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Abstract

Maize enriched in provitamin A carotenoids could be key in combatting vitamin A deficiency in human populations relying on maize as a
food staple. Consumer studies indicate that orange maize may be regarded as novel and preferred. This study identifies genes of relevance
for grain carotenoid concentrations and kernel color, through simultaneous dissection of these traits in 10 families of the US maize nested
association mapping panel that have yellow to orange grain. Quantitative trait loci were identified via joint-linkage analysis, with pheno-
typic variation explained for individual kernel color quantitative trait loci ranging from 2.4% to 17.5%. These quantitative trait loci were
cross-analyzed with significant marker-trait associations in a genome-wide association study that utilized �27 million variants. Nine genes
were identified: four encoding activities upstream of the core carotenoid pathway, one at the pathway branchpoint, three within the a- or
b-pathway branches, and one encoding a carotenoid cleavage dioxygenase. Of these, three exhibited significant pleiotropy between ker-
nel color and one or more carotenoid traits. Kernel color exhibited moderate positive correlations with b-branch and total carotenoids and
negligible correlations with a-branch carotenoids. These findings can be leveraged to simultaneously achieve desirable kernel color pheno-
types and increase concentrations of provitamin A and other priority carotenoids.
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Introduction
Kernel color and grain carotenoid profiles are valuable traits that

directly impact consumer preference and crop nutritional quality

in maize (Zea mays ssp. mays L.). Maize is a cereal crop ranking

globally among the most important sources of daily calories, and

is estimated to provide 38% of the food supply in Africa (Chandler

et al. 2013; Prasanna et al. 2020); as such, maize has been a key

crop for biofortification efforts. Some carotenoid compounds are

pigments, and overall abundance of maize grain carotenoids has

been found to exhibit weak positive correlations with kernel color

in 228 diverse inbreds (R2 ¼ 0.119; Harjes et al. 2008). However, ge-

netic and phenotypic relationships of several priority carotenoid

traits in maize grain and kernel color have not yet been dissected

in tandem. Achieving a greater understanding of these relation-

ships through simultaneous examination of these traits in the

same experimental framework (i.e. populations and environ-

ments) could expedite efforts to select for deep orange kernel

color and improved carotenoid profiles in tandem, for the devel-

opment of multi-value added products.
As humans are unable to endogenously synthesize vitamin A,

dietary intake of provitamin A is crucial for proper immune

system development and healthy vision (Tanumihardjo et al.
2016). Three carotenoid compounds have provitamin A activity.
b-carotene provides two units of retinol (active vitamin A) upon
oxidative cleavage in human and animal systems. b-cryptoxan-
thin provides one unit of retinol but recent evidence has sug-
gested its greater bioavailability compared to b-carotene
(Prasanna et al. 2020), such that the two compounds are now con-
sidered equivalent in breeding efforts. Finally, a-carotene pro-
vides one unit of retinol. In the case of young children going
through preadolescent development, sufficient vitamin A intake
is especially important; deficiency can result in impaired immu-
nity and stunted growth, blindness, and ultimately death
(Underwood and Arthur 1996). Over 95% of deaths in children
due to vitamin A deficiency occur in sub-Saharan Africa or south
Asia (Stevens et al. 2015). Furthermore, nonfatal vitamin A defi-
ciencies contribute to permanent corneal scarring and/or night
blindness, resulting in lifelong effects (Stevens et al. 2015).
Alleviating vitamin A deficiency in both children and adults must
continue to be a high-priority target for improving the human
condition worldwide.

The improvement of crop nutritional quality through plant
breeding and/or agronomic strategies, termed biofortification,
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could serve as a viable complement or alternative to other
approaches to address nutritional deficiencies in certain subre-
gional contexts (Welch and Graham 2004). The success of
approaches such as crop and dietary diversification, processing-
stage fortification, or supplementation (West 2000; Ross 2002;
West et al. 2002; Mora 2003) can be limited by requirements for
crop growth or by difficulties arising in transportation and infra-
structure, among other factors (Graham et al. 2001; Gadaga et al.
2009). Biofortification of maize with provitamin A has been found
to be a cost-effective and sustainable approach (Bouis and Welch
2010), and extensive natural variation has been observed for
grain carotenoid traits among diverse maize accessions (Owens
et al. 2014), which can be leveraged in breeding efforts.

Carotenoids are primarily localized in the endosperm of maize
grain and are biosynthesized in the plastids. The methyl-D-
erythritol-4-phosphate (MEP) pathway produces isopentenyl py-
rophosphate (IPP), a precursor from which carotenoids and other
plastidic isoprenoid compounds are derived (Cordoba et al. 2011).
Flux through the core carotenoid biosynthetic pathway commen-
ces with the biosynthesis of phytoene from geranylgeranyl di-
phosphate (GGDP), a step catalyzed by phytoene synthase (Yuan
et al. 2015). Subsequent desaturations convert the backbone of
phytoene into a light-absorbing chromophore composed of re-
peating conjugated double bonds (Bartley and Scolnik 1995),
and sequential desaturation and isomerization reactions produce
all-trans lycopene; all-trans is the predominant isomer among
lycopene and most other carotenoids. The addition of a b- and
e-ring or, alternatively, two b-rings to each terminal carbon of ly-
copene yield a- and b-carotene, respectively, and further hydrox-
ylation will generate xanthophylls such as lutein or zeaxanthin
(Khoo et al. 2011; Yuan et al. 2015).

Two carotenoid biosynthetic genes in particular have been uti-
lized in maize provitamin A biofortification efforts thus far: lyco-
pene epsilon cyclase (lcyE), which adds the e-ring to lycopene
and represents a key branchpoint of the carotenoid pathway,
and beta carotene hydroxylase 1 (crtRB1), which converts b-carotene
to b-cryptoxanthin and then zeaxanthin (Pixley et al. 2013;
Prasanna et al. 2020). Using these genes of interest, researchers
affiliated with the International Maize and Wheat Improvement
Center (CIMMYT), the International Institute of Tropical
Agriculture (IITA), HarvestPlus, and partners have developed
maize varieties that accumulate higher levels of provitamin A
carotenoids in the grain and are regionally adapted to different
growing conditions and endemic stressors (Pixley et al. 2013;
Menkir et al. 2017; Prasanna et al. 2020). Lutein and zeaxanthin,
while not having provitamin A activity, are also priority carote-
noids for human health given their important—including protec-
tive—roles as major constituents of the macular pigment of the
eye (Beatty et al. 1999; Krinsky et al. 2003; Bernstein and
Arunkumar 2021). Increased dietary intake of these compounds
has been associated with lower risk of age-related macular de-
generation (AMD; Abdel-Aal el et al. 2013; Bernstein and
Arunkumar 2021). AMD is of global significance as a common
cause of vision loss and blindness in adults. A total of 170 million
adults were estimated to be affected in 2014, with projected
increases in prevalence by 2040 (Wong et al. 2014).

