 at 4.8 mg/ml. The pine needle substrate used
in each microcosm was all collected at one location to control
for possible differences in the added substrate. Four negative
control microcosms, used to confirm the efficacy of sterilization,
received equal amounts of PBS and NH4NO3, but no microbial
inoculation. Sealed microcosms were incubated at 25◦C in the
dark for 14 days to equilibrate the communities, allow the
microbes to consume any background DOC provided from the
initial soil inoculation, and activate the communities to consume
pine needle litter. CO2 was evacuated using a vacuum pump
and replaced with sterile-filtered air on days 3 and 7. On day
14, an additional 0.1 g of sterilized litter was added to each
microcosm and the microcosms were sealed with Teflon-lined
crimp caps. The microcosms were incubated at 25◦C in the dark
for a further 30 days. During this time, CO2 was measured by gas
chromatography using an Agilent Technologies 490 Micro GC
(Santa Clara, CA, United States) on days 2, 5, 9, 16, 23, and 30.
After each measurement, the headspace air was evacuated with a
vacuum pump and replaced with sterile-filtered air. After the 44-
day (total) incubation, microcosms were destructively sampled to
measure DOC concentration and characterize DOC chemical and
microbial community composition by FTICR-MS and bacterial
16S and fungal 28S rRNA using the Illumina MiSeq sequencer
platform, respectively.

Dissolved Organic Carbon Chemical
Composition
Dissolved organic carbon extractions were performed using a
rapid, gentle washing procedure to avoid measurement artifacts
arising from microbial growth or microbial cell disruption.
Specifically, 5 mL of sterile deionized water was added to each
microcosm, swirled manually for 30 s, then transferred to two 2-
mL microfuge tubes and centrifuged at 16,400 × g for 4 min. The
supernatants were combined and sterilized by filtration through
a 0.2 µm filter. The concentration of DOC in each sample
was measured on an OI Analytical model 1010 wet oxidation
TOC analyzer (Xylem inc., Rye Brook, NJ, United States),
calibrated daily.

A total of 125 DOC samples were selected for chemical
composition characterization with a focus on the extremes of
DOC concentrations (62 high DOC and 63 low DOC). The
chemical composition of DOC was determined using Fourier
transform ion cyclotron resonance mass spectrometry (FTICR-
MS). FTICR classifies compounds by ratios of C, O, P, N, S, and
H which are then used to assign the peak to a compound class;
however, specific compound identifications are putative.

For FTICR, the 125 samples consisting of sand and pine
litter were sequentially extracted using water, methanol, and
chloroform according to Tfaily et al. (2017). The extracts were
diluted with methanol to aid in ionization. A 12 Tesla (12T)
Bruker SolariX FTICR-MS located at the Environmental Sciences
Laboratory in Richland, WA, United States, was used to collect

high-resolution mass spectra from each sample. Samples were
directly injected into the instrument using a custom automated
direct infusion cart operating at 3 µl/min and performed two
offline blanks between each sample. The SolariX cart is equipped
with an electrospray ionization (ESI) source that was operated
in negative ion mode with an applied voltage of −4.2 kV. Ion
accumulation time was optimized for each extraction solvent.
One hundred and forty-four transients were co-added with a
spectral mass window of m/z 100–900, yielding a resolution
of 400 K at m/z 381. Spectra were initially recalibrated in
the mass domain using homologous series separated by 14 Da
(CH2 groups). The mass measurement accuracy was typically
within 1 ppm for singly charged ions across a broad m/z
range (100–900 m/z). Bruker Daltonics DataAnalysis (version
4.2) was used to convert mass spectra to a list of m/z values
by applying the FTMS peak picking module with a signal-
to-noise ratio (S/N) threshold set to 7 and absolute intensity
threshold to the default value of 100. Chemical formulae were
assigned using Formularity (Tolić et al., 2017) based on mass
measurement error <0.5 ppm, taking into consideration the
presence of C, H, O, N, S, and P and excluding other elements.
This in-house software was also used to align peaks with a
0.5 ppm threshold. After formula assignment, compounds were
categorized into nine classes (Supplementary Figure 1): amino
sugar-, carbohydrate-, condensed hydrocarbon-, lignin-, lipid-,
protein-, tannin-, unsaturated hydrocarbon-like compounds and
unclassified compounds based on their O:C and H:C ratios
according to Tfaily et al. (2015, 2017). For each sample, we
combined the number of peaks observed from each extraction
making sure not to double count chemical formulas to
generate the total number of peaks observed. Although these
categories are putative, we will drop the “-like” designation
throughout this manuscript (e.g., proteins instead of protein-like
compounds). We observed an increase in lignin-like compounds
between control, high DOC, and low DOC, with the low
DOC group exhibiting the greatest number of lignin-like peaks
(Supplementary Figure 2A), most likely due to the lack of other
compound classes in samples with low DOC, hence enhancing
lignin ionization efficiency. Because lignin-like compounds (i.e.,
phenolic compounds) could only be produced by microbes
in response to external stressors, and generally plant-derived
lignin declines or transforms during litter degradation, lignin
is assumed to be the highest in the control samples. Lignin
ionization during ESI appeared to be impacted by the presence of
other compounds due to charge competition in the FTICR mass
spectrometry measurements. To remove the impact of crowding
and improve assessment of compound dynamics, we normalized
the number of peaks of each compound class by lignin in each
sample (Supplementary Figures 1B, 3). Therefore, lignin served
as an internal control. Compound class peak counts were scaled,
log-transformed, and mean centered to ensure samples were
equally distributed. To identify compound classes that were most
likely to underlie DOC concentration, we focused on compound
classes that most strongly and positively correlated with DOC
concentration as negative correlations between compound classes
and DOC concentration may be the result of the crowding effect.
To visualize the chemical composition of FTICR compounds in
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our samples, we used Principal Components Analysis (PCA) and
van Krevelen plots. van Krevelen plots illustrate the relationships
between the molar ratios of hydrogen to carbon and oxygen to
carbon (Van Krevelen, 1950; Wu et al., 2004).

