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Abstract: Breast cancer (BC) remains the second leading cause of death among women worldwide.
An emerging approach based on the identification of endogenous metabolites (EMs) and the
establishment of the metabolomic fingerprint of biological fluids constitutes a new frontier in medical
diagnostics and a promising strategy to differentiate cancer patients from healthy individuals. In this
work we aimed to establish the urinary metabolomic patterns from 40 BC patients and 38 healthy
controls (CTL) using proton nuclear magnetic resonance spectroscopy (1H-NMR) as a powerful
approach to identify a set of BC-specific metabolites which might be employed in the diagnosis of
BC. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was applied to a 1H-NMR
processed data matrix. Metabolomic patterns distinguished BC from CTL urine samples, suggesting
a unique metabolite profile for each investigated group. A total of 10 metabolites exhibited the
highest contribution towards discriminating BC patients from healthy controls (variable importance
in projection (VIP) >1, p < 0.05). The discrimination efficiency and accuracy of the urinary EMs were
ascertained by receiver operating characteristic curve (ROC) analysis that allowed the identification
of some metabolites with the highest sensitivities and specificities to discriminate BC patients from
healthy controls (e.g. creatine, glycine, trimethylamine N-oxide, and serine). The metabolomic
pathway analysis indicated several metabolism pathway disruptions, including amino acid and
carbohydrate metabolisms, in BC patients, namely, glycine and butanoate metabolisms. The obtained
results support the high throughput potential of NMR-based urinary metabolomics patterns in
discriminating BC patients from CTL. Further investigations could unravel novel mechanistic
insights into disease pathophysiology, monitor disease recurrence, and predict patient response
towards therapy.
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1. Introduction

The global cancer burden is estimated to have risen to 18.1 million new cases and 9.6 million
deaths in 2018 (WHO) [1], being the second leading cause of death worldwide. Several genetic and
epigenetic factors including ageing, unhealthy life styles (poor diet, tobacco and alcohol consumption),
population growth, as well as the changing prevalence of certain causes of cancer linked to social
and economic development, contribute for this sobering fact. Lung and female breast cancers are
at the top of the leading cancer types in terms of the number of new cases, with approximately 2.1
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million diagnoses in 2018, contributing about 11.6% of the total cancer incidence [1]. Furthermore,
breast cancer is also the leading cause of cancer death in women (15.0%), followed by lung cancer
(13.8%) and colorectal cancer (9.5%), which are also the second and third most common types of
cancer, respectively [1]. Improving BC detection methods could reduce patient mortality and improve
therapeutic responses and prognosis rates [2,3]. Common methods of routine surveillance for BC
include periodic mammography, self- or physician performed examination, and blood tests of tumor
markers, including cancer antigens (CA 15-3, CA 27.29), carcinoembryonic antigen (CEA), tissue
polypeptide specific-antigen, and human epidermal growth factor receptor 2 (the shed form). CA 15-3
and CEA represent the most widely used tumor markers [4]. An additional factor that contributes to
the poor prognosis of patients diagnosed with BC is the fact that the diagnosis is often delayed due
to limitations in screening tests [5]. A recent approach is metabolomics that study a subset of small
molecules derived from the global or targeted analysis of metabolic profiles from biological samples such
as blood [6], urine [7–10], cells, or tissue [11–15], representing a valuable tool in the detection of several
diseases including cancer. Several reports have already demonstrated the importance of studying
the metabolome as means to discover a set of metabolites to be used as cancer biomarkers [16–18].
The study of specific metabolites to identify cancer fingerprints or signatures can aid in cancer detection
and prognosis as well as the assessment of the pharmacodynamic effects of therapy [11]. The most
common approaches in metabolomics involve gas chromatography-mass spectrometry (GC-MS) [8],
liquid chromatography-mass spectrometry (LC-MS) [19] or nuclear magnetic resonance spectroscopy
(NMR) [3,16,18,20].

