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Natural Language Understanding (NLU) and Natural Language Generation (NLG) are the general methods that support machine
understanding of text content. /ey play a very important role in the text information processing system including recom-
mendation and question and answer systems. /ere are many researches in the field of NLU such as Bag of words, N-Gram, and
neural network language model. /ese models have achieved a good performance in NLU and NLG tasks. However, since they
require lots of training data, it is difficult to obtain rich data in practical applications. /us, pretraining becomes important. /is
paper proposes a semisupervised way to deal with math word problem (MWP) tasks using unsupervised pretraining and su-
pervised tuning methods, which are based on the Unified pretrained Language Model (UniLM). /e proposed model requires
fewer training data than traditional models since it uses model parameters of tasks that have been learned before to initialize the
model parameters of new tasks. In this way, old knowledge helps newmodels successfully perform new tasks from old experiences
instead of from scratch. Moreover, in order to help the decoder make accurate predictions, we combine the advantages of AR and
AE language models to support one-way, sequence-to-sequence, and two-way predictions. Experiments, carried out on MWP
tasks with 20,000+ mathematical questions, show that the improved model outperforms the traditional models with a maximum
accuracy of 79.57%. /e impact of different experiment parameters is also studied in the paper and we found that a wrong
arithmetic order leads to incorrect solution expression generation.

1. Introduction

/e basic research of natural language processing (NLP) is
human-computer language interaction, which reflects hu-
man language with algorithms that can be understood by
machines. NLP can perform a vast array of tasks such as text
summarization, generating completely new pieces of text,
and predicting what word comes next, among others. /e
core is a language model (LM) based on statistics. Honestly,
these LMs are a crucial first step for most of the advanced
NLP tasks. /is paper will begin from basic LMs that can be
created with a few lines of Python code andmove to state-of-
the-art language models that are trained using humongous
data and are being currently used by the likes of Google,
Amazon, and Facebook, among others. LMs are the

probability distribution of a sequence of words, which can
quantitatively evaluate the possibility of a string of char-
acters. LMs are used in speech recognition, machine
translation, part-of-speech tagging, parsing, optical char-
acter recognition, handwriting recognition, information
retrieval, and many other daily tasks. Its ability to model the
rules of a language as a probability gives great power for
NLP-related tasks. /e general process includes a process of
predicting the back words. And then, the probabilities of all
words are used to evaluate the possibility of the existence of
the text. /ere are two types of LM: Statistical Language
Models and Neural Language Models [1–4]. Statistical LMs
use traditional statistical techniques like N-grams, Hidden
Markov Models (HMM), and certain linguistic rules to learn
the probability distribution of words. For example,
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Mezzoudj and Benyettou [5] augment naive Bayes models
with statistical n-gram language models to address the
shortcomings of the standard naive Bayes text classifier. In
the work of [6], they propose a fast and simple algorithm for
training NPLMs based on noise-contractive estimation, a
newly introduced procedure for estimating un-normalized
continuous distributions. Experiment results show that the
model reduces the training times by more than an order of
magnitude without affecting the quality of the resulting
models. /e algorithm is also more efficient and much more
stable than importance sampling because it requires far
fewer noise samples to perform well.

However, the estimation will be difficult in practice if the
text is very long. /us, there is a simplified method: the N-
grams model. In the N-grams model, the conditional
probability of the word is estimated by calculating the first N
words of the current word. Unigram, bigram, and trigram
are the commonly usedN-gramsmodels. Typed characterN-
grams reflect information about their content and context.
According to previous research, typed character N-grams
improve the accuracy of authorship attribution [7, 8].
However, the problem of data sparseness and inaccuracy
gets worse with the larger text in these models. In order to
solve the problem of data sparseness when estimating
probability with the N-grams model, researchers try to use
neural networks to study the language model, such as
UniLM and TransFormer.