Microbial Community Composition
Bacterial and fungal composition was characterized as in Albright
et al. (2020). Following DOC sampling, material (sand and
litter) from each microcosm was frozen at −80◦C for DNA
extraction. DNA extractions were performed using a DNeasy
PowerSoil 96-well plate DNA extraction kit (Qiagen, Hilden,
Germany). The standard protocol was used with the following
two exceptions: (1) 0.3 grams of material was used per extraction;
and (2) bead beating was conducted using a SPEX Certiprep 2000
Geno/Grinder (SPEX SamplePrep, Metuchen, NJ, United States)
for 3 min at 1900 strokes/minute. DNA samples were quantified
with an Invitrogen Quant-iTTM dsDNA Assay Kit (Thermo
Fisher Scientific, Eugene, OR, United States) on a BioTek Synergy
HI Hybrid Reader (Winooski, VT, United States). PCR templates
were prepared by diluting an aliquot of each DNA stock in sterile
water to 1 ng/µl. The bacterial (and archaeal) 16S rRNA gene
(V3–V4 region) was amplified using primers 515f-R806 (Bates
et al., 2011). The fungal 28S rRNA gene (D2 hypervariable region)
was amplified using the LR22R primer (Mueller et al., 2016)
and the reverse LR3 primer (Talbot et al., 2014). The 28S rRNA
gene sequence is amenable to phylogenetic tree construction and
provides genus-level resolution equivalent to that provided by
internal transcribed spacer (ITS) sequences (Porras-Alfaro et al.,
2014). Preparation for Illumina high-throughput sequencing
was undertaken using a two-step approach, similar to that
performed by Mueller et al. (2016), with Phusion Hot Start
II High Fidelity DNA polymerase (Thermo Fisher Scientific,
Vilnius, Lithuania). Amplicons were cleaned using a MoBio
UltraClean PCR clean-up kit (Carlsbad, CA, United States),
quantified using the same procedure as for the extracted
DNA, and then pooled at a concentration of 10 ng each. The
pooled samples were further cleaned and concentrated using
the MoBio UltraClean PCR clean-up kit. A bioanalyzer was
used to assess DNA quality, concentration was verified using
qPCR, and paired-end 250 basepair (bp) reads were obtained
using an Illumina MiSeq sequencer at Los Alamos National
Laboratory. All raw sequence data is available at the National
Center for Biotechnology Information (NCBI) Sequence Read
Archive (SRA) under accession PRJNA478595.

