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Characterization of gene expression 
profiles in HBV-related liver 
fibrosis patients and identification 
of ITGBL1 as a key regulator of 
fibrogenesis
Mingjie Wang1, Qiming Gong2, Jiming Zhang3, Liang Chen4, Zhanqing Zhang4, Lungen Lu5, 
Demin Yu1, Yue Han1, Donghua Zhang1, Peizhan Chen6, Xiaonan Zhang4, Zhenghong Yuan7, 
Jinyan Huang8 & Xinxin Zhang1,6

Although hepatitis B virus (HBV) infection is the leading cause of liver fibrosis (LF), the mechanisms 
underlying liver fibrotic progression remain unclear. Here, we investigated the gene expression profiles 
of HBV-related LF patients. Whole genome expression arrays were used to detect gene expression in 
liver biopsy samples from chronically HBV infected patients. Through integrative data analysis, we 
identified several pathways and key genes involved in the initiation and exacerbation of liver fibrosis. 
Weight gene co-expression analysis revealed that integrin subunit β-like 1 (ITGBL1) was a key regulator 
of fibrogenesis. Functional experiments demonstrated that ITGBL1 was an upstream regulator of LF 
via interactions with transforming growth factor β1. In summary, we investigated the gene expression 
profiles of HBV-related LF patients and identified a key regulator ITGBL1. Our findings provide a 
foundation for future studies of gene functions and promote the development of novel antifibrotic 
therapies.

Approximately 240 million people are chronically infected with hepatitis B virus (HBV), and more than 780,000 
people die each year, owing to complications of hepatitis B, including HBV-related fibrosis, cirrhosis and hepa-
tocellular carcinoma1. HBV-related mortality is especially a problem in Asia because of the higher prevalence of 
hepatitis B2.

Liver fibrosis is characterized by the perpetuation of the normal wound-healing response, thus resulting in the 
increased synthesis and deposition of extracellular matrix (ECM) within the injured tissue. Emerging evidence 
has indicated that host genetic3, virological4 and immunological factors5,6 influence liver fibrotic progression. To 
investigate the correlation between host/virus factors and gene expression, 124 HBV-related LF patients were 
enrolled in this study on the basis of their clinical traits, including histopathologic score, virological, and bio-
chemical markers.

Fibrogenesis is a complex process involving a number of different cells, including hepatocytes, hepatic stel-
late cells (HSCs) and immunocytes. Activation of HSC and transdifferentiation into myofibroblast-like cells are 
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considered the key steps in liver fibrosis5. HSC activation is primarily driven by fibrogenic cytokines and growth 
factors released by activated inflammatory cells and epithelia cells (including hepatocytes and cholangiocytes) 
among which TGFβ 1 is the most prominent regulator6. Many genes participate in fibrogenesis through interac-
tions with the TGFβ  signaling pathway, among which integrins are crucial. Integrins are cellular receptors that 
consist of an α  and a β  subunit and form at least 24 different dimers that mediate cell-cell and cell-ECM interac-
tions7. Studies have demonstrated that integrins play important roles in fibrogenesis6. During biliary fibrosis pro-
gression, integrin α  vβ 6 is strongly upregulated in cholangiocytes and drives fibrogenesis via TGFβ 1 activation8.

In the present study, we focused on gene functions and gene-gene correlations on the basis of expression data 
from HBV-related LF patients. Several hub genes and pathways highly related to fibrotic progression were dis-
covered, among which integrin subunit β  like 1 (ITGBL1) was identified as a key regulator. The functional roles 
of ITGBL1 were clarified by using in vitro experiments, which showed that ITGBL1 promotes HSC activation 
and liver fibrosis by upregulating TGFβ 1. These findings demonstrate a pathological role of ITGBL1 and provide 
essential statistical evidence for further research on HBV-related liver fibrosis which may facilitate the develop-
ment of novel antifibrotic therapies.

Results
Global view of gene expression patterns associated with clinical traits. After removal of non-an-
notated, nonspecific and redundancy duplicated probe sets, 21,651 of 54,675 probe sets were filtered out. The 
normalized intensity values of these probes were used for unsupervised hierarchical clustering. A total of 13 clin-
ical traits of each patient were also measured, including histological scores, liver and serum virological markers 
and serum biochemical markers. Liver biopsy is considered to be the “gold standard” for the diagnosis of fibrosis, 
and sequential histological staging of fibrosis (Scheuer score ‘S’) and grading of inflammation (Scheuer score ‘G’) 
can be used to assess disease progression2. Virological markers including HBV DNA, hepatitis B surface anti-
gen (HBsAg), hepatitis B surface antibody (HBsAb), hepatitis B e antigen (HBeAg), and hepatitis B e antibody 
(HBeAb) are widely used to monitor viral activity and direct antiviral therapy. The biochemical markers alanine 
amino transaminase (ALT) and aspartate amino transaminase (AST) have also been widely used to assess liver 
inflammation and function. The clinical traits of each patient are listed in Supplementary Table S1.