While biofortification of maize with provitamin A and other
priority carotenoids (such as lutein and zeaxanthin) is a promis-
ing opportunity to address deficiency and reduce global disease
burdens, it has also been critical to consider consumer preference
with regards to kernel color. In parts of eastern and southern
Africa, white maize is preferred for human consumption,
whereas yellow maize is dispreferred, including due to historical

issues associated with long storage periods for shipments of yel-
low maize (Tschirley and Santos 1994; De Groote and Kimenju
2008; Muzhingi et al. 2008; Pillay et al. 2011). One solution, given
this dispreference for yellow kernel color, is to develop orange-
grained maize varieties. Stevens and Winter-Nelson (2008) found
that consumers surveyed in Mozambique did not have an aver-
sion to orange biofortified maize, and on average rated its aroma
more favorably than the alternative white maize. This study sug-
gested that consumer preference for the orange biofortified
maize may have been due to educational presentations in which
the surveyors explained the maize’s nutritional benefits, and that
consumers may be attracted to the product for its ability to alle-
viate vitamin A deficiency.

The relationship between kernel color and grain carotenoid
concentrations is not sufficiently consistent for orange kernel
color to be selected upon for the improvement of concentrations
of provitamin A and other priority carotenoids (Pfeiffer and
McClafferty 2007; Harjes et al. 2008). This is due in part to the
identity and spectral properties of the carotenoids that accumu-
late in maize endosperm and certain aspects of their relative
abundance—namely, lutein and zeaxanthin tend to be the most
abundant carotenoids in maize grain (Owens et al. 2014) and are
themselves pigmented, which could tend to mask impacts of
other carotenoid compounds on kernel color. However, the na-
ture and extent of relationships between the overall abundance
versus relative abundance (i.e. composition) of several carotenoid
compounds with kernel color has not yet been dissected in the
same quantitative genetics-enabling experimental framework,
and will be tested herein. Additionally, genes previously identi-
fied for quantitative components of kernel color in 1,651 diverse
maize inbreds (Owens et al. 2019) have been implicated in both
overall carotenoid abundance and composition in other experi-
mental frameworks (Owens et al. 2014; Diepenbrock et al. 2021),
which could complicate the achievement of maximized tandem
gains for provitamin A (among other priority) carotenoids and
kernel color. This study aims to simultaneously dissect the ge-
netic basis of—and genetic and phenotypic relationships
among—eight grain carotenoid traits in tandem with visually
scored kernel color, in 10 families of the US maize nested associa-
tion mapping (NAM) panel having yellow to orange grain, to iden-
tify and characterize potential targets for the accelerated
development of orange, carotenoid-dense maize.

Materials and methods
Plant materials and trait quantification
The 10 families analyzed in this study are part of the 25-family
US maize NAM panel, which has been previously described (Yu
et al. 2008; Buckler et al. 2009; McMullen et al. 2009). The experi-
mental design for field evaluations of this NAM panel, conducted
in the summers of 2009 and 2010 at the Purdue University
Agronomy Center for Research and Education (West Lafayette,
IN) using standard agronomic practices, was as described in
Chandler et al. (2013). Briefly, the 2009 environment used two
fields to grow the entire single replicate of the US maize NAM
panel, whereas the 2010 environment used one field to grow the
entire single replicate. A sets design was used in each environ-
ment, in which each family was planted in a population block (or
set). The set for each NAM family was planted in an augmented
incomplete block a-lattice design with block size 10 � 20, with
B73 and the alternate parent of that family used as the checks
within each block. The 281-line Goodman-Buckler maize diversity
panel was additionally planted in each environment, in an
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augmented incomplete block a-lattice design with block size 14 �
20 and with B73 and Mo17 as the checks within each block. For
the analyses described herein, we utilized data that were col-
lected on samples from population blocks corresponding to the
10 families of the US maize NAM panel that are of interest in this
study, with B73 as the common parent and the following as alter-
nate parents: B97, CML228, CML52, Hp301, Ki11, Ki3, NC350,
NC358, Oh7B, and Tx303. Chandler et al. (2013) had identified
these 10 families to be segregating for yellow to orange kernel
color. A single-row plot containing approximately 10 plants of a
single inbred (with plot length of 3.05 m) was the individual ex-
perimental unit for this study. Self-pollination was conducted by
hand for at least four plants per plot. Kernel samples from these
self-pollinated ears were harvested, dried to 15% moisture,
shelled, and bulked to form a representative sample (per plot) for
kernel color and carotenoid phenotyping.

Ordinal scores for kernel color, on a scale of 1 (yellow) to 12
(deep orange), were as evaluated for these 10 families in
Chandler et al. (2013). Briefly, ordinal scores were assessed on a
bulk sample of 100þ kernels per plot with the embryo facing
down. Within a single bulk sample, kernels were grouped by color
(if multiple kernel colors were present), and each group was then
assigned a score. Most bulk samples were uniform in color. For
those with multiple color groups, the score recorded for that bulk
sample (representing a single plot) was the average of the score
assigned to each group. Each bulked sample was scored once, by
the same person. Bulked samples in which kernels were discol-
ored due to fungal and/or other opportunistic pathogens did not
receive a color score. For bulked samples in which the pericarp
was pigmented due to anthocyanins, or if kernel color was other-
wise difficult to score without ambiguity, the pericarp of the ker-
nels was removed prior to scoring. Carotenoid phenotypes (lg g-1

seed) were a subset of those analyzed in Diepenbrock et al. (2021),
which were collected via high-performance liquid chromatogra-
phy (HPLC) as described in that study, on �50 ground seeds per
plot from the same field experiment. 20 ll of seed extract was
injected for each sample, with 1 mg of b-apo-80-carotenal used as
an internal standard. External standards were used in five-point
curves for quantification of carotenoid compounds at 450 nm,
with a lutein curve used for lutein, zeinoxanthin, and a-carotene;
a b-carotene curve for b-carotene and b-cryptoxanthin; and a ze-
axanthin curve for zeaxanthin. Relative phytofluene levels (at
350 nm) were also estimated from the b-carotene curve.