Bacterial and fungal sequences were merged with PEAR v 9.6
(Zhang et al., 2014), quality filtered to remove sequences with
1% or more low-quality (q20) bases, and demultiplexed using
QIIME (Caporaso et al., 2010) allowing no mismatches to the
barcode or primer sequence. Sequences with an error rate greater
than 0.5 were removed, remaining sequences were dereplicated,
singletons were excluded from clustering, OTU clustering was
performed at 97% and putative chimeras were identified de novo
using UCHIME (Edgar, 2013). Bacterial and fungal OTUs were
classified using the Ribosomal Database Project (RDP) classifier
(Wang et al., 2007). OTUs which were not classified as bacteria
or fungi with 100% confidence were removed from the dataset
and all OTUs with a phylum classification confidence level of at

least 80% were retained. For all lower classifications, a confidence
level of at least 70% was used (Tables 1, 2). Confidence scores
below 70% are indicated in the table but assignments below 70%
confidence are not used for downstream analyses.

Following quality control and classification, 9,576,525
sequences from 349 of the original 618 microcosms were
obtained for bacteria and 13,124,107 sequences from 377
microcosms were obtained for fungi. These sorted into 2,527
OTUs for bacteria (an average of 275 per microcosm, SE = 8)
and 753 OTUs for fungi (an average of 47 per microcosm,
SE = 1). For all analyses, bacterial communities were rarefied
to 1,023 sequences while fungal communities were rarefied to
2,032 sequences.

Identifying Key Microbial Taxa
To determine bacterial and fungal taxa significantly associated
with DOC concentration, we used two machine learning
techniques (i.e., random forests and neural networks) combined
with conventional indicator species analysis (Thompson et al.,
2019). Taxa jointly identified by all three methods were selected
as the most robust predictive features.

For random forest feature selection, we used the random forest
regressor made available by Scikit-learn (Pedregosa et al., 2011).
To identify taxa, we performed feature ranking that randomly
samples 80% of the training data over 50 iterations and the
resulting taxa with the highest average feature ranking values
over all iterations were identified. For neural network analysis, we
built a feed-forward neural network using Theano (Al-Rfou et al.,
2016) and Python 3.7 with a randomized search algorithm for
determining model hyper-parameters implemented with Scikit-
learn (Pedregosa et al., 2011). We used the default single hidden
layer with 15 nodes with sigmoid activation functions and a
single output layer with linear activation function. We used the
randomized hyper-parameter search to find the optimum hidden
layer size, learning rate, and regularization coefficient using mean
squared error as the cost function. Once the cost function applied
to the test data fails to decrease over ten training iterations,
training stops. We performed indicator species analysis in Python
3.7 with the methods described in Dufrêne and Legendre (1997)
using a 95% confidence cutoff.

Statistics
To identify compound classes significantly associated with
DOC concentration, Spearman correlation analysis was used
to determine significant correlations (P < 0.05) between
FTICR compound classes based on the number of peaks
assigned to each compound class (not the summed intensity)
and DOC concentration. Spearman correlation analysis was
also used to determine bacterial and fungal taxa most
strongly associated with those compound classes. The network
diagram summarizing Spearman correlations between taxa,
metabolites, and DOC was created using Cytoscape based
on R-values from Spearman correlation analysis (Shannon
et al., 2003). PERMANOVA and ANOSIM from the vegan
package (Oksanen et al., 2020) in R were used to determine
if the composition of FTICR compounds in the high and
low DOC cohorts were significantly different. Unless otherwise

Frontiers in Microbiology | www.frontiersin.org 4 January 2022 | Volume 12 | Article 799014

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-799014 January 13, 2022 Time: 17:17 # 5

Campbell et al. Microbial Communities Influence Soil DOC

TABLE 1 | Forty-two bacterial taxonomic features consistently associated with DOC concentration in random forest (RF), neural network (NN), and indicator species (IS)
analyses (n = 349).

OTUa Phyla Order Family Genus RF
Importance

NN
Importance

IS stat IS
P-value

IS. DOC
group

OTU_188 Actinobacteria Actinomycetales Nocardioidaceae Aeromicrobium 0.014 −0.423 0.6 0.03 Low

OTU_179 Actinobacteria Actinomycetales Microbacteriaceae Agromyces (67%) 0.043 −0.457 0.519 0.02 Low

OTU_201 Actinobacteria Solirubrobacterales Conexibacteraceae Conexibacter 0.045 −0.573 0.689 0 Low

OTU_53 Actinobacteria Actinomycetales Nocardiaceae Rhodococcus 0.062 −0.577 0.753 0 Low

OTU_150 Actinobacteria Actinomycetales Microbacteriaceae Subtercola (10%) 0.315 −0.62 0.81 0 Low