/is paper proposes a semisupervised approach based on
UniLM, which uses unsupervised preview and supervised
tuning for language processing tasks. /e goal of this ap-
proach is to learn a universal representation that requires
very little adaptive adjustments when migrating to various
downstream tasks. /e training process of the algorithm is
divided into two stages: the first stage uses language mod-
eling targets on unlabeled data to learn the initial parameters
of the neural network; the second stage uses the corre-
sponding supervised targets to adapt these parameters to the
target task. Moreover, to evaluate the performance of our
model in comparison with other models, we carried out a
highly challenging deep QA task on a large-scale and
template-rich dataset of MathWord Problems Math23K [9].
/e results show it has a maximum accuracy of 79.57%.

/ere are three advantages and contributions of the
proposed model: (1) Although there are three language
model tasks in the pretraining process, we do not need to
train the three models separately because the parameters of
the transformer are shared. /anks to the self-attention
masking of UniLM. (2) Parameter sharing makes the learned
text representation more universal because these parameters
are jointly optimized with different language models. It also
alleviates the problem of over-fitting on a specific language
model task. (3)/e proposed model is suitable for both NLU
and NLG problems.

2. Related Work

In 2000, researchers first put forward the idea of neural
networks to study language models [10–12]. Until 2011,
Collobert and Weston [13] used a simple deep learning

model to achieve SOTA results in NLP tasks such as named
entity recognition NER, semantic role tagging SRL, and part-
of-speech tagging POS-tagging. More and more researchers
focus on the methods based on deep learning. In 2013, the
word vector represented by Word2vec [14] and Pennington
et al. [15] became popular. More research has explored to
improve the ability of language models from the perspective
of word vectors, and focused on the semantics of words and
context. In 2014, Kim proposed a TextCNN [16] model based
on pretrained Word2vec for sentence classification tasks. In
2016, Joulin et al. [17] proposed a simple and lightweight
deep learning model for text classification: FastText. /e
architecture is similar to the Word2vec CBOW model
proposed by Rong et al. [18]. Experiment results show that
FastText can achieve a good performance with efficiency.

In addition, researchers have tried to use various
mechanisms to optimize the ability of language models
such as CNN, RNN, and Transormer [19, 20]. /e CNN-
LSTM architecture involves using Convolutional Neural
Network (CNN) layers for feature extraction on input data
combined with LSTMs to support sequence prediction. As
shown in Figure 1, a common CNN-LSTM model is
composed of a cell, an input gate, an output gate, and a
forget gate. /e cell remembers values over arbitrary time
intervals and the three gates regulate the flow of infor-
mation into and out of the cell. CNN-LSTM networks are
well-suited to classifying, processing, and making predic-
tions based on time series data, since there can be lags of
unknown duration between important events in a time
series. In a CNN, a convolution operation is used to obtain
multiple feature maps. /en, it extracts key information for
classification by filtering noise information through the
pooling operation. Among them, pretraining combined
with downstream task fine-tuning methods is the most eye-
catching trend. In [21], for example, they investigate the
benefits of integrating CNNs and LSTMs and report
obtaining improved accuracy for Arabic sentiment analysis
on different datasets. Additionally, we seek to consider the
morphological diversity of particular Arabic words using
different sentiment classification levels.

In AI, pretraining imitates the way human beings
process new knowledge using model parameters of tasks that
have been learned before to initialize the model parameters
of new tasks. In this way, old knowledge helps new models
successfully perform new tasks from old experience instead
of from scratch. In recent years, EMLo, GPT, and BERT
frequently refreshed the SOTA result [22]. For example, [23]
trained a BERT language understanding model for the
Italian language (AlBERTo). In particular, AlBERTo is fo-
cused on the language used in social networks, specifically
on Twitter. To demonstrate its robustness, we evaluated
AlBERTo on the EVALITA 2016 task SENTIPOLC (SEN-
TIment POLarity Classification) obtaining state-of-the-art
results in subjectivity, polarity, and irony detection on
Italian tweets.