Unsupervised clustering of the gene expression in 124 HBV-related LF patients identified 7 subgroups (SG1 
to SG7) on the basis of sample clustering (Fig. 1). To further investigate the relationship between clinical traits 
and sample clustering, Pearson’s correlation test was used to determine whether the associations between sample 
subgroups and clinical parameters were significant. The results showed that Scheuer score was most significantly 
related to sample subgrouping (P =  1.26 ×  10−8 with fibrosis stages and P =  2.70 ×  10−7 with inflammation grades, 
Pearson’s correlation test). Age, ALT and AST were also related to sample subgroups, although the significances 
of age (P =  0.01), ALT (P =  9.95 ×  10−5) and AST (P =  1.80 ×  10−3) were weaker than that of the Scheuer score. 
This result is consistent with the frequent clinical application of age and ALT/AST in FIB-4 and Forn’s index for 
noninvasive fibrosis prediction and diagnosis9. To validate the subgrouping of the samples, a principal component 
analysis (PCA) was performed to analyze the association between the gene expression profile and the subgroups 
defined by unsupervised hierarchical clustering. PCA revealed 7 distinct clusters (Supplementary Figure S1). PC1 
and PC2 explained 99.99% of the total variance. The correlation significance between PC1, PC2 and subgrouping 
(SG1 to SG7) was measured using Pearson’s test (P =  2.20 ×  10−16).

Differential expression showed dynamic changes with disease progression. As liver histolog-
ical Scheuer Score has been demonstrated to afford the most relevant assessment of fibrosis and inflammation, 
it was then applied to screen for differentially expressed genes (DEGs) between different stages of liver fibrosis 
and inflammation. For liver fibrosis, we analyzed 43 samples in S0, 20 samples in S1, 18 samples in S2, 33 sam-
ples in S3 and 10 samples in S4. For inflammation, 37 samples in G0, 33 samples in G1, 34 samples in G2, 15 
samples in G3 and 5 samples in G4 were analyzed and compared in a pairwise manner. All DEGs are listed in 
Supplementary Table S2. We observed that more DEGs were upregulated in advanced levels than in mild levels 
(Fig. 2), which may due to the activation of multiple pathways regulating cell responses to injury2. Interestingly, 
we also observed recurrently downregulated genes across stages, thus indicating their potential negative regula-
tion of liver fibrosis. The numbers of up- and downregulated DEGs increased with histological score, except for 
inflammation grade 4, thus indicating a dynamic change related to disease progression. The number of DEGs 
related to fibrosis reached the maximum value at S4, whereas the number of DEGs related to inflammation 
peaked at G3.

Surprisingly, although we used accommodative filtration criteria that did not rely heavily on statistical sig-
nificance (P value), no DEGs were screened between certain comparisons. Notably, almost no DEGs satisfied 
the filtering criteria when S0 was compared with S1 and G0 was compared with G1, indicating that fibrogenesis 
related genes were not significantly up- or downregulated in mild levels, a result consistent with clinical practices. 
According to several guidelines10,11, fibrosis scoring lower than S2 are regarded as “mild level”.

ITGBL1 was highly associated with fibrosis stages. Linear regression models were constructed 
using expression values and histological scores, from which P-values and R-squared values were derived. Genes 
with P <  0.01 (Benjamini-Hochberg (BH) adjusted) were considered to be highly associated with disease sever-
ity. A total of 3,279 probe sets (2,022 genes) were screened (Supplementary Table S3), among which ITGBL1 
showed the most significant P-value (< 1 ×  10−16) and highest R-squared value (0.5131) with fibrosis stages. To 
validate the expression of ITGBL1 measured by microarrays, quantitative real-time polymerase chain reaction 
(qRT-PCR) was used to amplify and quantify the expression of ITGBL1 in HBV-related LF patients. As shown 
in Supplementary Figure S3, ITGBL1 expression was highly associated with Scheuer scores and the results were 
consistent with microarray results. The expression values and fitting curves of ITGBL1, doublecortin domain 
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containing 2 (DCDC2), platelet derived growth factor D (PDGFD), and ETS homologous factor (EHF) which 
are highly associated with fibrosis stage and signal transducer and activator of transcription 1 (STAT1), C-X-C 
motif chemokine ligand 10 (CXCL10), C-X-C motif ligand 9 (CXCL9), fibrinogen like 2 (FGL2) which are highly 
correlated with inflammation grade are shown in Fig. 3. Among these top-ranked genes, the pathological roles of 
PDGFD, STAT1, CXCL10 and CXCL9 in liver fibrosis and inflammation have been described12–15. The inhibitory 
functions of FGL2, including the regulation of Tregs in CHB patients and the reduction of HCC angiogenesis, 
have also been reported16.