Mass spectrometry (MS) includes a separation stage using liquid chromatography (LC) or gas
chromatography (GC) and can discriminate between compounds based on a mass-to-charge (m/z)
ratio in charged particles. Although compared with NMR, MS exhibits a greater sensitivity, sample
preparation is laborious and dependent on metabolite chemical properties [21]. In addition, MS lacks
accuracy and precision, producing an enhanced resolution profile with numerous peaks. However, only
approximately 5% of these peaks are associated with known components [22]. Recently, non-invasive
sampling strategies, including exhaled breath, urine and saliva, have emerged as attractive and useful
approaches when coupled to high-throughput techniques such as NMR (1H NMR) [12,23,24]. NMR
spectroscopy is a particularly appealing platform based on the energy absorption and re-emission of
the nuclei due to the magnetic field, where the selected isotopes, having momentum in an external
magnetic field, will give a signal. This technique presents several advantages such as being rapid,
robust, cost-effective, highly reproducible, non-destructive, and fully quantitative. In addition,
it requires no prior compound separation or derivatization generating spectra from a biological
sample within few minutes, being useful for conducting metabolomic studies on biofluids [25–27].
Zhang et al. [28] reviewed the most common methods for NMR spectroscopy-based metabolite profiling,
data processing and analysis. Bingol et al. [29] recently overview some advances in the metabolomics
field and contribution to targeted and untargeted approaches. A variety of studies have been conducted
by NMR in disease research using urine [3,12], saliva [24,30], serum [31], plasma [32,33], tissue [34–37],
and in cell culture [38–40].

The aim of this study was to evaluate the ability of 1H NMR spectroscopy combined with
multivariate statistical tools to differentiate and discriminate the urinary metabolomic patterns from
BC patients and healthy volunteers (CTL) as a powerful approach to identify a set of BC-specific
metabolites which might be employed in the diagnosis of BC.

2. Materials and Methods

2.1. Reagents

3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) and deuterium oxide (D2O) were
supplied by Acros Organics (Geel, Belgium). Potassium dihydrogen phosphate (KH2PO4), sodium
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azide and potassium deuteroxide solution (KOD) were purchased from Panreac (Barcelona, Spain) and
Sigma Aldrich (St. Louis, MO, USA).

2.2. Urine Collection

To investigate the urinary NMR profile, 40 urine samples from female patients with BC (n = 40, age
range 40–74 years, average 59 ± 10 years) and 38 urine samples from healthy female volunteers without
any known pathology (n = 38, age range 40–72 years, average 53 ± 8 years; control group—CTL) were
obtained from the Haemato-Oncology Unit of Hospital Dr. Nélio Mendonça (Funchal, Portugal) and
Blood Donors Bank of the same Hospital, respectively (Table 1), and were randomly selected among
the volunteers. Patients did not receive any neoadjuvant chemotherapy or radiation therapy prior
to sample collection. Healthy controls were age- and gender-matched patients and had no declared
history of cancer or gastrointestinal symptoms. Exclusion criteria included pregnancy, inflammatory
conditions, mental disorders, gastrointestinal tract disorders, hypertension, uncontrolled bacterial,
viral, or fungal infection and diabetes mellitus.

Table 1. List of collected urine samples from breast cancer patients and healthy individuals (controls).

Sample Group N◦ Urine Samples Age Range/Years Mean Age ± SD 1

Breast Cancer (BC) n = 40 40–74 59 ± 10

Control (CTL) n = 38 40–72 53 ± 8
1 SD: standard deviation.

The study was approved by the Ethic Committee of Hospital Dr. Nélio Mendonça (Approval
no. S.1708625/2017). Written informed consent for the study was obtained from all participants.
Each individual (either as a patient or healthy volunteer) provided a sample of morning urine (after
overnight fasting) in a 20 mL sterile container. The samples were aliquoted into 4 mL glass vials and
frozen at –80 ◦C until the experiments.

Urine samples were thawed and centrifuged (8000 rpm for 5 min) to remove any suspended cells
and other precipitated material [12]. Then, 540 µL of urine was mixed with 60 µL of a buffer solution
(KH2PO4, 1.5 M in D2O) containing 0.1% of TSP-d4 (used as chemical shift reference) and sodium azide
(NaN3, 2 mM). The pH was adjusted to 7.00 ± 0.02 by adding small amounts of KOD.