Transformer [24], which is based on the attention
mechanism, completely abandoned CNN and RNN, and
only captured the global relationship between the input and
the output. As shown in Figure 2, the transformer
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architecture is composed of two parts: Encoder andDecoder.
/e encoder is on the left and the decoder is on the right.
Both the encoder and decoder are composed of modules that
can be stacked on top of each other multiple times, which is
described by Nx in the figure. We see that the modules
consist mainly of multi-head attention and feed forward
layers. /e inputs and outputs (target sentences) are first

embedded into an n-dimensional space since we cannot use
strings directly.

Transformer architectures have facilitated building
higher capacity models and pretraining has made it possible
to effectively utilize this capacity for a wide variety of tasks.
/e effectiveness of transfer learning has given rise to a
diversity of approaches, methodologies, and practice [25].
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Figure 1: Illustration of the CNN-RNN-based defense architecture.
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/e framework is easier to calculate in parallel. /e training
time for tasks such as machine translation and parsing is
reduced. Transformer’s ability is obvious to all, and has been
applied to pretrainingmodels such as GPT, BERT, and XLM.
In 2018, Brown et al. [26] proposed a unidirectional neural
network language model GPT based on generative pre-
training in OpenAI, which became one of the most popular
pretraining models of the year. /ey use the fine-tuning
method with two stages: the first stage uses the Transformer
decoder, which is based on unlabeled corpus, for generative
pretraining; the second stage is based on specific tasks for
differentiated fine-tuning training, such as text classification,
sentence pair relationship discrimination, text similarity,
and multiple-choice tasks. Instead of adopting the tradi-
tional fully connected layers for classification in CNN, GPT
directly feeds the resulting vector into the softmax layer.

Moreover, in 2018, Devlin et al. [25] proposed a pre-
training model BERT based on a deep, two-way Trans-
former. Unlike GPT, the feature extractor used by BERT is
the Transformer encoder part. Similarly, BERT is also di-
vided into two stages, pretraining and downstream task fine-
tuning. BERT changes the unidirectional language model in
the GPT into a bidirectional one. Instead of using the
standard left-to-right prediction of the next word as the
target task, BERT proposes two new tasks. /e first pre-
training task is called MLM, or Masked Language Model. In
the input word sequence of this model, 15% of the words are
randomly masked and the task is to predict what they are.
What we see is that, unlike previous models, BERT can
predict these words from both directions—not just left-to-
right or right-to-left. For example, Yu et al. [27] proposed a
replication study of BERT pretraining that carefully mea-
sures the impact of many key hyper-parameters and training
data size. Experimental results show that BERTachieved the
SOTA results on GLUE, RACE, and SQuAD. Moreover,
ERNIE [27] is an exploratory framework for continuous
learning and understanding based on knowledge enhance-
ment proposed by Baidu. /e framework combines big data
presets with multi-source knowledge. /rough learning
technology, it continuously absorbs knowledge of the text
structure and learns in massive data texts to realize the
model. ERNIE has achieved SOTA effects in more than 40
classic NLP missions, and has won more than 10 champi-
onships on international celebrities such as GLUE, VCR,
XTREME, and SemEval.

UniLM is a BERT-based model, which is a simple but
effective multimodal pretraining method of text. Unlike
BERT, UniLM can be configured using different self-at-
tention masks to aggregate context for different types of
language models. It is made up of Transformer AI models
jointly pretrained on large amounts of text and optimized for
language modeling. /e UniLM model uses three types of
language modeling (one-way model, two-way model, and
sequence-to-sequence prediction model) for pretraining
[28]. Using a shared Transform network, a specific self-at-
tention mask is used to control the context of prediction
conditions, thereby achieving unified modeling. For ex-
ample, in the work of [29], they proposes UniVL: a Unified
Video and Language pretraining model for both multimodal

understanding and generation. It comprises four compo-
nents, including two single-modal encoders, a cross encoder,
and a decoder with the Transformer backbone. Five ob-
jectives, including video-text joint, conditioned masked
language model (CMLM), conditioned masked frame model
(CMFM), video-text alignment, and language reconstruc-
tion, are designed to train each of the components. /e train
skills in [30–33] are applied in this paper.