Interestingly, the expression of some genes was highly negatively correlated with disease severity, implying 
potential negative regulation effects on fibrogenesis. For example, the expression of Glycine-N-Methyltransferase 
(GNMT) was downregulated as fibrosis and inflammation progressed. Studies have reported the downregula-
tion of GNMT in cirrhotic patients (from hepatitis C virus (HCV) and alcoholic steatohepatitis (ASH) etiolo-
gies)17 and this downregulation promotes a proinflammatory environment in the early stages of non-alcoholic 
steatohepatitis (NASH)18. On the basis of the pathogenetic mechanisms introduced by GNMT deficiency, novel 
anti-fibrosis compounds have been discovered19, thus suggesting the potential clinical value of these downreg-
ulated genes. Notably, several hormone metabolism relevant genes have been found to have a significantly neg-
ative association with liver fibrosis, including steroid 5 alpha-reductase 2 (SRD5A2), and the cytochrome P450 
gene family (Supplementary Figure S2). These genes are major enzymes sequentially participating in pathways of 

Figure 1. Unsupervised hierarchical clustering showed significant patterns with clinical traits. 
Unsupervised hierarchical clustering was performed on the basis of the expression values of 21,651 probe 
sets. The rows in the heatmap indicate the gene expression values and the columns indicate the 124 samples 
examined. The bottom color panels show the 13 clinical traits of each patient. Different types of clinical traits 
were divided into separated boxes. The clustering of samples and the column dendrogram showed 7 significant 
subgroups (SG1 to SG7). The colors corresponding to the scales bars and traits are shown on the left.
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estrogen and androgen biosynthesis and inactivation; they also participate in HCV-related liver cirrhosis, particu-
larly the proteins in the cytochrome P450 gene family20,21.

TGFβ signaling and epithelial mesenchymal transition (EMT) played important roles in initi-
ating and promoting fibrotic progression. To get further insight into the biological roles of pathways, 
gene set enrichment analysis (GSEA) was performed. Samples were separated into 4 levels according to the above 
results and previous guidelines10,22,23. S0 and S1 (G0 and G1) were regarded as mild levels, S2 (G2) was regarded 
as a moderate level, S3 (G3) was regarded as a severe level, and S4 (G4) was regarded as the end stage. Significantly 
enriched gene sets (SEGSs) between the two adjacent stages were screened with the filter criterion false discovery 
rate (FDR) < 0.05. To identify the pathways participated in the initiation of the fibrotic progress, we performed 
GSEA based on fibrosis stages S0, S1 versus S2, and found that inflammation-relevant pathways, including the 
IFNγ  response, TNFα  signaling, and IL2 STAT5 signaling were activated and enriched with high enrichment 
score (ES) and normalized enrichment score (NES) (Fig. 4e). The gene sets involved in cell growth, cell prolifer-
ation, and transformation were also significantly enriched when inflammation progressed (Fig. 4f). Comparing 
the SEGS related to fibrosis with those related to inflammation, we observed that the majority of SEGSs were 
identical whether in fibrosis stages or inflammation grades. This result indicated that fibrotic and inflammation 
progression interact with each other, thus constituting an integrated biological process.

Next, SEGSs in different stages were intersected to highlight the crucial gene sets throughout fibrotic progres-
sion. Surprisingly, the results showed that only 1 gene set, TGFβ  signaling, was significantly enriched from mild to 
end stage liver fibrosis (Fig. 4a,b). We applied the same SEGSs screening strategy for liver inflammation grading. 
Interestingly, also only a single gene set, epithelial mesenchymal transition (EMT), was significantly enriched 
during inflammation progression (Fig. 4c,d). HSCs play a crucial role in liver fibrosis, although the origin of these 
mesenchymal cells remains controversial. One hypothesis suggests bone marrow derived progenitor cells whereas 
another favors EMT in the local formation from hepatic epithelium. The results of present study indicated that 
EMT was crucial in transforming epithelial cells into activated mesenchymal cells.

Gene modules associated with disease severity were identified by weighted gene coexpression 
network analysis (WGCNA). To identity discrete groups of co-expressed genes associated with disease 
severity and to integrate the observed expression differences into a higher system level context, we constructed a 
weight gene co-expression network using normalized expression value of 21,651 selected genes (see methods of 
unsupervised hierarchical clustering).

The genes were grouped into 22 well-defined co-expression modules by using the TOM algorithm 
(Supplementary Figure S4). The modules were named after different colors according to the WGCNA conven-
tions24. To validate the accuracy and conservation of these gene modules, 60 samples (validation set) were ran-
domly selected from 122 samples (training set, 2 outliers removed) and used for module preservation simulation 
with 200 permutations. The results indicated that module preservation in the validation samples was highly con-
sistent with the modules we identified in the training set (Supplementary Figure S4, Supplementary Table S4). 
Only module royalblue exhibited inferior preservation lower than 20, whereas the other modules, particularly 
modules turquoise, red and pink exhibited Z summaries higher than 40.

Co-expression networks facilitate the analysis of gene expression variations associated with multiple 
disease-related traits. We assessed the module eigengene relationship with clinical traits of each patient, thus pro-
viding a complementary assessment of these potential confounders (Supplementary Figure S5). Notably, modules 
turquoise and darkgreen were positively associated with Scheuer scoring whereas modules pink and red were 
negatively related. These four modules were also associated with ALT/AST but not any of the other potential 
confounding variables.