OTU_92 Actinobacteria Actinomycetales Nocardiaceae Williamsia 0.164 −0.583 0.766 0 Low

OTU_93 Bacteroidetes Sphingobacteriales Chitinophagaceae Chitinophaga 0.144 −0.591 0.694 0 Low

OTU_125 Bacteroidetes Flavobacteriales Flavobacteriaceae Flavobacterium 0.022 −0.752 0.632 0 Low

OTU_157 Bacteroidetes Flavobacteriales Flavobacteriaceae Moheibacter 0.017 −0.525 0.548 0.015 Low

OTU_249 Bacteroidetes Sphingobacteriales Chitinophagaceae Taibaiella 0.015 −0.644 0.556 0.02 Low

OTU_107 Firmicutes Bacillales Paenibacillaceae Paenibacillus 0.018 −0.441 0.697 0 Low

OTU_210 Planctomycetes Planctomycetales Planctomycetaceae Pirellula (44%) 0.012 −0.71 0.55 0 Low

OTU_3 Proteobacteria Burkholderiales Alcaligenaceae Achromobacter 0.045 −0.591 0.738 0 Low

OTU_12 Proteobacteria Caulobacterales Caulobacteraceae Caulobacter 0.316 −0.624 0.769 0 Low

OTU_2512 Proteobacteria Pseudomonadales Pseudomonadaceae Cellvibrio 0.023 −0.448 0.416 0.01 Low

OTU_96 Proteobacteria Pseudomonadales Pseudomonadaceae Cellvibrio 0.017 −0.462 0.68 0 Low

OTU_55 Proteobacteria Rhizobiales Hyphomicrobiaceae Devosia 1 −1 0.819 0 Low

OTU_574 Proteobacteria Rhizobiales Hyphomicrobiaceae Devosia 0.055 −0.462 0.763 0 Low

OTU_379 Proteobacteria Gammaproteobacteria Halioglobus (51%) Halioglobus (51%) 0.023 −0.673 0.598 0 Low

OTU_70 Proteobacteria Xanthomonadales Xanthomonadaceae Luteimonas 0.024 0.515 0.563 0 High

OTU_1452 Proteobacteria Rhizobiales Aurantimonadaceae Martelella (61%) 0.123 −0.595 0.697 0 Low

OTU_40 Proteobacteria Burkholderiales Oxalobacteraceae Massilia 0.033 −0.463 0.728 0.03 Low

OTU_129 Proteobacteria Rhizobiales Methylobacteriaceae Methylobacterium 0.018 0.46 0.551 0 High

OTU_224 Proteobacteria Rhizobiales Bradyrhizobiaceae (62%) Nitrobacter (23%) 0.067 −0.774 0.689 0 Low

OTU_78 Proteobacteria Rhizobiales Bradyrhizobiaceae Nitrobacter (47%) 0.018 −0.596 0.613 0 Low

OTU_85 Proteobacteria Sphingomonadales Sphingomonadaceae Novosphingobium 0.04 −0.636 0.686 0 Low

OTU_39 Proteobacteria Bdellovibrionales Bacteriovoracaceae Peredibacter 0.033 −0.756 0.723 0 Low

OTU_22 Proteobacteria Rhizobiales Phyllobacteriaceae Phyllobacterium 0.032 0.509 0.729 0.04 High

OTU_3824 Proteobacteria Rhizobiales Brucellaceae Pseudochrobactrum 0.014 −0.561 0.552 0.03 Low

OTU_572 Proteobacteria Burkholderiales Oxalobacteraceae Pseudoduganella 0.013 −0.495 0.411 0 Low

OTU_122 Proteobacteria Rhizobiales Xanthobacteraceae (65%) Pseudolabrys (63%) 0.06 −0.848 0.781 0 Low

OTU_1 Proteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 0.038 0.475 0.8 0 High

OTU_3002 Proteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas (37%) 0.014 −0.432 0.638 0.005 Low

OTU_11 Proteobacteria Rhizobiales Rhizobiaceae Rhizobium 0.022 −0.85 0.805 0 Low

OTU_6 Proteobacteria Rhizobiales Rhizobiaceae Rhizobium 0.48 −0.75 0.852 0 Low

OTU_273 Proteobacteria Myxococcales Sandaracinaceae Sandaracinus 0.023 −0.689 0.597 0.02 Low

OTU_29 Proteobacteria Rhodospirillales Rhodospirillaceae Skermanella 0.046 0.592 0.778 0 High