2.3. NMR Measurements

NMR spectral acquisition was performed using a Bruker Advance II Plus NMR spectrometer
equipped with a 400 MHz magnet UltraShield™ 400 Plus at 300K. All NMR spectra acquisition
and pre-processing were performed under the control of a workstation with TopSpin 3.1 (Bruker
BioSpin). Two different 1H-NMR spectra were collected: a 1D 1H spectrum providing quantitative
metabolite data for statistical analysis while 2D HSQC and 2D-Jres experiments assisted in peak
assignment and metabolite identification using standard Bruker pulse programs. For each sample,
a 1D nuclear overhauser enhancement spectroscopy (NOESY) pulse sequence (noesypr1d) was used
in all cases and solvent signal suppression was achieved by presaturation during relaxation and
mixing time (SW 4807.692 Hz, TD 64 K data points, relaxation delay 5 s, 128 scans). The shimming
was calibrated automatically. Also, all spectra were processed using a line broadening (1.0 Hz) and
baseline automatically corrected. The NMR spectrum of each sample was aligned with reference to
the TSP signal at δ 0.00 ppm. Spectral regions within the range of 0.94 to 10 ppm were analyzed after
excluding the sub-region δ 4.55–6.05 ppm to remove variability arising from water suppression and
possible cross-relaxation effect on the urea signal via solvent exchanging protons. As already known,
the TSP signal may be affected by proteins or other macromolecules present in samples [41] and for that
reason in the preparation of urine samples before NMR analysis, the step of centrifugation was taken
into account and the rotations per minute (rpm) was used in order to remove any proteins present
in samples
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The identification of metabolites was accomplished using the Chenomx NMR Suite 8.2 (Chenomx
Inc., Alberta, Canada) and relative concentrations (in mM) of metabolites were determined using the
400MHz library from Chenomx NMR Suite 8.2, which compares the integral of a known reference
signal (TSP) with signals derived from a library of compounds containing chemical shifts and peak
multiplicities. In addition, the identification of selected metabolites was also cross checked from the
Human Metabolome Database (HMDB) [42] and literature [43]. Regarding the metabolites that were
not available in the library, identification was accomplished by running a standard solution and the
relative concentration was calculated manually. This software not only allows the identification of
compounds but also access their quantification based on advanced algorithms turning into a very
straightforward tool to analyze NMR spectra.

2.4. Statistical Analysis

Statistical analyses were performed using the web server Metaboanalyst 3.0 [44] where sample
specific normalization allowed the manual adjustment of relative concentrations based on biological
inputs (i.e., volume, mass) and row-wise normalization allowed the general-purpose adjustment for
differences among samples. Regarding data transformation and scaling were accomplished using two
different approaches to make features more comparable, raw data were scaled using mean-centering
and cubic root transformation. Intensities in each spectrum were normalized by the sum to avoid
the contribution of urine dilution. Then, multivariate statistical analyses, namely, PCA, PLS-DA,
and OPLS-DA were applied to the urinary metabolomic profile dataset to provide insights into the
separations between the groups. Furthermore, hierarchical cluster analysis by k-means of the 2 groups
in the study was performed and Pearson’s correlation was used to generate the heat map using the
metabolites to identify clustering patterns. Moreover, the ROC curves were attained to verify which
metabolites had the highest sensitivity/specificity for a BC diagnosis. Finally, the metabolites were
used for the metabolic pathway analysis to identify the most relevant metabolic pathways involved in
the BC and CTL groups.

3. Results and Discussion

3.1. Urinary Metabolomic Pattern Based on 1H NMR

1H NMR analysis was performed according to the procedure described in the Methods section.
A representative first dimension urine 1H NMR spectrum, referenced to TSP (δ 0. 0 ppm), from a BC
patient is shown in Figure 1, and metabolites were indicated based on their chemical shifts.

Table 2 represents the identification of metabolites as well as their minimum and maximum
relative concentrations (mM) for each group and the respective percentage of occurrence (FO). Each
sample analysis was performed in triplicate and the relative standard deviation (RSD) was lower than
2%.
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Table 2. Metabolites found in urine samples from breast cancer (BC) patients and healthy controls (CTL) (n = 3, % RSD <2).