Figure 2. Number of DEGs among different histological stages and grades. The number of DEGs was 
calculated for each fibrosis stages (a) and inflammations grades (b) and are visualized using a heatmap. 
Upregulated genes are shown in yellow to red in the upper section, and downregulated genes are shown in 
lightblue to darkblue in the lower section. The intensity of the background colors corresponds to the number of 
DEGs.



www.nature.com/scientificreports/

5Scientific RepoRts | 7:43446 | DOI: 10.1038/srep43446

To further investigate the relationship between gene expression and fibrosis stages and to validate the confi-
dence of trait-significant modules, a Student’s t test (two sides, P-value adjusted by BH procedure) was performed. 
The results showed highly similar clustering patterns corresponding to trait-significant modules turquoise, pink, 
red and darkgreen. Interestingly, the gene expression patterns at S0 and S1 were highly different from those 
observed at S2, S3 and S4. As shown in Supplementary Figure S4b, the genes corresponding to module turquoise 
were negatively enriched in S0 and S1, whereas a positive association with S2, S3 and S4 was also observed. This 
result provided direct genetic evidence supporting clinical practices in which S1 is regarded as indicating a mild 
level similar to S0.

The expression levels of each module were summarized according to the first principal component (referred 
to the module eigengene), and these results were used to assess whether the modules were associated with clinical 
phenotypes. Modules turquoise and darkgreen exhibited elevated expression in advanced fibrosis, whereas mod-
ules pink and red exhibited higher expression in mild fibrosis (Fig. 5).

The biological characteristics of the identified modules were tested using the existing data on protein-protein 
interactions in the STRING database. Twenty out of the 22 modules showed significant enrichment in inter-
actions (P <  0.01), thus suggesting that the modules identified in the present study are biologically relevant 
(Supplementary Table S5). Additionally, trait-significant modules showed the highest average node degree 
(AND), particularly modules turquoise (AND =  17.5) and darkgreen (AND =  13.3).

Gene ontology (GO) enrichment of trait-significant modules were performed to further investigate the gene 
functions. The majority of the genes in the turquoise module were enriched for GO categories related to signal 
transduction and chemokine, and cytokine activity. The genes in darkgreen module were primarily related to 
genetic molecular synthesis and modification (Fig. 5a,b). Notably, the majority of the GO terms enriched in 
modules pink and red were related to physiochemical metabolism and steroid dehydrogenase activity (Fig. 5c,d), 
a result consistent with above results in the trend test.

ITGBL1 was identified as a key regulator of fibrogenesis. A further advantage of WGCNA is that this 
technique enables the identification of hub genes on the basis of intramodular connectivity and network topo-
logical structure24. To identify hub genes with high confidence, multiple algorithms were measured to evaluate 
the hub score of each gene within the relevant modules (Supplementary Table S6). Among all the modules, the 
turquoise module showed a highly significant association with fibrosis and inflammation levels (P =  1 ×  10−09 for 
fibrosis stages and P =  1 ×  10−10 for inflammation grades). As shown in Fig. 5a, the hub genes with the highest 
rank of the turquoise module were ITGBL1, TGFβ 1, C-X-C motif chemokine receptor 4 (CXCR4), and STAT1, 
among which ITGBL1 was identified as a key regulator with the highest intramodular connectivity (kWithin 
equal to 0.9499). TGFβ 1, STAT1, and CXCR46,13,25 have previously been implicated in liver fibrosis. The hub 
gene of additional modules highly associated with fibrosis stages, including modules darkgreen, pink and red 
are shown in Fig. 5b,c and d. To further explore the function of ITGBL1 in non HBV-related LF patients, the 
expression of ITGBL1 in 12 LF patients with ASH, NASH or chronic HCV infection were measured. As shown 
in Supplementary Figure S6, the expression of ITGBL1 showed none significant statistical difference between 
HBV-related and non HBV-related LF patients. This result indicated that ITGBL1 was not a specific regulator in 
HBV-related LF patients, it might also be crucial in non HBV-related LF patients.

Figure 3. Top 4 highly related genes identified by trend test. Lineage regression models were constructed 
to evaluate the relationship between gene expression and histological scoring. Box plot and fitting curve with 
a 95% CI were drawn to illuminate the trend of expression value changes. The x-axis corresponds to different 
groups, and y-axis corresponds to normalized expression value. R-squared values and P-values of regression 
models were also implied. (a) ITGBL1, DCDC2, PDGFD and EHF were identified as the top 4 genes highly 
associated with fibrosis staging. (b) STAT1, CXCL10, CXCL9 and FGL2 were identified as the top 4 genes highly 
associated with inflammation grading.
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Studies have previously that ITGBL1 is an upstream activator of the TGFβ  signaling pathway in breast cancer 
bone metastasis and promotes cell migration and adhesion though interactions with TGFβ 126. To determine 
whether ITGBL1 plays a key role in fibrogenesis and to examine its interaction with TGFβ 1, cDNA expression 
plasmid of ITGBL1 was transfected into Huh7 and HepG2 cell lines. The protein expression detected by western 
blotting is shown in Fig. 6. The expression of TGFβ 1 was significantly upregulated in Huh7 cells with an increas-
ing amount of transfected ITGBL1 plasmid, as shown in Fig. 6a (P <  0.01), and the same effect was observed in 
HepG2 cells (Fig. 6b). To further demonstrate the effect of ITGBL1 on HSC activation and ECM deposition, 
human stellate cell line LX-2 was used and treated with condition medium from hepatocytes transfected with 
ITGBL1 expression plasmid. The result showed that elevated ITGBL1 significantly up-regulated α -SMA expres-
sion (Fig. 6c,d, P <  0.01) and promoted HSC activation.