In this paper, a semisupervised approach based on
UniLM is proposed. /e model allows unsupervised pre-
viewing and supervised tuning for language processing tasks.
Experiment results show a maximum accuracy of 79.57% of
the proposed model. /e contributions of this paper as
follows: this paper proposes a semisupervised way to deal
with math word problem (MWP) tasks using unsupervised
pretraining and supervised tuning methods, which are based
on the Unified pretrained Language Model (UniLM). It
combines the advantages of AR and AE language models to
support one-way, sequence-to-sequence, and two-way
prediction tasks. Experiments, carried out on MWP tasks
with 20,000+ mathematical questions, show that the im-
proved model outperforms the traditional models with a
maximum accuracy of 79.57%.

/e paper is structured as follows: we first introduce our
methodology in Section 2, and then describe the test-bed and
evaluate the proposed model according to several evaluation
metrics in Section 3. After evaluating the performance of the
proposed model, the summary and discussion about future
work are described in Section 4.

3. Methodology

Researchers found that BERT could be useful for more than
just Google searches [34, 35]. BERT seems to promise im-
provements in key areas of computational linguistics, in-
cluding chat-bots, question-answering, summarization, and
sentiment detection. It’s defined as a “groundbreaking”
technique for NLP because it’s the first-ever bidirectional
and completely unsupervised technique for language rep-
resentation, which means a understanding of each word all
at once. /is represents a clear advantage in the field of
context learning. It will continue revolutionizing the field of
NLP because it provides an opportunity for high perfor-
mance on small datasets for a large range of tasks.

/e proposed model is also a multi-layer Transformer
network based on UniLM, which is a BERT-based generative
model. Compared to BERT, however, the proposed model
can complete the three pretraining goals at the same time.
Besides the mentioned pretraining methods, a new se-
quence-to-sequence training method is added into the
model, which leads to the good performance of our model
on NLU and NLG tasks. Moreover, the proposed model
completes the prediction of the mask word through the
context of the mask word, which is also a cloze task. For
different training objectives, the context is different. /e
general processes of our proposed model are shown below:

(i) Input presentation: Each input x is a sequence
composed of word tokens. /e sequence can be
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either a sentence or a pair of sentences combined
together. /e input representation is the same as
UniLM. For each input token ti, the xi is obtained by
calculating its corresponding representation
through the corresponding token embedding, po-
sition embedding, and segment embedding. For the
token at the beginning/end of the sequence, we add
a special classification embedding (CLS)/a special
end-of-sequence (SEP) of each paragraph.

(ii) Transformer Encoder: /en the multi-layer bidi-
rectional Transformer encoder is used to encode the
context information represented by the input. Given
the input vector X � xi􏼈 􏼉

n

i�1 , the encoding form of
an L-layer Transformer’s input is as follows: Hl �

Transformer(Hl− 1) where,
l ∈ [1, L], H0 � X, Hl � [hL

1 , . . . , hL
N], and Hl is 210

the implicit vector, which is used as the contextual
representation for ti.

Pretraining Objectives: After the encoder process,
we have carried out two extensions to the original
UniLM pretraining goal to make full use of the rich

intrasentence structure and inter-sentence struc-
ture in the language: word structure goal (mainly
used for single sentence tasks) and sentence
structure goal (mainly used for sentence pair
tasks)). /e two auxiliary targets and the original
masking LM target are pretrained to find the in-
ternal language structure in a unified model. /e
structure is shown in Figures 3 and 4
Word Structural Objective: Figure 3 shows the
method of jointly training the new word target and
the mask language model target. For each input
sequence, first, like UniLM, we randomly mask
15% of the token, and then send the output vector
to the softmax classifier to predict the original
mask. Next, given a randomly scrambled token,
the order of the new words is considered./e word
goal is equivalent to maximizing the possibility of
placing each scrambled token in the correct po-
sition. /e equation can be formulated as formula
fd1:

argmax
θ

􏽘 logP pos1 � t1, pos2 � t2, . . . , posk � tk|t1, t2, . . . , tK, θ( 􏼁. (1)

Here, θ represents the trainable parameters in our
model. K indicates the length of each scrambled
subsequence. A bigger K will force the model to be
able to reconstruct a longer sequence, while
injecting more interference inputs. We take K� 3 to
balance the model’s reproducibility and robustness.