Best linear unbiased estimators
Using the phenotypic data from the 10 families, best linear unbi-
ased estimators (BLUEs) were generated from the Chandler et al.
(2013) kernel color phenotypes and Diepenbrock et al. (2021) ca-
rotenoid phenotypes using a process similar to that taken in
Diepenbrock et al. (2021). Briefly, family, RIL within family, year,
and field within year were fitted as random effects as a baseline
model. The best random structure was then determined using
the Bayesian Information Criterion (BIC; Schwarz 1978), to deter-
mine which of zero to five additional terms were optimally in-
cluded in the final model. The additional terms tested were HPLC
autosampler plate, set within field within year, block within set
within field within year, family within year, and RIL within family
within year. The best residual structure was again determined
using BIC, conditional upon the best random structure. The resid-
ual structures tested included identity by year; autoregressive for
range and identity for row, by field in year; identity for range and
autoregressive for row, by field in year; and autoregressive (first
order, AR1�AR1) for range and row, by field in year. Field in year

was a new factor that combined the field used and the year, to
enable fitting of a separate error structure for each of the three
fields used in this experiment. The final model using the optimal
random and residual structures was then fit, and outlying obser-
vations (for a given RIL or check genotype, trait, and field in year
combination) were identified via difference in fits (DFFITs; Neter
et al. 1996; Belsley et al. 2005) and were set to NA for that specific
trait if exceeding a conservative threshold previously found to be
appropriate for this experimental design (Hung et al. 2012). The fi-
nal model was then fit again with RIL and RIL within family now
specified as sparse fixed effects rather than random effects, for
the generation of BLUEs. The BLUEs then underwent Box-Cox
transformation using the optimal convenient lambda identified
for each trait (Supplementary Table 1). Untransformed and trans-
formed BLUEs are reported in Supplementary Table 2. The final
model for each trait was also then fit with all terms specified as
random effects except for the grand mean, to produce variance
components to be used in the estimation of heritabilities on a
line-mean basis. These heritabilities were estimated across the
10 families in this study (Hung et al. 2012), and the delta method
was used to determine standard errors (Holland et al. 2003).

Joint-linkage analysis
Joint-linkage (JL) analysis was conducted in TASSEL 5 as de-
scribed in Diepenbrock et al. (2021), using a 0.1 cM consensus ge-
netic linkage map consisting of 14,772 markers (Supplementary
Table 3). This map was generated by imputing SNP markers at 0.1
cM intervals, anchored on genotyping-by-sequencing data for the
�4,900 RILs of the US maize NAM panel. The JL analysis was per-
formed on transformed BLUEs of each trait, with the family term
forced into the model first as a predictor variable. Each of the
14,772 markers nested within family were then tested for poten-
tial inclusion in the model as a predictor variable via joint step-
wise regression. Entry thresholds were determined for each trait
by conducting 1,000 permutations and selecting the P-value
(from a partial F-test) corresponding to a Type I error rate of
a¼ 0.05. Exit thresholds were set to equal twice the entry thresh-
old, so that entry and exit of a given marker could not take place
in the same step. One pair of multicollinear SNPs (defined as
magnitude of Pearson’s correlation of SNP genotype state scores
being greater than 0.8) was identified for lutein. The SNP having
the lower sum of squares was removed from the JL model, and
the model was fit again with re-scan in the vicinity of the remain-
ing peak markers in the model. Namely, if another marker in the
respective support interval now exhibited a larger sum of squares
than the originally identified peak marker, it would be included
in the model instead and the support interval recalculated, until
a local maximum in the sum of squares was identified. Once the
final model was fit, the allelic effect estimates were calculated,
nested within family, as described in Diepenbrock et al. (2017).
Specifically, the final JL models were fitted using the lm() func-
tion from the lme4 package (Bates et al. 2015; R Core Team 2018)
(Supplementary Table 4). Phenotypic variation explained (PVE)
was then calculated as in Li et al. (2011) but with slight modifica-
tions as described previously in Diepenbrock et al. (2017) to ac-
count for segregation distortion across the 10 families examined
herein. Only those individual-trait JL-quantitative trait loci (QTL)
intervals for which the left and right support interval bounds
uplifted continuously (among adjacent markers) and to the same
chromosome from RefGen_v2 to RefGen_v4 were considered in
results reporting and downstream analyses (Supplementary
Table 5), with the additional intervals for which the left and/or
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right bound did not uplift in that manner reported in
Supplementary Table 6.

Genome-wide association study
First, 1,000 permutations were generated, using the residuals
generated for each trait during joint-linkage analysis. From the
permutation results, a significance threshold was identified for
each trait corresponding to a genome-wide association study
(GWAS) false discovery rate of 0.05. The GWAS was run in
TASSEL 4 using custom scripts (available in the script repository
for this publication). This method utilized a bootstrap resampling
method in which 100 iterations of GWAS were conducted, with
80% of the RILs sampled with replacement in a given iteration.
The markers tested in GWAS were the �26.9 million SNPs and
short indels (up to 15 bp in length) of the HapMap v1 and v2 proj-
ects (Gore et al. 2009; Chia et al. 2012) that were upliftable from
RefGen_v2 to RefGen_v4 coordinates. Uplifted coordinates were
as determined in Diepenbrock et al. (2021), by clipping 50 markers
flanking either side of a given marker (101 nucleotides in total)
and aligning these to the AGP_v4 genome using Vmatch (v2.3.0;
Kurtz 2019), with the following options: -d -p -complete -h1. From
the alignment results, only the highest scoring and unique align-
ment for each marker was retained, and those markers not hav-
ing a high confidence and unique alignment were not included in
the input data set for permutations and GWAS. The upliftable
markers, which are available for the NAM founders, were then
projected onto the NAM RILs in the 10 families under analysis in
this study, using the 0.1 cM genetic linkage map, prior to permu-
tations and GWAS. The resample model inclusion probability
(RMIP; Valdar et al. 2009) was reported for each marker exhibiting
a significant marker-trait association for one or more traits in
GWAS, conveying in what proportion of the 100 iterations that
marker was included in the final model.