Discussion
Viral hepatitis is the dominant etiology of liver fibrosis. However, the gene expression profile of HBV-related liver 
fibrosis based on a large cohort of patients has not been studied yet. In the present study, 124 treatment naive 

Figure 4. Gene sets TGFβ signaling and EMT played crucial roles in disease progression. (a) Venn plot 
showing the intersection of enriched gene sets through fibrosis progress. A total of 36, 12 and 16 gene sets were 
significantly enriched in comparisons between S0, S1 and S2; S2 and S3; and S3 and S4, respectively. Only TGFβ  
signaling was significantly enriched in all three comparisons. (b) Gene set TGFβ  signaling mapping the details 
between different fibrosis stages. (c) Venn plot showing the intersection of enriched gene sets as inflammation 
progressed. A total of 37, 14 and 6 SEGSs were identified. Only one SEGS was identified in the intersection, 
referring to the epithelial-mesenchymal transition. (d) Mapping details of EMT across inflammation grades.  
(e) SEGSs identified when compared mild level fibrosis S0, S1 with S2. (f) SEGSs identified when comparing 
mild level inflammation G0 and G1 with G2. In e and f, the blue bar represents the ES, and the red bar 
represents the NES. EMT and TGFβ  are highlighted in red.
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patients were enrolled from multiple centers, and liver biopsy samples with detailed clinical traits were collected. 
Fibrosis is considered a complex biological process involving extensive genes and pathways. To investigate gene 
functions and gene-gene correlations, the expression profile of each patient was obtained.

We performed unsupervised hierarchical clustering and PCA to determine the relationship of various host/
virus factors with fibrotic progression. The associations between clinical traits and expression profiles indicated 
that gene expression in chronically HBV infected LF patients was highly correlated with pathological Scheuer 
scores. Although biopsy is prone to considerable sampling variability27,28, it still shows higher specificity than the 
other markers. Subsequent analyses were then performed on the basis of Scheuer scores, including differential 
expression analysis. Notably, patients with inflammation grade 4 (G4) showed no significant up- or downregu-
lated DEGs compared with other grades, a result probably reflecting the specific T cell exhaustion in adaptive 
immunity toward HBV infection29.

Although liver biopsy is a reliable standard for detecting histological change and guiding clinical therapy, the 
invasiveness and high risk of this technique for coagulopathy impediment patients remain problematic. Several 

Figure 5. Significant modules identified by using WGCNA. The network of hub genes, eigengene expression 
and GO enrichment of the modules turquoise (a), darkgreen (b), pink (c) and red (d) are shown. In the 
network, node size corresponds to intramodular connectivity values (kWithin). Eigengene expression less than 
0 is shown as gray bars, and bars with values more than 0 are filled with the color of the module. The samples 
are divided into 5 groups by dotted lines on the basis of fibrosis stage. The bars in the GO enrichment results 
represent the −log10 (P-value) and the lines represent the gene counts within a GO term.
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indices, such as APRI, FIB-4, GPR, RPR, and Forn’s index, have previously been developed for noninvasive diag-
nosis; however, the performances of these indices differs. Thus, novel predictive models should be developed. 
Liver injury consistently accompanies continuous cell apoptosis and necrosis; subsequently, cellular compo-
nents are released from disrupted cells, thereby producing relevant gene products detectable in patient sera. We 
screened 2,022 genes whose expression was highly correlated with disease severity by using trend test. With the 
rapid development of liquid biopsy and other sensitive technologies, these genes may be used as promising bio-
marker candidates.

The results of differential expression analyses and trend tests revealed that anti-fibrotic mechanisms played 
important roles in fibrosis progression. STAT1 is an important negative regulator in liver fibrosis. The activation 
of STAT1 attenuates liver fibrosis through the inhibition of HSC proliferation, attenuation of TGFβ  signaling, and 
stimulation of the NK cell killing of HSCs13. STAT1 expression was upregulated with fibrosis progression, thus 
indicating the existence of certain active endogenous anti-fibrosis mechanisms in hepatic cells. Another gene 
procollagen C-Endopeptidase enhancer 2 (PCOLCE2) shows lower expression in advanced stages of fibrosis 
and inflammation than in early stage. PCOLCE2 encodes a functional procollagen C-proteinase enhancer30 and 
participates in the degradation of the extracellular matrix pathway. In general, genes with anti-fibrotic functions 
are simultaneously activated after the initiation of fibrosis progression to protect host from advanced injury. The 
function of these genes should be further investigated, because they might play crucial roles in maintaining host 
fibrosis/anti-fibrosis equilibrium homeostasis under physiological circumstances or otherwise promote fibrotic 
progression under pathological conditions.