Peak n◦ Metabolite
δ (ppm) Relative Concentrations (mM)

Variation

K-S 3 (Normality) FO (%) 6

CTL BC CTL BC Mean
Comparison 5 CTL BC

Multiplicity Min 1 Max 2 Average Min Max Average Statistic 4 p-Value Statistic p-Value

6 α-hydroxyisobutyrate 1.35 (s) 7 1.21 6.64 3.94 0.15 0.89 0.55 ↓ 0.118 0.200 0.138 0.200 1.10 × 10−12 78 100
18 creatinine 3.03 (s), 4.05 (s) 116.84 381.60 200.56 10.49 216.36 83.87 ↓ 0.231 0.200 0.265 0.103 9.23 × 10−11 100 100
13 pyruvate 2.36 (s) 1.90 4.35 3.34 0.47 3.71 1.86 ↓ 0.317 0.032 0.114 0.200 3.86 × 10−10 100 100
5 threonine 1.32 (d) 8, 3.58 (d), 4.25 (m) 9 2.15 6.81 4.33 0.74 4.09 2.36 ↓ 0.203 0.200 0.197 0.200 5.12 × 10−10 98 93
17 α-oxoglutarate 2.43 (t) 10, 2.99 (t) 3.00 10.54 6.33 0.82 6.13 3.07 ↓ 0.245 0.200 0.207 0.200 8.78 × 10−10 95 92
3 β-hydroxyisovalerate 1.26 (s), 2.35 (s) 0.71 1.64 1.19 0.15 1.16 0.57 ↓ 0.166 0.200 0.298 0.035 7.15 × 10−9 98 100
16 dimethylamine 2.72 (s) 3.43 9.71 7.00 0.31 8.07 3.61 ↓ 0.232 0.200 0.267 0.097 1.00 × 10−8 95 100
8 acetate 1.91 (s) 1.30 3.30 2.03 0.56 2.44 1.36 ↓ 0.202 0.200 0.206 0.200 1.00 × 10−7 95 96
4 lactate 1.32 (d), 4.11 (m) 2.14 6.41 3.99 0.75 4.71 2.88 ↓ 0.174 0.200 0.153 0.200 1.10 × 10-7 98 100
20 choline 3.19 (s), 3.51 (m), 4.06 (m) 0.93 2.45 1.61 0.25 2.07 1.08 ↓ 0.221 0.200 0.223 0.200 1.20 × 10−7 100 96
28 serine 3.84 (q) 11, 3.94 (q), 3.98 (q) 15.00 60.92 29.59 5.03 30.12 15.32 ↓ 0.231 0.200 0.220 0.200 3.59 × 10−7 95 92
11 carnitine 2.40 (s), 2.45 (s), 3.21 (s) 0.65 2.95 1.70 0.15 1.97 0.86 ↓ 0.218 0.200 0.200 0.200 1.46 × 10−6 100 80
14 succinate 2.39 (s) 0.70 1.61 1.04 0.18 1.25 0.68 ↓ 0.192 0.200 0.146 0.200 1.88 × 10−6 100 96
9 glutamine 2.10 (t), 2.42 (m), 3.77 (t) 1.47 11.19 7.13 1.65 10.81 4.78 ↓ 0.219 0.200 0.242 0.186 2.87 × 10−6 93 67
12 4-cresol sulphate 2.24 (s), 6.82 (m), 7.23 (m) 1.22 11.91 5.51 0.79 4.92 2.09 ↓ 0.216 0.200 0.191 0.200 1.38 × 10−5 100 84
36 formate 8.44 (s) 0.18 1.58 0.70 1.44 6.66 3.75 ↑ 0.256 0.184 0.349 0.005 1.54 × 10−5 77 79
29 creatine 3.03 (s), 3.92 (s) 6.19 40.74 20.77 1.50 17.00 7.46 ↓ 0.194 0.200 0.225 0.200 3.29 × 10−5 98 92
27 guanidoacetate 3.79 (s) 7.98 21.04 12.41 1.71 14.89 8.72 ↓ 0.206 0.200 0.171 0.200 5.38 × 10−5 100 92
19 cis-aconitate 3.11 (d), 5.72 (m) 4.08 12.31 7.51 0.59 12.20 5.14 ↓ 0.167 0.200 0.207 0.200 8.28 × 10−5 95 100