Pleiotropy
Pleiotropy was examined by fitting the final JL-QTL model for
each trait using transformed BLUEs for every other trait, and
then correlating the allelic effect estimates between the original
trait and the other trait for every peak marker. Significance
was tested with a Type I error rate of a¼ 0.05 using FDR-corrected
P-values that were generated via the Benjamini–Hochberg
method. These correlations were examined both within a single
JL-QTL interval and at the genome-wide level, and were visual-
ized using the network package in R (Butts 2008, 2015).

Linkage disequilibrium
Linkage disequilibrium (LD) was examined within the same
HapMap v1 and v2 input data set used for GWAS. Specifically, LD
was examined for markers exhibiting one or more significant
associations in GWAS (hereafter, GWAS variants) as in
Diepenbrock et al. (2021), by calculating pairwise correlations be-
tween GWAS variants and markers within 250 kb of each variant.
A null distribution was generated by calculating the same
pairwise correlations for 50,000 randomly selected variants
with markers within 250 kb of the respective randomly selected
variant.

Modeling of relationships between grain
carotenoid traits and kernel color
Linear model
Linear models were produced using the lm() function from the
lme4 package in R (Bates et al. 2015; R Core Team 2018). Each lin-
ear model was constructed as reported in Supplementary Table

7. Family was treated as a categorical variable (factor). All values
for traits, including both the response (kernel color) and predic-
tors (carotenoid traits), were transformed BLUEs. The assump-
tions for linear regressions were checked using the plot() function
in base R. The output table comparing models was produced us-
ing the compare_performance() function in the “performance”
package (Lüdecke et al. 2021).

Random forest
Random forest models were produced using SciKit-Learn in
Python version 3.8.5 (Pedregosa et al. 2011; Van Rossum and
Drake 1995). The transformed BLUEs were split using train_-
test_split from sklearn.model_selection, such that 30% of the
data were used for testing, and 70% were used for training perfor-
mance. Both a linear model (LinearRegression from sklearn.li-
near_model) and random forest model (RandomForestRegressor
from sklearn.ensemble) were fit to the split training data. The
random forest used 1,000 decision trees. Accuracy of the models
was calculated by using r2_score (corresponding to R2) from
sklearn.metrics. Baseline Error is defined as the absolute value of
the predicted kernel color transformed BLUE minus the known
test value of the kernel color transformed BLUE. Percent
Accuracy is defined as 100 times the Baseline Error, divided by
the test-set values of kernel color, subtracted from 100%. To add
certainty that results were not affected by the randomness of the
train-test-split, and to enhance reproducibility of results, the pro-
cess was repeated 30 times using 30 different random seeds, for
the linear model. The model metrics were averaged over these 30
runs before being reported in Supplementary Table 8. Variable
importance was extracted from the random forest model, and
plotted using pyplot from matplotplib (Hunter 2007). Feature im-
portance was calculated over all 1,000 of the decision trees, based
on the average decrease in accumulated impurity, using the
“feature_importances_” aspect of the random forest output.

Results
The carotenoid and kernel color traits analyzed in this study
exhibited natural variation in the 10 families examined herein,
with moderate to high line-mean heritabilities (Table 1). A total
of 67 individual-trait JL-QTL support intervals were identified for
these nine traits (Table 2). Physically overlapping intervals were
combined into a single common support interval, resulting in 29
unique common support intervals. A total of 192 significant
marker-trait associations [having a resampling model inclusion
probability (RMIP) � 5] were detected in GWAS that were con-
tained within one of these common support intervals, with six
markers detected for multiple traits (Supplementary Table 9). It
was determined from the examination of linkage disequilibrium
in the 10 families (Supplementary Fig. 1) that 250 kb on either
side of a GWAS variant was a reasonable search space for gene
identification. Nine genes were identified in this study, in accor-
dance with the following criteria: residing within the search space
for at least one of the 192 marker-trait associations; also residing
within individual-trait JL-QTL intervals for one or more of the
same traits; and having a priori evidence of involvement in
biosynthesis of IPP or biosynthesis and/or retention of carote-
noids based on prior studies in plant systems (Supplementary
Table 10).

Three genes encoding activities in the MEP pathway, which
provides substrate for carotenoid biosynthesis, were identified in
this study (Figs. 1 and 2). Specifically, two homologs were identi-
fied that encode 1-deoxy-D-xylulose 5-phosphate synthase (DXS),
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which catalyzes the first and committed step of the MEP path-
way. dxs2 was identified with PVEs of 1.0% to 5.2% for eight of the
nine traits analyzed herein, including 2.4% for kernel color
(Fig. 2). dxs3 was identified with PVEs of 2.2% to 3.3% for zeinox-
anthin, b-cryptoxanthin, and zeaxanthin (Fig. 2). mecs1 encodes
methylerythritol cyclodiphosphate synthase (MECS), which cata-
lyzes the fifth step in the MEP pathway. mecs1 was identified with
PVEs of 0.8% to 3.6% for five traits (Fig. 2).

As the committed step in carotenoid biosynthesis, phytoene
synthase (psy1) catalyzes the synthesis of phytoene from the con-
densation of two 20-carbon geranylgeranyl diphosphate (GGDP)
molecules. A null allele at psy1 conditions negligible carotenoid
levels in the maize endosperm (Buckner et al. 1996; Li et al. 2008).
In this study, psy1 was identified for six traits: phytofluene (12.2%
PVE), b-cryptoxanthin (4.7%), lutein (5.4%), zeaxanthin (7.3%), to-
tal carotenoids (21.4%), and kernel color (12.5%) (Figs. 1 and 2).
The branchpoint in the carotenoid pathway occurs with cycliza-
tion of the e-ring of lycopene by lycopene epsilon cyclase (lcyE), which
is the committed step in a-carotene biosynthesis (Cunningham
et al. 1996; Bai et al. 2009; Cazzonelli and Pogson 2010). lcyE had
the largest PVEs (15.3% to 53.2%) observed for seven of the nine
traits analyzed in this study, and affected kernel color (with PVE
of 17.5%) but not total carotenoids.