A WGCNA was performed to identify trait-significant modules and hub genes. Module lightyellow was 
considered as the “inner control” to demonstrate the accuracy of module identification and hub gene screen-
ing. Module lightyellow was extremely highly associated with gender (P-value =  2 ×  10−49, correlation equal to 
0.92). Several aspects of this module were investigated. First, the genome location of each gene within module 

Figure 6. ITGBL1 upregulates expression of TGFβ1 and promotes HSC activation. Western blotting 
of TGFβ 1, ITGBL1 and β -actin in (a) Huh7 cell line and (b) HepG2 cell line. Transfection reagent without 
plasmids was used as a blank. 0 μ g: 0 μ g of ITGBL1 and 2 μ g of Mock; 1 μ g: 1 μ g of ITGBL1 and 1 μ g of Mock; 
2 μ g: 2 μ g of ITGBL1 and 0 ug of Mock. Western blotting of α -SMA and β -action in LX-2 cells treated with 
condition medium from (c) Huh7 cell line and (d) HepG2 cell line. Mock: Condition medium from hepatocytes 
transfected with Mock plasmids; ITGBL1: Condition medium from hepatocytes transfected with ITGBL1 
cDNA expression plasmids (n =  3, **P <  0.01, NS not significant, Student’s t-test).
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lightyellow was retrieved. Nearly half of the genes (28/61) were located in chromosome X or Y. Second, GO anal-
ysis of this module showed that chromatin modification and chromosome organization were the top-ranked GO 
terms. Third, among the hub genes screened, two genes (XIST and TSIX) were well-known non-coding RNAs 
relevant to chromosome X inactivation31,32.

ITGBL1 was identified as the highest ranked hub gene related to fibrosis stage by WGCNA and its interaction 
with TGFβ 1 in hepatocytes was demonstrated by using in vitro experiments. The GSEA results identified the 
TGFβ  signaling pathway as a key regulator of fibrogenesis. Therefore, elevated expression of ITGBL1 suggests that 
hepatocytes might activate the TGFβ  signaling pathway by upregulating ITGBL1 and subsequently promoting 
HSC activation in HBV-related LF patients.

There were some inevitable limitations of the present study. For patient enrollment, the patients at different 
fibrosis stages were not equivalent and more patients at advanced fibrosis stages were needed. With the emergence 
and extensive application of noninvasive diagnostic technologies, such as FibroScan, the use of liver biopsy for 
fibrosis diagnosis is decreasing rapidly, thus making it difficult to collect liver biopsy samples. In addition, severe 
liver fibrosis and inflammation are consistently accompanied by decompensated liver dysfunctions, so percu-
taneous puncture into the liver might cause severe visceral hemorrhage. Second, additional in vivo and in vitro 
experiments are needed to further study the functions of the hub genes.

In conclusion, in the present study, we investigated the whole genome expression profiles of HBV-related liver 
fibrosis patients and determined the association of gene expression patterns with different clinical traits. Several 
pathways, including the TGFβ  signaling and epithelial mesenchymal transition were demonstrated to play crucial 
roles in fibrotic progression. Significantly related genes were screened that may potentially be used as biomarkers 
of hepatic pathogenesis and therapeutic targets for anti-fibrosis therapies. Among the associated genes, we also 
identified ITGBL1 as a hub gene in fibrogenesis and clarified its functional role with TGFβ 1.

Methods
Study subjects. Liver biopsy samples from 136 chronically HBV infected patients were obtained. Among 
the recruited patients, 124 patients were admitted to Shanghai Ruijin Hospital, Shanghai Huashan Hospital, 
Shanghai Public Health Clinical Center and Shanghai General Hospital between 2009 and 2011, and 12 patients 
were admitted to Shanghai Ruijin Hospital in 2016. Liver biopsy samples from 12 non HBV-related LF patients 
admitted to Shanghai Ruijin Hospital were enrolled, including 5 patients with chronic HCV infection, 4 patients 
with NASH and 3 patients with ASH. All patients were diagnosed on the basis of the criteria recommended by the 
Asian Pacific Association for the Study of the Liver (APASL)33 and had not taken any antiviral therapies or immu-
nosuppressive drugs within six months before sampling. Among HBV infected patients, individuals with concur-
rent hepatitis C virus, hepatitis D virus or human immunodeficiency virus infection, autoimmune liver disease, 
drug induced liver injury, alcoholic liver disease or hepatocellular carcinoma were excluded. All the samples 
were send to the Pathology Department of Shanghai Fudan University, School of Medicine for histopathology 
diagnosis. Two experienced pathologists independently measured and confirmed the fibrosis stating (Scheuer S)  
and inflammation grading (Scheuer G)34,35. Written informed consent was obtained from each subject. The 
study protocol was approved by the ethics committee of Ruijin Hospital, Shanghai Jiaotong University, School of 
Medicine and all the methods were carried out in accordance with the approved guidelines.

RNA extraction and microarrays. Total RNA was extracted from approximately 100 mg of frozen tissue, 
using the RNEasy Mini kit (Qiagen, Germantown, Maryland, USA) according to the manufacturer’s instruc-
tions. Nanodrop 2000 spectrophotometer (Thermo scientific, Wilmington, Delaware, USA) was used to measure 
the RNA concentration, Agilent 2100 Bioanalyzer (Agilent, Santa Clara, California, USA) was used to deter-
mine RNA purity/integrity. cDNA synthesis, labeling, and hybridizations were performed on Affymetrix Human 
Genome U133 Plus 2.0 arrays (Affymetrix, Cleveland, Ohio, USA), and staining and scanning were performed 
according to the manufacturer’s instructions.

qRT-PCR. 1 μ g of total RNA from each sample was subjected to reverse transcription using PrimerScript 
RT reagent kit (Takara, Japan), according to the manufacture’s specifications. Equal amount of comple-
mentary DNA (cDNA) was used to perform real-time PCR with SYBR Premix Ex Tag Kit (Takara, Japan). 
Expression levels were normalized to that of β -actin and calculated using the 2−ΔCT formula. Sequences 
of the primers used for ITGBL1 were: forward primer: 5′ -TCATCTGCTCTAATGCAGGTACA-3′  and 
reverse primer 5′ -GTTTCCACAGTAACACTTCCCA-3′ ; the primers used for β -actin were: forward:  
5′ -AGAGCTACGAGCTGCCTGAC-3′  and reverse primer 5′ -AGCACTGTGTTGGCGTACAG-3′ .