OTU_99 Proteobacteria Rhizobiales Rhizobiales_incertae_sedis (27%) Variibacter (22%) 0.016 −0.628 0.763 0 Low

OTU_109 Verrucomicrobia Verrucomicrobiales Verrucomicrobiaceae Luteolibacter 0.037 −0.57 0.661 0.01 Low

OTU_34 Verrucomicrobia Verrucomicrobiales Verrucomicrobiaceae Luteolibacter 0.056 −0.814 0.813 0 Low

OTU_397 Verrucomicrobia Opitutales Opitutaceae Opitutus 0.031 −0.772 0.622 0 Low

OTU_198 Verrucomicrobia Verrucomicrobiales Verrucomicrobiaceae Roseimicrobium 0.019 −0.718 0.673 0 Low

aA confidence score cutoff of 70% was used for taxonomic assignment for each OTU.
Confidence scores below the cutoff are given in parentheses. The lowest taxonomic level above the 70% cutoff score was used for all downstream analyses.

mentioned, all statistical analysis was done in R (R Core Team,
2021) and figures were created using the package ggplot2
(Wickham, 2016).

RESULTS

Dissolved Organic Carbon Chemical
Composition Differs Between High and
Low Dissolved Organic Carbon Cohorts
The only lignin inputs were from the starting pine needle
substrate, thus we used lignin as an internal control to better

compare the other changes in chemical compounds between
controls (no microbial inoculation), and high and low DOC
samples (Supplementary Figures 1B, 3). High and low DOC
cohorts contained distinct compounds as detected by FTICR
analysis (PERMANOVA, F = 46.46, R2 = 0.27, P = 0.001;
ANOSIM, R = 0.45, P = 0.001; Figures 1, 2). Biplot analysis
indicated that the high DOC cohort was associated with proteins,
lipids, and amino sugars while compounds associated with
low DOC included unsaturated and condensed hydrocarbons,
tannins, and unclassified compounds (Figure 1). Carbohydrate
abundance did not appear to associate with high or low DOC
(Figure 1 and Supplementary Figures 1, 2).
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TABLE 2 | Nine fungal taxonomic features consistently associated with DOC concentration were determined from random forest (RF), neural network (NN), and indicator
species (IS) analyses.

OTUa Phyla Order Family Genus RF importance NN importance IS stat IS P-value IS DOC group

OTU_18 Ascomycota Eurotiales Trichocomaceae Aspergillus 0.491 0.734 0.686 0 High

OTU_1 Ascomycota Eurotiales Trichocomaceae Emericella (56%) 1 −0.766 0.778 0.02 Low

OTU_780 Ascomycota Eurotiales Trichocomaceae Emericella 0.62 −0.748 0.722 0 Low

OTU_20 Ascomycota Hypocreales Nectriaceae Gibberella 0.405 0.876 0.763 0.01 High

OTU_325 Ascomycota Hypocreales Nectriaceae Gibberella 0.238 0.741 0.664 0 High

OTU_1212 Ascomycota Pleosporales Pleosporaceae Alternaria 0.162 1 0.603 0.015 High

OTU_7 Ascomycota Pleosporales Pleosporaceae Alternaria 0.842 0.764 0.758 0.04 High

OTU_24 Ascomycota Pleosporales Sporormiaceae Preussia (68%) 0.362 0.963 0.559 0 High

OTU_178 Ascomycota Incertae sedis Batistiaceae Batistia 0.157 −0.783 0.468 0 Low

aA confidence score cutoff of 70% was used for taxonomic assignment for each OTU. Confidence scores below the cutoff are given in parentheses. The lowest taxonomic
level above the 70% cutoff score was used for all downstream analyses.
We used a confidence score cutoff of 70% for taxonomic assignment for each OTU and percentages are given in parentheses for confidence levels below the cutoff. We
used the lowest taxonomic level that was above the 70% cutoff score for all downstream analyses (n = 377).

Fourier Transform Ion Cyclotron
Resonance Compounds Correlate With
Dissolved Organic Carbon
Dissolved organic carbon concentration significantly correlated
with all compound classes (Spearman correlation, P < 0.05,
Figure 3), and most strongly with tannins (R = −0.83) and
proteins (R = 0.82). Proteins and lipids showed strong positive
correlations with DOC concentration while tannins, condensed
hydrocarbons, and unsaturated hydrocarbons negatively
correlated with DOC concentration (Figure 3). Further, amino
sugars, carbohydrates, and unclassified compounds showed weak
albeit significant correlations (Figure 3). Proteins also correlated

FIGURE 1 | Biplot analysis indicates that high and low DOC groups are
enriched with different FTICR compound classes (PERMANOVA, F = 46.46,
R2 = 0.27, P = 0.001; ANOSIM, R = 0.45, P = 0.001). Ellipses indicate 95%
confidence intervals (n = 125 samples).

with the fraction of DOC binding to the common soil mineral,
aluminum oxide (R = 0.29; Supplementary Figure 4).