Within the a-branch of the carotenoid pathway, lut1 encodes
CYP97C, an e-ring hydroxylase that catalyzes the conversion of
a-carotene to zeinoxanthin and further hydroxylation of zeinox-
anthin to yield lutein (Tian et al. 2004; Quinlan et al. 2012; Owens
et al. 2014; Diepenbrock et al. 2021). lut1 was identified in this

study for zeinoxanthin and lutein, with PVEs of 4.5% and 2.7%, re-
spectively (Figs. 1 and 2). Within the b-branch of the carotenoid
pathway, b-carotene hydroxylase (CRTRB) preferentially converts
b-carotene to b-cryptoxanthin and then zeaxanthin (Diepenbrock
et al. 2021). crtRB5 (also known as hyd5) was identified with PVEs
of 1.6% for b-cryptoxanthin and 1.8% for zeaxanthin. Zeaxanthin
epoxidase (encoded by zep1) converts zeaxanthin to violaxanthin,
with antheraxanthin as an intermediate. zep1 was identified with
PVEs of 20.3% for zeaxanthin, 7.1% for total carotenoids, 2.2% for
b-cryptoxanthin, and 1.7% for phytofluene. Finally, the White Cap
locus represents a macrotransposon insertion containing some
number of tandem copies of ccd1, which encodes a carotenoid
cleavage deoxygenase (Tan et al. 2017). The whitecap1 locus
(QTL24) was identified with PVEs of 5.6% for lutein and 6.9% for
total carotenoids, respectively. Overall, three of the identified
genes were detected for kernel color: lcyE (17.5% PVE), psy1
(12.5%), and dxs2 (2.4%).

Pairwise correlations between untransformed BLUEs for each
trait were generally moderately to strongly positive for com-
pounds within the same pathway branch, and near-zero to nega-
tive across branches (Pearson’s r; Fig. 3). Kernel color and total
carotenoids exhibited a correlation of 0.69. Both kernel color
and total carotenoids clustered with higher concentrations of
b-branch carotenoids, with kernel color (and total carotenoids)
specifically showing correlations of 0.76 (and 0.71) with zeaxan-
thin, 0.66 (and 0.54) with b-cryptoxanthin, and 0.53 (and 0.46)
with b-carotene. While lutein and total carotenoids exhibited a
positive correlation of 0.49, the correlation between lutein and

Table 1. Summary statistics for untransformed best linear unbiased estimators (BLUEs) and estimates of line-mean heritability for
carotenoid and kernel color traits, in the 10 US maize NAM families examined in this study.

Trait No. of lines BLUEs Heritability (line mean)

Median SD Range Estimate SE

Phytofluene 1,696 0.56 0.65 �0.48 to 3.46 0.53 0.02
a-carotene 1,657 1.10 0.89 �0.99 to 4.54 0.63 0.06
b-carotene 1,683 1.17 0.90 �0.72 to 5.28 0.65 0.08
Zeinoxanthin 1,682 1.98 2.31 �0.69 to 12.42 0.90 0.02
b-cryptoxanthin 1,703 1.98 1.96 �0.01 to 11.27 0.94 0.02
Lutein 1,723 12.27 6.19 0.23 to 38.47 0.70 0.04
Zeaxanthin 1,721 8.69 8.15 �0.56 to 46.20 0.96 0.01
Total carotenoids 1,725 32.07 12.51 5.26 to 83.53 0.88 0.04
Kernel color 1,633 6.33 1.54 0.51 to 11.31 0.91 0.05

Table 2. Summary of joint-linkage analysis and GWAS results for carotenoid and kernel color traits in the 10 US maize NAM families
examined in this study.

Trait Number
of JL-QTL

Median size
(SD) of a¼

0.01 JL-QTL
support

interval (Mb)

Number of
JL-QTL intervals

containing a
priori genes

Number of
GWAS-associated
variants in JL-QTL

intervals

Average (median)
percent resampling

model inclusion
probability (RMIP)

Max. percent
resampling model

inclusion
probability (RMIP)

Phytofluene 9 4.12 (7.22) 4 30 11.03 (7.5) 46
a-carotene 4 5.63 (14.02) 2 11 12.18 (7) 57
b-carotene 4 2.64 (2.41) 2 11 14.45 (10) 47
Zeinoxanthin 7 3.78 (23.04) 5 19 14.21 (9) 57
b-cryptoxanthin 11 3.10 (3.45) 8 29 18.03 (13) 63
Lutein 9 5.29 (39.55) 5 24 16 (11) 64
Zeaxanthin 11 2.29 (29.48) 9 34 15.06 (14.5) 47
Total carotenoids 8 5.09 (26.20) 3 23 14.7 (9) 38
Kernel color 5 5.52 (24.22) 4 11 18.27 (10) 66
All JL-QTL 70 3.78 (22.51) 42 192 14.85 (10) 66
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kernel color was negligible at 0.03. Zeinoxanthin, a-carotene, and
phytofluene showed only small correlations with total carote-
noids, and negligible correlations with kernel color.

In examinations of pleiotropy within each common support
interval, significant positive and/or negative pleiotropy (a¼ 0.05)
was observed for kernel color and carotenoid traits at certain of
the identified genes (Fig. 4). dxs2 exhibited positive pleiotropy for

kernel color and each of b-cryptoxanthin, lutein, zeinoxanthin,
and total carotenoids. psy1 exhibited positive pleiotropy for all
pairwise combinations of kernel color, zeaxanthin, and total car-
otenoids. lcyE exhibited positive pleiotropy between kernel color
and each of b-carotene, b-cryptoxanthin, and zeaxanthin, and
negative pleiotropy between kernel color and each of a-carotene,
zeinoxanthin, and lutein. lcyE also exhibited negative pleiotropy

Fig. 1. A simplified depiction of the carotenoid biosynthesis pathway, showing each carotenoid compound analyzed herein and its structure, annotated
with the corresponding genes identified. Genes of interest are followed by the PVE for that gene at the corresponding trait. Gene names, listed in blue,
represent the gene of interest relative to its placement in the pathway. Gene abbreviations are as follows: 1-deoxy-D-xylulose 5-phosphate synthase (dxs2
and dxs3); 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (mecs1); zeaxanthin epoxidase (zep1); phytoene synthase (psy1); lycopene e-cyclase (lcyE);
e-ring hydroxylase (lut1); b-carotene hydroxylase (crtRB5); whitecap1/carotenoid cleavage dioxygenase1 (wc1/ccd1).