Data preprocessing. To ensure the highest possible level of data quality, rigorous quality control proce-
dures were implemented on the microarray datasets before expression values were generated. Microarray data 
processing was performed using the R 3.1.3 and Bioconductor packages. First, raw CEL files were normalized 
and background adjusted using the Robust Multichip Average (RMA) algorithm with the affy package36. Then, 
k-nearest neighbor (KNN) algorithm within impute package was applied for missing value imputation. Batch 
effects in the expression data were adjusted using empirical Bayes methods in the R package sva according to 
previous studies37.

Unsupervised hierarchical clustering. The normalized expression microarray data for each patient were 
collected. Subsequently, the following processing steps were applied: (1) probe sets without gene annotation were 
omitted; (2) probes targeting multiple genes were omitted; (3) the “best” probe for each gene which was targeted 
by multiple probe sets was selected. Specifically, only the probe set with the maximum variance was retained when 
there were multiple probe sets for a gene. Subsequently, unsupervised hierarchical clustering was performed with 
the ward2 method in the R gplots package.
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PCA. PCA was performed using the “princomp” function in R software. The component loadings were calcu-
lated as correlations between measured expression values and principal component scores. The top 3 principal 
components PC1, PC2 and PC3 were visualized using 3-dimensional scatter plots by using the scatterplot3d 
package.

Differential expression. Differential expression was assessed using the linear model for microarray data 
(LIMMA) package, a modified t-test that incorporates the BH multiple hypotheses correction method38. To 
improve the reliability of differential expressed genes, probe sets of which the adjusted P <  0.1 and fold-changes 
> 2 between two comparison groups were defined as significant differentially expressed probe sets, according to 
the MicroArray Quality Control (MAQC) project recommendations39.

GO enrichment analysis. Functional enrichment analysis was assessed using the DAVID database40 (http://
david.abcc.ncifcrf.gov/). For differentially expressed genes and coexpression modules, the background was set to 
the total list of genes expressed in the human dataset. Owing to the limits of uploaded genes in DAVID, R package 
topGO and clusterProfile were used for GO enrichment analysis for gene lists containing more than 3,000 genes. 
The statistical significance threshold level for all GO enrichment analyses was P <  0.01 (BH corrected for multiple 
comparisons).

Trend test analysis. To find the genes highly correlated with fibrosis and inflammation progression, we 
used trend tests to analyze the relationship between disease severity and gene expression levels. A linear model 
based on liver pathology Scheuer scoring and gene expression values was constructed, and the significance value 
was obtained and adjusted by using BH correction. R software 3.1.3 was used for data analysis and visualization.

GSEA. GSEA was performed using GSEA software41 on probe set normalized data. Predefined gene sets were 
downloaded from the GSEA Molecular Signatures Database (http://software.broadinstitute.org/gsea/msigdb/
index.jsp). Gene sets significantly over- or under-represented were returned by GSEA as showing an ES <  0, 
P <  0.05 and FDR <  0.05 when using 1,000 permutations of gene-set labels.

WGCNA. A weighted gene coexpression network was constructed to identify the gene groups (modules) 
involved in liver inflammation and fibrotic progression according to a previously described algorithm24. The R 
packages WGCNA42 was applied to for this analysis. Briefly, the genes were screened on the basis of specific filter 
criteria (mentioned in the unsupervised hierarchical clustering section). Person’s correlation coefficients were 
calculated for all pairwise comparisons of the selected genes yielding a similarity (correlation) matrix (sij). The 
resulting Person’s correlation matrix (sij) was transformed into an adjacency matrix A =  [aij] using a power func-
tion, aij =  Power (sij, β ) ≡  |sij|β, where aij is the strength of a connection between two nodes (genes) i and j in the 
network. The parameter β  was selected using scale-free topology criteria. Subsequently, we used average linkage 
hierarchical clustering to identify modules of densely interconnected genes on the basis of the topological over-
lap dissimilarity matrix (1 − topological overlap) of their network connection strengths24. Genes that were not 
assigned to specific modules were assigned the color grey.

Module preservation and Student’s t-test statistics. To validate the preservation of gene modules 
identified by WGCNA, a validation dataset was constructed using 60 randomly selected samples. Module pres-
ervation was calculated as previously described43. Briefly, we used the R function “modulePreservation” in the 
R WGCNA package, because this quantitative measure of module preservation provides rigorous evidence that 
a module is not preserved. The number of permutations was set to 200. By averaging the preservation statistics 
through permutations, a Z summary value was calculated. The values of the module preservation Z summary 
statistic and median rank are shown in supplementary Table S4. To visualize the region-enrichment of each gene 
at different fibrosis stage, the t statistic of the samples at a given stage compared with the other samples not in this 
stage was determined using Student’s t tests, as previously described44.