7 alanine 1.47 (d), 3.78 (m) 1.59 4.48 2.90 0.57 3.51 2.29 ↓ 0.202 0.200 0.255 0.136 8.42 × 10−5 100 100
1 valine 1.03 (d), 2.26 (m), 3.60 (d)4 0.32 1.14 0.60 0.27 1.24 0.50 ↓ 0.270 0.131 0.310 0.023 1.35 × 10−4 95 68
10 acetone 2.22 (s) 0.78 2.69 1.60 0.33 2.31 1.28 ↓ 0.167 0.200 0.171 0.200 1.64 × 10−4 100 92
22 trimethylamine N-oxide 3.25 (s) 3.37 15.65 8.96 1.31 18.04 5.63 ↓ 0.173 0.200 0.300 0.033 2.82 × 10−4 85 92
26 mannitol 3.67 (m), 3.75 (m), 3.79 (d) 14.24 49.04 28.85 3.67 24.04 16.10 ↓ 0.230 0.200 0.167 0.200 6.31 × 10−4 100 92
25 glycine 3.55 (s) 1.93 43.52 18.57 1.88 22.13 10.20 ↓ 0.166 0.200 0.166 0.200 9.26 × 10−4 88 100
31 trigonelline 4.43 (s), 8.07 (t), 8.83 (m), 8.78 (m) 1.36 4.21 2.79 0.39 6.13 2.68 ↓ 0.168 0.200 0.264 0.106 1.35 × 10−3 100 88
15 citrate 2.53 (d), 2.69 (d) 9.14 85.10 33.04 10.58 55.47 29.53 ↓ 0.327 0.023 0.231 0.200 2.10 × 10−3 100 100
23 taurine 3.25 (t), 3.42 (t) 6.66 12.95 10.18 1.93 14.46 6.80 ↓ 0.164 0.200 0.307 0.026 2.58 × 10−3 98 92
2 α-hydroxybutyrate 1.19 (d), 2.27 (m), 2.39 (m) 0.47 1.30 0.77 0.39 3.38 1.47 ↑ 0.208 0.200 0.318 0.017 2.71 × 10−3 100 95
21 betaine 3.25 (s), 3.89 (s) 0.52 2.62 1.37 0.22 1.96 1.05 ↓ 0.261 0.163 0.144 0.200 1.71 × 10−2 93 100
35 hypoxanthine 8.18 (s), 8.20 (s) 0.45 2.77 1.57 0.31 2.14 0.78 ↓ 0.214 0.200 0.316 0.018 3.42 × 10−2 80 64
34 3-methylhistidine 3.22 (m), 3.31 (m), 3.73 (s), 3.96 (q), 8.08 (s) 0.56 11.63 4.33 0.54 10.87 2.44 ↓ 0.224 0.200 0.419 0.000 1.74 × 10−1 93 100
24 4-hydroxyphenylacetate 3.44 (s), 6.85 (d), 7.15 (d) 0.90 4.14 1.89 0.59 5.02 1.57 ↓ 0.287 0.084 0.282 0.061 3.65 × 10−1 90 88
32 histidine 7.08 (m), 7.87 (d) 0.12 4.06 0.95 0.33 1.09 0.57 ↓ 0.406 0.001 0.206 0.200 3.88 × 10−1 88 89
33 phenylalanine 7.31 (m), 7.37 (m), 7.43 (m) 0.97 4.84 1.98 0.91 5.99 2.66 ↑ 0.252 0.200 0.182 0.200 6.93 × 10−1 76 88
30 hippurate 3.96 (d), 7.54 (t), 7.63 (t), 7.82 (d) 5.56 70.01 24.73 2.27 58.30 33.76 ↑ 0.258 0.174 0.313 0.021 7.48 × 10−1 93 96

Legend: 1 Min—minimum relative concentration; 2 Max—maximum relative concentration; 3 K–S—Kolmogorov–Smirnov (normality test); 4 observed value related to K–S test regarding
normality; 5 Mean comparison using t-test or Mann–Whitney–Wilcoxon test; 6 frequency of occurrence; 7 (s) singlet; 8 (t) triplet; 9 (m) multiplet; 10 (d) duplet; 11 (q) quartet.