Microbial Taxa Governing Dissolved
Organic Carbon
To examine microbial taxa most closely linked to DOC
concentration, we used two machine learning methods (random
forest and neural network) and indicator species analysis. We
identified 42 of 2,527 bacterial OTUs and 9 of 753 fungal OTUs
associated with DOC concentration (Tables 1, 2). Proteobacteria
made up the majority of bacterial OTU associations with 26 of
the 42 OTUs (Table 1). The 9 fungal OTUs were all Ascomycota
with Eurotiales (3/9) and Pleosporales (3/9) being the most
represented orders associated with DOC concentration (Table 2).

To link microbial taxa with chemical composition, we focused
on microbial associations with the protein compound class
because it had the strongest positive correlation with DOC
concentration and is associated with microbial activity (R = 0.82,
P < 0.01, Figure 3). In contrast, tannins, the strongest negatively
correlated metabolite with DOC concentration (R = −0.83,
P < 0.01), are generally associated with plant production
(Mutabaruka et al., 2007). We performed Spearman correlations
on the 42 taxa identified through machine learning and found
that 12 bacterial OTUs significantly correlated with protein
abundance (P < 0.05, Figure 4). Likewise, 2 of the 9-machine
learning-selected fungal features correlated significantly with
protein abundance (Figure 5). 92% of the 12 bacterial OTUs
(11/12) negatively correlated with protein. At the genus level,
Skermanella (Rhodospirillaceae, Rhodospirillales) (R = 0.41,
P < 0.01) was the only taxa positively correlated with protein
abundance, while Devosia (Hyphomicrobiaceae, Rhizobiales,
OTU 55) (R = −0.56, P < 0.01) and Rhizobium (Rhizobiaceae,
Rhizobiales, OTU 6) (R = −0.49, P < 0.01) were most negatively
correlated with protein (Figure 5). For fungi, Alternaria
(Pleosporaceae, Pleosporales, OTU 7) positively correlated with
protein (R = 0.44, P = 0.01), while the Trichocomaceae
family (Eurotiales, OTU 1) negatively correlated with protein
(R = −0.20, P = 0.01) (Figure 5).
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FIGURE 2 | The DOC pool is chemically diverse, and the high and low DOC groups contain distinct compounds. Van Krevelen plots of compounds found in all
samples categorized by compound class (A) and compounds found in high DOC, low DOC, and both DOC groups (B).

FIGURE 3 | Proteins and tannins are the compound classes most strongly correlated with DOC concentration. Spearman correlation coefficients (R), R2-values, and
p-values are shown.

In linking taxa-protein correlations with DOC concentration,
we found that all 11 of the bacterial OTUs negatively correlated
with protein were classified as being more abundant in low
DOC, while the lone bacterial OTU positively related to protein
was more abundant in high DOC (Figures 4, 5). Following the
same trend, the fungal OTU positively correlated with protein
was associated with high DOC and the fungal OTU negatively
correlated with protein was associated with low DOC. The
11 bacterial taxa negatively correlated with protein represent
3 different phyla and 5 different orders, while the positively
correlated taxon belongs to the order Rhodospirillales in the
phylum Proteobacteria (Figure 4).

We used correlational analyses to determine if machine
learning assignments of taxa to high and low DOC were
consistent with the direction and magnitude of taxa-compound
correlations and compound-DOC correlations (Figure 5). All of
the 14 bacterial or fungal taxa that had significant correlations
to protein were consistent with their DOC concentration
assignment (Figure 5). For example, Microbacteriaceae (OTU
150) was associated with low DOC and correlated negatively with
protein (positively correlated with DOC).