Fig. 2. Percent phenotypic variation explained for each carotenoid and kernel color trait by JL-QTL resolved to each of the nine identified genes. PVEs are
color coded by the significance of the PVE, with a darker blue corresponding to a higher PVE. Trait abbreviations: phytofluene (PHYF), a-carotene (ACAR),
b-carotene (BCAR), zeinoxanthin (ZEI), b-cryptoxanthin (BCRY), lutein (LUT), zeaxanthin (ZEA), total carotenoids (TOTCAR), kernel color (KCOL).
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for compounds across pathway branches, and for each of
b-carotene and b-cryptoxanthin with zeaxanthin, which is produced
downstream of these two compounds within the b-branch (Fig. 4).

In modeling of kernel color as the response variable with grain
carotenoid traits as predictors, the top-performing linear model
was a full model that included all eight carotenoid traits analyzed
in this study and a family term (the latter as a categorical vari-
able) (R2 ¼ 0.727; Supplementary Table 7). Models that included
this family term, which contains a unique identifier (or factor
level) for each of the 10 families included in this study, consis-
tently performed better than those with the same grain caroten-
oid traits as predictors that omitted the family term
(Supplementary Table 7). The second-best performing model
contained only lutein, zeaxanthin, total carotenoids, and the
family term (R2 ¼ 0.723; Supplementary Table 7). The random
forest performed almost identically to a linear model fit to the
same training and prediction sets (R2 ¼ 0.754 and 0.719, respec-
tively; Supplementary Fig. 3 and Table 8). The feature with high-
est importance in the random forest model was zeaxanthin
(0.27), followed by total carotenoids (0.19) and the other two
b-branch carotenoids: b-carotene and b-cryptoxanthin (0.16 and
0.08, respectively; Supplementary Fig. 3). Together, these results
suggest that zeaxanthin and total carotenoids are among the top
predictors of kernel color.

Discussion
This study identified QTL and marker-trait associations for eight
carotenoid traits and visually scored kernel color in 10 families of

the US maize NAM panel, and resolved nine of these QTL to indi-

vidual genes. While most of the identified genes have been previ-

ously noted as key players in carotenoid accumulation and/or

kernel color (Chandler et al. 2013; Owens et al. 2014, 2019;

Diepenbrock et al. 2021), noteworthy patterns of relevance to

breeding efforts for carotenoids and/or kernel color, particularly

in yellow to orange-grain maize populations, emerge from this

examination of both trait sets in the same quantitative genetics-

enabling experimental framework.
Within the precursor pathway, DXS has been found to be a

rate-limiting activity through genetic engineering and overex-

pression studies in Arabidopsis and E. coli (Harker and Bramley

1999; Estevez et al. 2001). While dxs2 has appeared to be the major

controller in maize—with PVEs of 3.5% to 11.3% for dxs2 and 1.2%

to 4.1% for dxs3 in the 25 NAM families (Diepenbrock et al. 2021)—

these ranges were more similar in the present study: 1.0% to 5.2%

for dxs2 and 2.2% to 3.3% for dxs3. This could be related to dxs2

having been found to be nearly fixed among yellow inbreds as ex-

amined in Fang et al. (2020). Nonetheless, the identification of

dxs2 and dxs3 for carotenoid traits in both the 10 and 25 US maize

NAM families, and for kernel color in the 10 families as well, sug-

gests that examination of and selection at dxs2 and/or dxs3 could

bring about further gains. mecs1 (encoding 2-C-methyl-D-erythri-

tol 2,4-cyclodiphosphate synthase, or MECS) was also identified

in this study for five carotenoid traits. MECS catalyzes the fifth

step in the MEP pathway, which provides precursors for biosyn-

thesis of carotenoids, tocochromanols (vitamin E-related com-

pounds, including tocopherols), and other plastidic isoprenoids.

Fig. 3. Heat map depicting correlations between untransformed BLUEs for carotenoid and kernel color traits in the 10 US maize NAM families examined
in this study. Trait abbreviations: phytofluene (PHYF), a-carotene (ACAR), lutein (LUT), zeinoxanthin (ZEI), total carotenoids (TOTCAR), b-carotene
(BCAR), kernel color (KCOL), b-cryptoxanthin (BCRY), zeaxanthin (ZEA).
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Markers proximal to mecs2—another homolog encoding MECS in
maize—were significantly associated with maize grain tocopherol
traits in a pathway-level analysis (i.e. only testing variants proxi-
mal to a priori candidate genes, rather than genome-wide var-
iants, in association analyses) (Lipka et al. 2013). Markers
proximal to a gene encoding this enzymatic step were also signifi-
cantly associated with grain zeaxanthin concentrations in a
GWAS and pathway-level analysis in sorghum (Cruet-Burgos
et al. 2020). In sum, these results indicate that DXS and MECS, po-
tentially among other control points in the MEP pathway, could
be of relevance in nutritional breeding efforts.

Phytoene synthase 1 (psy1) encodes the first and committed step
of carotenoid biosynthesis, and is a major controller of natural
variation in grain endosperm carotenoid levels (Zhu et al. 2008; Fu
et al. 2013; Diepenbrock et al. 2021). In this study, psy1 had the
largest PVE for total carotenoids and phytofluene, the second-
largest PVE for kernel color and b-cryptoxanthin, and third-larg-
est for lutein and zeaxanthin (with PVEs of 5.4 and 7.3%, respec-
tively; Fig. 2). This finding suggests that psy1 will continue to be
an important target for selection, even among populations with
yellow to orange grain (i.e. already possessing a functional allele
of psy1). lcyE, which encodes an enzyme acting at the main
branchpoint of the carotenoid pathway, is a major point of ge-
netic control for levels of compounds residing in the a- or b-path-
way branches (Harjes et al. 2008). lcyE exhibited the largest PVEs
observed for seven of the nine traits, including kernel color. lcyE
was notably not detected for TOTCAR. In combination with plei-
otropy results (Fig. 4), this suggests that its effect on kernel color
could largely be related to its effect on flux of substrate into the
two pathway branches. Within the a-branch, lut1 was identified
for zeinoxanthin (an intermediate in the reactions catalyzed by
the encoded enzyme) and lutein (the product of that enzyme),
which is consistent with previous findings (Owens et al. 2014;

Diepenbrock et al. 2021). lut1 was also found to exhibit negative
pleiotropy between zeinoxanthin and lutein (Supplementary Fig.
2). lut1 was the identified gene that was most specific to a-branch
compounds, without significantly affecting b-branch carotenoids,
total carotenoids, or kernel color. Within the b-branch, crtRB5
(encoding b-carotene hydroxylase) was identified for b-cryptox-
anthin and zeaxanthin. While crtRB1 has been the homolog more
frequently identified and characterized in previous studies, and
with larger effect (Yan et al. 2010; Owens et al. 2014; Suwarno et al.
2015; Diepenbrock et al. 2021), crtRB1 was not identified herein,
which could be due to the populations and allele frequencies in-
volved in this study. Further studies will need to examine the role
of crtRB1 with regards to the relationship between kernel color
and grain carotenoid traits. Finally, zep1 was identified in the pre-
sent study for four traits, including 20.3% PVE for zeaxanthin.
Examination of allele and haplotype frequencies and allele min-
ing for the nine genes identified in this study will be an important
next step in simultaneously optimizing kernel color and caroten-
oid traits in breeding populations.