Metabolites 2019, 9, 269 6 of 17

Metabolites 2019, 9, x FOR PEER REVIEW 7 of 18 

 

For most metabolites, the FO was higher than 90% with the following exceptions: valine, 
glutamine, carnitine, trigonelline, 4-cresol sulphate, and hypoxanthine for the BC group; α-
hydroxyisobutyrate, trimethylamine N-oxide, hypoxanthine, and glycine for the CTL group. 
Regarding relative concentrations (in mM), the highest level was obtained for creatinine followed by 
hippurate in the BC group and citrate in the CTL group. In addition, taurine and mannitol presented 
superior levels in BC group, respectively. It can also be highlighted that the majority of metabolites 
were down-regulated relatively to the BC group, except formate, α-hydroxybutyrate hippurate, and 
phenylalanine, that were up-regulated, being also identified in a study developed by Carrola et al. 
[12] with lung cancer patients 

 
Figure 1. Typical 400 MHz representative urine 1H NMR spectrum from a BC patient, referenced to 
TSP (δ 0.00 ppm). For peak identification please see Table 2. 

Thirty-six metabolites were identified and quantified relative to TSP (Figure 1). The main 
metabolites identified in urine resulted mainly from tricarboxylate (e.g., citrate, cis-aconitate), 
methane (e.g., dimethylamine, trimethylamine N-oxide) and amino acid metabolisms (e.g., 
hippurate, glycine). The most intense signals were obtained from creatinine, creatine, hippurate, 
citrate, and trimethylamine N-oxide (Figure 1). These metabolites were already identified in several 
studies that use urine from cancer individuals [12,37,45]. Trimethylamine N-oxide is produced in the 
liver by intestinal bacteria from dietary quaternary amines, such as choline and carnitine trough 
trimethylamine (TMA) via flavin-containing monooxygenase (FMO3), and the levels in urine or 
plasma are used to determine FMO3 deficiency [46–50]. Creatinine is subsequently produced via a 
biological system involving creatine, phosphocreatine, and adenosine triphosphate (ATP), whereas 
hippurate and citrate are derived from phenylalanine metabolism and the citrate cycle [51]. The 
concentration of creatinine is age- and sex dependent, decreasing with age and varying throughout 
the day. Normally, the concentration of creatinine is increased in males when compared with females, 
given the increased body mass index [52]. Creatinine production from the muscles is proportional to 
the total muscle mass and muscle catabolism. In individuals with a relatively low muscle mass, 
including children, women, and cancer patients, serum creatinine levels are reduced for a given 
glomerular filtration rate (GFR), which is the flow rate of filtered fluid through the kidney, thus 
providing information on kidney function [53]. 

3.2. Multivariate Statistical Analysis of Urinary Metabolomic Profile 

Figure 1. Typical 400 MHz representative urine 1H NMR spectrum from a BC patient, referenced to
TSP (δ 0.00 ppm). For peak identification please see Table 2.

For most metabolites, the FO was higher than 90% with the following exceptions: valine, glutamine,
carnitine, trigonelline, 4-cresol sulphate, and hypoxanthine for the BC group; α-hydroxyisobutyrate,
trimethylamine N-oxide, hypoxanthine, and glycine for the CTL group. Regarding relative
concentrations (in mM), the highest level was obtained for creatinine followed by hippurate in the BC
group and citrate in the CTL group. In addition, taurine and mannitol presented superior levels in BC
group, respectively. It can also be highlighted that the majority of metabolites were down-regulated
relatively to the BC group, except formate, α-hydroxybutyrate hippurate, and phenylalanine, that were
up-regulated, being also identified in a study developed by Carrola et al. [12] with lung cancer patients