DISCUSSION

Determining how metabolite composition correlates with DOC
concentration is an important step in understanding the
mechanisms of microbially mediated C sequestration. The
chemical composition of DOC plays an important role in C fate
because compounds can vary in their recalcitrance and capacity
to bind to soil minerals, impacting microbial accessibility.
To understand the molecular basis of this relationship while
also gaining insight into key physiological processes driving
DOC concentration, we analyzed DOC samples from laboratory
microcosms representing microbial community cohorts that
exhibit extreme differences in C fate (i.e., low and high
DOC). Our novel multi-pronged approach employed detailed
compound characterization (FTICR), machine learning, and
indicator species analysis to provide evidence that: (1) high and
low DOC microcosms contain different compounds, (2) protein-
like compounds and tannin-like compounds most strongly
correlated with DOC concentration (although these categories
are putative we will drop the “-like” designation), and (3) 51
key microbial taxa are associated with DOC concentration and
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FIGURE 4 | The majority of bacterial OTUs that are associated with high or low DOC are negatively correlated with protein. Stacked barplots indicate the number of
bacterial OTUs that correlated negatively (left barplots) or positively with protein (right barplots) and their association with either high or low DOC based on indicator
species analysis is shown at (A) phyla, (B) class, and (C) order levels.

may influence DOC concentration through association with
specific metabolites. Our study fills a major gap by identifying
connections between soil metabolites, microorganisms, and C
flow during the early phase of litter decomposition. Establishing
these relationships is foundational to improve modeling of C flow
and manipulation of C storage.

Dissolved Organic Carbon Composition
Is Linked With Dissolved Organic Carbon
Concentration
Dissolved organic carbon composition of the high and low
DOC cohorts was significantly different, indicating that certain
compounds may govern DOC concentration and carbon flow.

Of the eight compound classes identified by FTICR, proteins
and tannins had the highest correlations to DOC concentration.
Proteins were positively correlated with DOC concentration
in agreement with previous work (Kallenbach et al., 2016),
which may be due to their tendency to complex with soil
organic and inorganic molecules (Hsu and Hatcher, 2005).
Alternatively, proteins may correlate with increased DOC since
an increase in enzymes involved with degradation will result
in more primary decomposition of plant litter (Datta et al.,
2017). The protein portion of DOC may originate from the plant
litter, microbial necromass (Navarre and Schneewind, 1999),
or from enzymes secreted by microbes into the extracellular
matrix for decomposition (Schneider et al., 2012; Baldrian,
2017). As decomposition of plant litter progresses, a greater
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FIGURE 5 | Network diagram demonstrating that interactions between microbial taxa, proteins, and DOC are in accordance with the machine-learning assignments
for microorganisms in terms of DOC concentration. Borders around taxa indicate whether they are associated with high DOC (red) or low DOC (blue). Bacterial taxa
are indicated by rectangular borders and fungal taxa are indicated by oval borders. Black borders indicate DOC and protein compounds.

proportion of protein in dissolved organic matter (DOM) is
reported to be microbially derived (Schulze, 2005; Schneider
et al., 2012), rather than plant-derived, perhaps because most
of the plant protein is consumed in the early phases of litter
decomposition. Indeed, the relative contribution of plant-derived
proteins has been observed to decline with increasing soil depth
while the proportion of microbial-derived proteins increases
(Schulze, 2005). Tannins, on the other hand, had a negative
correlation with DOC levels. Tannins are complex compounds
produced by plants that have been assumed to be resistant
to degradation due to their polyphenolic nature (Mutabaruka
et al., 2007). As such, a positive correlation between tannins and
DOC concentration is expected, contrary to our observation.
Alternatively, tannins could correlate negatively with DOC
concentration by reducing decomposition rates. Tannins can
inactivate enzymes either through complexation or by acting
as redox-buffers which may neutralize the oxidative enzymes
necessary for breaking down reduced compounds such as lignin
(Triebwasser et al., 2012). Condensed hydrocarbons are another
compound class considered to be recalcitrant, and a similar
negative correlation with DOC was observed instead of the
expected positive correlation (Figure 3). Since FTICR data results
in relative values, condensed hydrocarbons and tannins may be
more detectable in low DOC samples as a result of decreased
levels of other compounds that would obscure detection. Thus,
these negative correlations may be due to negative selection
where other compounds are depleted or absent in low DOC
samples resulting in higher relative concentrations of tannins
and condensed hydrocarbons (Breitling et al., 2006). Thus,
negative correlations of tannins and condensed hydrocarbons
with DOC may be good metrics for predicting C fate when
using relative abundances but may not hold true when measuring
absolute abundances.