The overall PVE ranking for kernel color in this study was lcyE
(17.5%), psy1 (12.5%), and dxs2 (2.4%) (Figs. 1 and 2). Of these, dxs2
exhibited several positive and no negative pleiotropic relation-
ships for the traits in this study (Fig. 4). psy1 exhibited a smaller
number of positive pleiotropic relationships, and one instance of
negative pleiotropy between b-cryptoxanthin and zeaxanthin
(Supplementary Fig. 2). lcyE was found to exhibit negative pleiot-
ropy between kernel color and a-branch carotenoids (and positive
between kernel color and b-branch carotenoids). Thus, if direct-
ing flux toward the b-branch of the carotenoid pathway is desir-
able, selecting on lcyE for kernel color could be advantageous.
Alternatively, if increased concentrations of certain a-branch
compounds, such as lutein, are also desired, it appears that dxs2
and psy1 could be used to improve kernel color (and lutein) with-
out imposing such tradeoffs. In that case, the allele to be selected
upon at lcyE could then be determined based primarily on the bal-
ance of a- and b-branch compounds that is optimal for human
nutrition in the desired use case. Notably, negative pleiotropy
was also observed within the b-branch for lcyE, which was not ob-
served in the 25 NAM families (Diepenbrock et al. 2021). It will be
important to monitor whether selection at lcyE within yellow- to
orange-grain breeding populations results in tradeoffs among b-
branch compounds—namely given that lcyE has been one of two
genes targeted in marker-assisted selection, and given the large
PVEs exhibited by lcyE for b-branch carotenoids (among other pri-
ority traits). Such tradeoffs could potentially be mitigated
through selection at other genes exhibiting large PVEs for b-
branch carotenoids (Fig. 2).

The three genes identified for kernel color in the present
study—lcyE, psy1, and dxs2—were also identified in Owens et al.
(2019). That study examined quantitative components of kernel
color (as specified in the three-dimensional CIELAB color system,
which uses pairs of color opponents) in 1,651 inbreds of the Ames
national maize collection via handheld colorimeter, and identi-
fied lcyE for hue angle (representative of perceived color), psy1 for
a* (greenness to redness), and dxs2 for both a* and hue angle. The
fourth gene identified at the genome-wide level in Owens et al.
(2019), for a*, was zep1, which was identified for three traits
herein but not for kernel color. While there were GWAS variants
for kernel color for which zep1 was in the 6250 kb search space
(Supplementary Table 9), an individual-trait JL-QTL interval was
not identified for kernel color in the vicinity of zep1 in RefGen_v4
coordinates (Supplementary Table 6). Intervals were identified
for kernel color in RefGen_v2 coordinates that contained zep1

Fig. 4. Significant pleiotropy (a¼ 0.05) observed for JL-QTL resolved to
individual genes, between kernel color and one or more carotenoid traits
in this study. Blue lines indicate positive pleiotropy, whereas red lines
indicate negative pleiotropy. Trait abbreviations: phytofluene (PHYF),
a-carotene (ACAR), lutein (LUT), zeinoxanthin (ZEI), total carotenoids
(TOTCAR), b-carotene (BCAR), kernel color (KCOL), b-cryptoxanthin
(BCRY), zeaxanthin (ZEA).
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(PVE 3.0%) as well as dxs3 (PVE 4.3%), but one support interval
bound for each of these intervals uplifted to a contig rather than
to the same chromosome (Supplementary Table 6), such that
those intervals were not included in downstream analyses.
Future studies involving these two genes could likely still benefit
from continued monitoring of potential impacts on kernel color.

The Chandler et al. (2013) study that initially identified QTL for
the visually scored kernel color trait examined herein, using
1,104 genetic markers and without having grain carotenoid data
in the 10 families, also identified lcyE (PVE of 38.3%) and psy1
(20.7%) as well as zep1 (6.6%) and ccd1 (8.7%). A JL-QTL support in-
terval was detected in the present study for kernel color (PVE
2.9%) which contained the ccd1-r progenitor locus. However, there
were not significant marker-trait associations for kernel color
within that interval (rather, on either side), such that the interval
was not resolved to the gene level. The macrotransposon inser-
tion site containing a tandem number of copies of ccd1, located
1.9 Mb upstream of the ccd1-r progenitor site (Tan et al. 2017), was
identified in this study with moderate PVEs for lutein and total
carotenoids. Given the multiple evident signals and somewhat
dispersed nature thereof, further examination of White Cap and
the ccd1-r progenitor region is merited in breeding populations,
including those having yellow to orange grain. Colorimetric
examinations of kernel color could additionally be helpful in fu-
ture efforts, for purposes of distinguishing the effects of
genomics-assisted breeding efforts for orange, carotenoid-dense
maize on multiple quantitative components of kernel color—
namely a* and hue angle, for which genetic associations were
detected in Owens et al. (2019), as well as other traits quantified
in the CIELAB color system, such as chroma (i.e. color saturation
or intensity). An examination of zeaxanthin-biofortified sweet
corn found hue angle to decrease from 90� (noted as yellow) to
75� (noted as yellow-orange) with increasing concentrations of b-
branch carotenoids (O’Hare et al. 2015).