Thirty-six metabolites were identified and quantified relative to TSP (Figure 1). The main
metabolites identified in urine resulted mainly from tricarboxylate (e.g., citrate, cis-aconitate), methane
(e.g., dimethylamine, trimethylamine N-oxide) and amino acid metabolisms (e.g., hippurate, glycine).
The most intense signals were obtained from creatinine, creatine, hippurate, citrate, and trimethylamine
N-oxide (Figure 1). These metabolites were already identified in several studies that use urine from
cancer individuals [12,37,45]. Trimethylamine N-oxide is produced in the liver by intestinal bacteria
from dietary quaternary amines, such as choline and carnitine trough trimethylamine (TMA) via
flavin-containing monooxygenase (FMO3), and the levels in urine or plasma are used to determine
FMO3 deficiency [46–50]. Creatinine is subsequently produced via a biological system involving
creatine, phosphocreatine, and adenosine triphosphate (ATP), whereas hippurate and citrate are derived
from phenylalanine metabolism and the citrate cycle [51]. The concentration of creatinine is age- and
sex dependent, decreasing with age and varying throughout the day. Normally, the concentration of
creatinine is increased in males when compared with females, given the increased body mass index [52].
Creatinine production from the muscles is proportional to the total muscle mass and muscle catabolism.
In individuals with a relatively low muscle mass, including children, women, and cancer patients,
serum creatinine levels are reduced for a given glomerular filtration rate (GFR), which is the flow rate
of filtered fluid through the kidney, thus providing information on kidney function [53].

3.2. Multivariate Statistical Analysis of Urinary Metabolomic Profile

The first step before performing multivariate statistical analysis was to verify the normal
distribution of the urinary metabolomic profile dataset using the Kolmogorov–Smirnov test (Table 2).
All samples under analysis exhibited a normal distribution within each assigned group (p > 0.05).
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The samples under analysis that exhibited a normal distribution within each assigned group (those
with p-values > 0.05 in the K–S column) were tested using the t-test to compare the means of the
two groups (BC and CTL). For the samples that rejected the normality assumption (p-values < 0.05),
the Mann–Whitney–Wilcoxon test was applied. The corresponding p-values associated with these tests
are presented in a mean comparison column in Table 2. Furthermore, to obtain a reliable dataset to
apply multivariate analysis, the dataset was evaluated to exclude the metabolites that had an FO < 90%.
The dataset used to perform the statistical analysis also excluded creatinine, as mentioned above,
as its concentration is dependent on age, gender, and disease status, decreasing with age and varying
throughout the day. Regarding creatinine, relative concentrations obtained, and their respective
differences between groups under study, this metabolite might be considered a potential artefact given
that creatinine values may be altered, as the generation of creatinine may not be simply a product
of muscle mass but influenced by muscle function, muscle composition, activity, diet, and health
status [54]. Based on this, the dataset composed of 33 metabolites and 70 samples (32 BC and 38
CTL) that fulfilled this condition was subjected to principal component analysis (PCA). PCA as an
unsupervised method was performed to visualize the similarities/differences between urine sample
profiles of groups in this study. In this step, the samples were analyzed individually, e.g. without
classification, according to the groups. A PCA score plot and loading plot from urine samples are
presented in Supplementary Figure S1a,b. Although the projection of the variance between samples
was performed without classification, it is possible to observe that the PCA of urine samples from BC
patients and those from CTL presented a tendency for the formation of two clusters across the first
principal component (PC1) that explains 54.6 % of the total variance. Most of the metabolites exhibited
enormous importance in the variance projection of samples. Then, the partial least square-discriminant
analysis (PLS-DA) was used as a supervised clustering method to maximize the separation between
the groups and demonstrated that the samples tended to be grouped according with health condition
of subject (BC and CTL) through its variance/covariance along the first component. Ten differently
expressed metabolites that exhibited a variable importance in a projection (VIP) score greater than 1 were
identified: creatine, glycine, serine, dimethylamine, trimethylamine N-oxide, α-hydroxyisobutyrate,
mannitol, glutamine, cis-aconitate, and trigonelline (Figure 2a–d).