Microbial Taxa Governed Dissolved
Organic Carbon Composition
Using machine learning and indicator species analyses we were
able to identify 51 taxa associated with DOC abundance from

an initial pool of 3,280 different taxa (2,527 bacterial taxa
and 753 fungal taxa) across hundreds of samples over a large
geographic area. To gain insight to potential mechanisms of
C flow we identified correlations between the identified taxa
and metabolites. We focused on protein, because it was the
compound class most significantly and positively associated with
DOC concentration. Positive and negative correlations between
taxa and metabolites have been used to indicate: (1) microbial
production or consumption of metabolites (Swenson et al., 2018),
which is determined by microbial substrate preference (Banerjee
et al., 2016; Zhalnina et al., 2018), (2) taxa that may suppress other
microbes that consume or produce protein, and/or (3) taxa that
may thrive in the presence of high or low protein abundance. To
assess distinguishing characteristics of taxa linked to high versus
low DOC, we examined characteristics at multiple taxonomic
levels because more information exists at broader taxonomic
levels and many traits are conserved within related taxa (Martiny
et al., 2013; Morrissey et al., 2016).

A large majority (92%) of the bacterial OTUs that correlated
with protein had a negative correlation, suggesting that the
microbial association to protein abundance in DOC may be
primarily driven by protein consumption. Protein is a good
microbial source of C and N and in the short-term may be
consumed by bacteria before becoming inaccessible to microbes
when it binds to organic and mineral compounds (Gibbs and
Barraclough, 1998). The 11 taxa that correlated negatively with
protein represented 3 phyla, 4 classes, and 5 orders, indicating
that protein consumption is a generalist trait rather than specific
to a certain clade. Only 1 taxon, belonging to the phylum
Proteobacteria, had a positive correlation with protein. This is
consistent with studies of plant litter decomposition that track
soil protein to its source organism. Schneider et al. (2012)
found that 59–90% of litter degrading bacterial protein in
soil originated from Proteobacteria depending on site, while
Liu et al. (2015) found that Proteobacteria generated 56%
of all bacterial protein present in soil communities. More
generally, Proteobacteria are copiotrophic and have a propensity
to dominate microbial communities in the presence of labile
organic substrates which are available during the early stages of
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degradation (Fierer et al., 2007; Keiblinger et al., 2012; Degrune
et al., 2017). For fungi, the two OTUs that correlated with
protein belong to Ascomycota, a phylum of dominant cellulose
decomposers (Stursová et al., 2012; Wilhelm et al., 2017). Similar
to Proteobacteria, Ascomycota tend to produce a majority of the
fungal protein in plant litter decomposition studies, producing
>80% of fungal protein in one study (Schneider et al., 2012).
The significant correlations of Ascomycota OTUs, and not
Basidiomycota, another dominant decomposer, may be because
Ascomycota are prominent in early stages of decomposition
(Wilhelm et al., 2017).

The identification of microbes associated with DOC
concentration was performed using random forest, neural
network, and indicator species analyses. Machine learning
techniques are able to identify complex relationships and not
just linear correlations (Thompson et al., 2019). However,
the criteria used by the machine learning method for feature
selection are not always readily apparent because algorithms
incorporate many factors that may be hidden behind layers that
are difficult to interpret (Ghannam and Techtmann, 2021). By
incorporating correlations between taxa, proteins, and DOC, we
were able to identify possible interactions underlying the machine
learning assignments. For example, taxa assigned to high and
low DOC with machine learning methods showed consistent
correlations with protein compounds (Figures 4, 5). Correlation
with the protein compound class proved to be a consistent
predictor of taxa association to high or low DOC. Combining
metabolite correlations with machine learning predictions of
taxa driving DOC abundance illuminates physiological processes
(e.g., extracellular protein consumption and production) that
underpin C flow.

CONCLUSION

We found that DOC concentration during the early stages of pine
litter decomposition is linked to changes in DOC composition.
In a first step toward mechanism, we linked microbial taxa
with metabolite abundance by determining the direction and
magnitude of significant correlations to metabolite compound
classes and their association with high and low DOC. Our results
indicate that protein-like compounds are positively correlated

with DOC while tannin-like compounds are negatively correlated
with DOC. Further, the high proportion of taxa negatively
correlated with proteins suggest that microbial consumption of
protein is likely a significant driver of DOC concentration. Future
studies are warranted to directly test the impact of individual
and groups of taxa on the concentration, consumption, and
production of DOC metabolites to improve efforts to model C
flow and potentially manipulate C flow with microbes.
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