(iii) Sentence Structural Objective: /e original UniLM
model is very effective in predicting the next sen-
tence (97%–98% accuracy rate). In our model, it is
necessary to predict not only the next sentence but
also the previous sentence, such that the pretrained
language model perceives the order of sentences in a
bidirectional manner. As shown in Figure 4, given a
pair of sentences (S1, S2), where S2 may be the next
sentence of S1 or not, probably speaking, there is a
two-third probability that S2 is the next sentence or
previous sentence of S1. Or there is a one-third
probability that they are irrelevant. We use the SEP
token to connect S1 and S2, and then the CLS
encoded vector is input into the softmax classifier
for the three-class prediction.

4. Experiments

In this section, we evaluate the effectiveness of the proposed
model on math problems from the widely used benchmark
MAWPS. MAWPS [36, 37] is an online repository of Math
Word Problems and provides a unified test-bed to evaluate
different algorithms. MAWPS allows for the automatic
construction of datasets with particular characteristics,

providing tools for tuning the lexical and template overlap of
a dataset as well as for filtering ungrammatical problems
from web-sourced corpora. /e online nature of this re-
pository facilitates easy community contribution. At present,
the repository has amassed 3320 problems, including the full
datasets used in several prominent works. Moreover, we
study the effect of different parameters in our model. In the
experiments, almost every possible hyper-parameter is the
same for the training recipes of both models. Specifically, we
carefully control the following hyper-parameters:

/e same batch size: 256.

(i) /e same number of training steps: 1M
(ii) /e same optimizer: Adam, learning rate 1e− 4,

warmup 10K, linear decay
(iii) /e same training corpora: /e dataset provides a

training set containing 1674 question and answer
pairs, and (251) the test set includes 865 question
and answers pairs. We choose 900 questions from
the 252 total training set as the development set and
the remaining 1639 question and answer pairs (253)
as the actual training set

(iv) /e same model architecture parameters: 24 layers,
1024 hidden size, 16 heads

(v) /e same fine-tuning hyper-parameter search space

4.1. Metrics. To compare the performance of different
models, Macro Precision(MP), Macro Re-call(MR), and
Average F1(F1) value are adopted. /e final ranking is based
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on average accuracy. In a corpus of Q1, Q2, Q3 . . ., QN, the
calculation of the three metrics is listed below:

Macro Precision(MP): As shown in formula (2), MP is
the quotient of answers that are correctly selected and
the total amount of dataset. MP will measure the ac-
curacy of the model.

MR �
|C|

|T|
. (2)

Macro Recall(MR): MR is the ratio of the number of
shared words to the total number of words in the
ground truth. As shown in formula (3), S is the amount
of data that is predicted. It measures the completeness
of the result.

MR �
|C|

|S|
. (3)

F1: F1 score is a common metric for classification
problems and is widely used in QA. It is appropriate
when we care equally about precision and recall. /e
calculation is as shown in formula.

F1 �
2

MR
− 1

+ MP
− 1 � 2

MR∗MP

MR + MP
. (4)

In Table 1, it is clear that our model achieves a con-
siderable progress in Macro Precision, Macro Recall, and F1
score. It is very hard for a model to make a huge im-
provement for math word problem solvers, for MWP is a
mature research area.

4.2. Data Preparation. /e dataset provides a training set
containing 1674 question and answer pairs, and a test set
including 865 question and answers pairs. We choose 900
questions from the total training set as the development set,
and the remaining 1639 question and answer pairs as the
actual training set.