Pigment color is a signature feature of different carotenoids,
and is directly mediated by desaturation reactions occurring
throughout the biosynthetic pathway (Bartley and Scolnik 1995;
Mel�endez-Mart�ınez et al. 2007; Khoo et al. 2011). Namely, increas-
ing the number of conjugated double bonds affects the chromo-
phore comprising the carotenoid backbone and determines the
exact wavelengths of light that it is able to absorb and emit
(Bartley and Scolnik 1995; Mel�endez-Mart�ınez et al. 2007; Saini
et al. 2015). Generally, carotenoids that carry more conjugated
double bonds (such as lycopene) maximally absorb longer wave-
lengths of light and are deeper in hue than other carotenoids
such as phytoene and phytofluene, which have only three and
five conjugated double bonds, respectively, and are effectively
colorless. Indeed, zeaxanthin contains 11 conjugated double
bonds and appears as a deeper orange color relative to lutein,
which has 10 conjugated double bonds and emits a more yellow
color (Bartley and Scolnik 1995; Mel�endez-Mart�ınez et al. 2007;
Khoo et al. 2011). This trend is consistent for the other b- and
a-branch compounds examined herein: b-carotene and b-cryp-
toxanthin have a carbon backbone of 11 conjugated double bonds
and appear more yellow-orange in hue compared to a-carotene
and zeinoxanthin, which contain only 10 conjugated double
bonds and are paler yellow carotenoids (Mel�endez-Mart�ınez et al.
2007; Khoo et al. 2011).

It is thus not surprising that kernel color was more strongly
correlated with b-branch carotenoids in these populations with
yellow to orange grain. The results of this study indicate that
zeaxanthin was the primary driver of this relationship, given its
feature importance in the random forest model (0.27, compared

to 0.16 and 0.08, respectively, for each of the other two b-branch
compounds analyzed herein: b-carotene and b-cryptoxanthin;
Supplementary Fig. 1), and its higher abundance compared to—
and positive correlations with—these two compounds. Negligible
correlations between kernel color and a-branch carotenoids were
less expected. At least weak correlations could have been feasi-
ble, given the abundance of lutein in grain of diverse maize acces-
sions (Owens et al. 2014) and its moderate positive correlation
(r¼ 0.49) with total carotenoids as observed in the present study.
Stronger relationships between kernel color and a-branch carote-
noids than those observed in this study could likely be expected if
white-endosperm lines were also to be included in the popula-
tions under examination.

The random forest model performing almost identically to the
linear model for prediction of kernel color via grain carotenoid
traits suggests a linear relationship between carotenoid traits
and kernel color in the populations examined herein. Zeaxanthin
and total carotenoids were identified as top predictors of kernel
color both in the best-performing linear models and in the ran-
dom forest feature importance analyses. Sweet corn lines with
higher zeaxanthin (and more generally, b-branch carotenoid) lev-
els were also found to have a deeper orange perceived kernel
color (in the form of hue angle; O’Hare et al. 2015). Together, these
results suggest that breeding for zeaxanthin would also be a via-
ble method to breed for orange kernel color in maize. This tan-
dem improvement is aligned with breeding priorities to increase
concentrations of zeaxanthin and lutein alongside provitamin A,
as priority carotenoids for human health. Development of
markers to be used in marker-assisted selection for a larger num-
ber of the identified genes—particularly those identified for mul-
tiple priority traits—could provide additional relevant targets for
marker-assisted selection to complement markers already devel-
oped and deployed for lcyE and crtRB1 (Prasanna et al. 2020).
Further, given the identification of several relevant genes (and
the potential for smaller-scale effects throughout genetic back-
grounds), genomic prediction/selection approaches could be a
next step to drive genetic gain for carotenoid traits and kernel
color in breeding programs. Genomic prediction approaches for
grain carotenoid traits have appeared viable upon testing in a
largely temperate maize inbred diversity panel (Owens et al.
2014).

Finally, kernel hardness (or vitreousness, rather than opacity)
is an important agronomic and processing trait, and is also a rele-
vant consideration with regards to carotenoids and kernel color.
A nonfunctional allele of crtRB1—a gene not identified herein—
was recently found to confer kernel opacity (Wang et al. 2020).
dxs2 and seed carotenoid deficient 1 (which encodes the enzymatic
step downstream of that encoded by mecs1, identified herein)
were detected as modifiers in that background, as they conferred
altered endosperm color and kernel vitreousness (Wang et al.
2020). zep1, also identified herein, was additionally detected in
that study as a candidate modifier for kernel vitreousness in that
background. Notably, kernel hardness (which corresponds to
greater transmission of light) has also been found to affect per-
ceived kernel color (Saenz et al. 2020, 2021). Linear models pre-
dicting kernel color from grain carotenoid traits were found in
the present study to have R2 of 0.65 to 0.66 without a family term,
and 0.71 to 0.73 with a family term. These results indicate that
grain carotenoid traits are moderately predictive of kernel color.
Kernel hardness and other physical/structural properties may ex-
plain some of the remaining phenotypic variation for kernel
color. Examination of ground kernels (or flour) in future studies
would partially remove this potential confound arising from
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physical/structural relationships and could be of relevance to ad-
ditional use cases for maize grain. When improving grain carot-
enoid traits and whole-grain kernel color in tandem, including
through selection at one or more of the genes identified in this
study, it would be helpful to monitor kernel hardness, both to en-
sure maintenance of this important trait and to further improve
our understanding of relationships between the abundance/com-
position of grain carotenoid traits and final perceived kernel
color, in breeding populations and developed maize varieties.

Conclusion
This study simultaneously investigated the genetic basis of grain
carotenoid traits and visually scored kernel color, in the same ex-
perimental framework (field environments and populations).
Nine genes were identified for these traits, which encode activi-
ties in the precursor and core carotenoid pathways as well as ca-
rotenoid degradation. The genetic and phenotypic relationships
dissected herein provide additional refinement—including key
genes, relevant synergies and tradeoffs, and other potential look-
out points—for breeding of orange, carotenoid-dense maize, in-
cluding from germplasm pools having yellow to orange grain.

Data availability
The data underlying this study are available as supplementary
material. Specifically, Supplementary Table 2 contains the trans-
formed and untransformed best linear unbiased estimators
(BLUEs); Supplementary Table 3 contains the 0.1 cM consensus
genetic linkage map used in JL analysis; Supplementary Table 4
reports the JL-QTL allelic effect estimates nested within family;
Supplementary Tables 5 and 6 report the JL results;
Supplementary Table 9 reports the GWAS results; and
Supplementary Table 10 contains the list of a priori candidate
genes. Scripts used in this study are available in Zenodo at
https://doi.org/10.5281/zenodo.5774515. Supplementary material
is available at figshare: https://doi.org/10.25387/g3.17298446.
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