STRING biological interaction validation. The functional protein association networks database 
STRING v10 (http://string-db.org/)45 was used to identify biological interactions within the WGCNA modules. 
The input options were set to include ‘Textmining, ‘Experiments’, ‘Databases’, ‘Co-expression’, ‘Neighborhood’ 
and ‘Co-occurrence’ with an interaction confidence score more than 0.4. Built-in algorithms provided by the 
STRING database were applied to calculate the enrichment in intersections for each module. If the number of 
genes reached the upper limit of STRING, then 2,000 genes were randomly selected from the module for 10 times 
and the evaluating indices of modules were regarded as the average values of the random selection repeats.

Hub gene identification and visualization. After co-expression network construction, centrality 
analysis was conducted using the CytoHubba46 plug-in in Cytoscape47 2.8.2 to identify hub genes. We useed 
twelve built-in centrality indices—Maximal Clique Centrality (MCC), Density of Maximum Neighborhood 
Component (DMNC), Maximum Neighborhood Component (MNC), Degree, Edge Percolated Component 
(EPC), Bottleneck, Eccentricity, Closeness, Radiability, Betweenness, Stress and Clustering Coefficient to calcu-
late the hub scores of significant modules. In addition, the intramodular connectivity (kWithin) of each gene was 
calculated within the WGCNA package. KWithin was obtained by summing the connection strengths (adjacen-
cies) with other module genes and divided as the maximum intramodular connectivity in a given module. The 
top 30 genes ranked by each centrality index were considered to be highly ranked hub genes candidates. Among 
the 13 lists of potential hub genes ranked by different hub scores, we applied a strict filter criterion that only genes 
within the intersection of ≥ 6 lists were considered to be high-confidence hub genes with potential biological sig-
nificance. Cytoscape formatted files were generated by R package WGCNA and visualized using Cytoscape 3.4.1.

http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://string-db.org/
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Cell experiments. Human hepatocellular carcinoma cell lines Huh7 and HepG2 and human HSC cell line 
LX-2 were cultured in Williams E medium supplemented with 1% MEM Non-Essential Amino Acids, 1 mM 
Sodium Pyruvate, 1% GlutaMAX, 10% fetal bovine serum (FBS) (Gibco, Life Technologies, Carlsbad, CA, USA), 
100 IU/ml penicillin and 100 μ g/ml streptomycin (Invitrogen, Bern, Switzerland) and maintained at 37 °C in 
a 5% CO2 humidified atmosphere. To evaluate the regulation effect of ITGBL1 on TGFβ 1 expression, hepato-
cytes (2 ×  105 per well) cultured for 24 h were transfected with 2 μ g of ITGBL1 cDNA expression plasmid mimic 
(ITGBL1 mimic Mock plasmid) using X-tremeGene 9 DNA transfection reagent (Roche, Mannheim, Germany) 
according to the manufacturer’s instructions. To collect condition medium for LX-2 culture, Huh7 and HepG2 
were cultured in FBS free Williams E medium for 12 h after plasmid transfection. LX-2 cells (2 ×  105 per well) 
were then cultured in hepatocytes cell supernatant for 12 h before harvest.

Western blotting. The cells were harvested at 48 h after plasmid transfection and lysed on ice for 20 min 
in RIPA lysis buffer (Beyotime, Nanjing, China) containing 1% protease inhibitor cocktail and 1% phosphatase 
inhibitor cocktail (Roche, Mannheim, Germany). The lysate was centrifuged at 12,000 g for 15 min at 4 °C, and the 
supernatants were subsequently collected. A BCA protein assay kit (Beyotime, Nanjing, China) was used to deter-
mine the protein concentrations. The protein samples were denatured for 10 min at 100 °C under non-reducing 
conditions. An equal amount of 20 μ g of protein from each sample was loaded and separated by SDS-PAGE using 
4% to 20% precast gradient gels (Tanon, Shanghai, China); this was followed by transfer onto polyvinylidene 
di-fluoride membranes (Merck Millipore, Billerica, Massachusetts, USA). After being blocked with TBST 
buffer containing 5% skimmed milk, the membranes were incubated with the primary antibodies against TGFβ 
1 (1:1,000, R&D, Minneapolis, Minnesota, USA), ITGBL1 (1:500, Abcam, Cambridge, Massachusetts, USA), 
α -SMA (1:1000, Sigma-Aldrich, Munich, Germany) and β -actin (1:2,000, Sigma-Aldrich, Munich, Germany) 
in 5% skimmed milk TBST buffer overnight at 4 °C. After being washed in TBST, the membranes were incubated 
with horseradish peroxidase (HRP)-conjugated secondary antibodies (1:1,000, Beyotime, Nanjing, China) at 
room temperature for 2 h. The bands were detected using a high-sensitivity chemiluminescent substrate ECL kit 
(Tanon, Shanghai, China). Western blots were quantified using ImageJ software (version 1.50).

Data availability. The microarray data have been deposited in NCBI GEO database under the accession 
code GSE84044.

Code availability. R codes used for data analyses and visualization are available upon request by contact with 
Prof. Xinxin Zhang.
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