4.3. Results. /e experiment in this paper consists of two
parts: Experiment 1 makes a comparison with other
benchmark models. As shown in Table 1, the accuracy re-
sults of the proposed model and various baselines are listed.
It is obvious that the proposed model outperforms all
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Figure 3: /e architecture of the word structural objective.
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baselines in the experiments, and achieves a best accuracy of
79.57%. For example, in the experiment, the proposed
method raised the F1 score to 0.78 compared with 0.73 and
0.76, respectively, of Graph2Tree and GTS [38]. /is is
because UniLM combines the advantages of both AR and AE
models, which makes up for the disadvantages of LSTM, i.e.,
LSTM only stores information of one direction. Obviously,
the proposed model performs the best in all tasks. To get a
better understanding of how the constrained model is able to
perform so well, we further carry experiments to test the
effect of different parameters in our model.

4.4. Impact of the Length of the Sentence. We first study the
effect of length of the sentence. /e experiments are carried
on the test set to investigate how the proposed model
performs with increasing length of the sentence. Compar-
isons are built between ours and state-of-the-art models
using explicit tree decoders. As shown in Table 2, we find
that: First, the proposed model performs better than the
other models in most of the cases, except in the case of the
number of operators equals to 5. In other cases, with less
than 5 operators, the model shows a good improvement
compared to other models. Second, when the complexity of
the sentence grows, the performance of all models decreases.
/is is because longer sentences lead to more complex
questions, which are more difficult to predict.

4.5. Impact of Numerical Comparison. Since the wrong
arithmetic order leads to incorrect solution expression
generation, our proposed model aims to solve it. Experi-
ments are carried to prove this by investigating how the

model has improved the arithmetic order problem. We first
retrieve the MWPs with incorrectly predicted expressions.

In the experiment, we check that the incorrectly pre-
dicted expressions length is equal to their corresponding
ground truth expressions’ length. As shown in Table 3, the
proposed model gets 101 incorrect predicted sentences,
while GTS has 119 and Graph2Tree has 103. We then check
the amount of incorrectly predicted sentences with the
initially retrieved set. /e results show the same conclusion;
our proposed model always generates fewer arithmetic order
error sentences. /is suggests that the proposed model is
able to significantly improve the arithmetic order in MWP
tasks.

5. Conclusions

/is paper proposed an improved MWP model, which
improves the task performance by adding UniLM for pre-
training. UniLM completes unidirectional, sequence-to-se-
quence, and bidirectional prediction tasks. /rough
experiments, we show the superiority of our model against
state-of-the-art models on math problem tasks.

/ere are three advantages of the proposed model: (1)
Although there are three language model tasks in the pre-
training process, we do not need to train the three models
separately because the parameters of the transformer are
shared. /anks to the self-attention masking of UniLM. (2)
Parameter sharing makes the learned text representation
more universal because these parameters are jointly opti-
mized with different language models. It also alleviates the
problem of over-fitting on a specific language model task. (3)
/e proposed model is suitable for both NLU and NLG
problems.

For future work, since the proposed model has diffi-
culties dealing with long and complex sentences, we aim to
consider the relationships among quantities and other at-
tributes to better understand the context. Moreover, in
future research, since advanced optimization algorithms also
have been applied in many domains of NLP tasks, we may
explore a comparison between advanced optimization al-
gorithms and our model.
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Table 1: Comparison for math solving task.

Method Macro precision Macro recall F1 score
Sedq2Seq 77.40 76.99 0.77
GTS 72.20 74.30 0.73
Graph2Tree 77.89 75.88 0.76
Our model 79.57 77.69 0.78

Table 2: Comparison for math solving task with different lengths of
sentences.

Op Pro AST-Dec GTS Our model
1 17.4 81.5 83.1 86.2
2 51.2 74.1 79.5 84.1
3 18.4 60.1 72.1 74.2
4 6.37 43.5 52.1 53.4
5 4.30 45.6 37.6 39.4
6 0.88 56.6 46.2 56.3

Table 3: Comparison for arithmetic order errors.

Method MWPs Initially retrieve set
Seq2Seq 121 133
GTS 119 231
Graph2Tree 109 105
Our model 103 101
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