Many of these metabolites were already identified in various cancer types, including lung [12,55],
breast, ovarian [3,5], bladder [56], and gastric cancers [57], in previous reports. Additionally,
Zhou et al. [58] performed a metabonomics study using serum and urine from BC patients based
on NMR, where citrate, phenylacetylglycine, and guanidoacetate exhibited significance in the
discrimination of BC patients from healthy volunteers. In addition, Slupsky et al. [3] accomplished a
study using urine from breast and ovarian cancer patients to discover metabolites for an early diagnosis.
The authors found that certain intermediates of the tricarboxylic acid cycle and metabolites relating
to energy metabolism, amino acids, and gut microbial metabolism, were perturbed. With regard to
amino acids as raw materials of protein synthesis and catabolism products in vivo, their changes,
whether in composition and concentration, can reflect the metabolic status of patients [58]. In addition,
Cala et al. [59] established that the urinary and lipid profiles of Hispanic women also identified some of
the same metabolites of this study, namely amino acids (valine, alanine, glycine, threonine), their levels
being decreased in BC patients when compared to controls. This might be related to the requirement
of amino acids in cancer metabolism in order to facilitate proliferation and cancer progression [60].

Moreover, a heat map was constructed using Pearson’s correlation, providing intuitive
visualization of the data set. The heat map contained the metabolites and was used to identify
samples or features that are unusually high or low (Figure 3). As noted in Figure 3, the higher
relative concentrations for most metabolites were found in the CTL group whereas the lowest relative
concentrations were noted in the BC group.
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Also, a heat map was generated for the dataset using Pearson’s correlation, providing an immediate
visualization of data and possible correlations between samples (Figure 3).
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Figure 3. Heat map visualization and hierarchical clustering analysis by Pearson’s distance analysis.

Additionally, orthogonal partial least square-discriminant (OPLS-DA) analysis was applied to
the urinary metabolomic profile dataset to maximize the separation between the CTL and BC groups.
Figure 4a,b presents the scores and the loading plots for the OPLS-DA analysis, where it can be
observed that a good separation was achieved with 54.8 % of total variance.
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on 1000 permutations of metabolites obtained by 1H NMR analysis of urine samples from the two groups under study. The p-value based on permutation was
p < 0.001 (0/1000).
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The OPLS-DA tool provides insights into the separation between the groups, demonstrating
which variables are responsible for class discrimination. The robustness of the model was tested using
a random permutation test with 1000 permutations (Figure 4b). This test yielded an R2 (that represents
the goodness of fit) of 0.846 and a Q2 (that represents the predictive ability) of 0.770, indicating that
the model is not over fitted and has a good predictive ability to distinguish between the groups
under study.

Moreover, receiver operating characteristic curves (ROCs) were generated for the two groups
(CTL-BC) using the 10 identified metabolites with VIP values higher than 1 and are presented in
Figure 5a,b.
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Figure 5. Receiver operating characteristic (ROC) curves for the predictive model. (a) A combination
model calculated from the logistic regression analysis using the 10 metabolites selected by the VIP
(>1.0) values, (b) ROC curves for the top 4 metabolites (creatine, glycine, trimethylamine N-oxide,
and serine) with the highest ability to discriminate BC patients against CTL.

As noted in the figure, as the number of metabolites increases, the area under the curve (AUC)
also increases. Thus, using only 4 metabolites, the AUC value obtained was 0.91 for the CTL–BC,
demonstrating the higher sensitivity/specificity to distinguish the groups. The metabolites with
significance were creatine, glycine, serine, and trimethylamine N-oxide. These results are in accordance
with the literature, where Xia et al. [61] report that an AUC value between 0.9 and 1.0 is excellent, and a
value between 0.8 and 0.9 is good. By comparing the results, the values obtained were very good.
A greater AUC value indicates a greater ability to distinguish the CTL from the BC group. The AUC
can be interpreted as the probability that a randomly selected diseased subject is classified as diseased
than a casually selected healthy subject [61].

Moreover, a 10-fold cross validation was used to generate a logistic regression model and the
performance was calculated according to the equation below.

logit(P) = log(P/(1 − P)) = 0.471 + 1.434 creatine + 1.327 glycine + 0.25 serine + 0.285trimethylamine N-oxide (1)

where P is Pr(y = 1|x). The best threshold (or cutoff) for the predicted P was 0.39 (Tables S1 and S2).
Figure 6a,b show the results obtained for the predicted probabilities using the OPLS-DA model

and the average of the predictive accuracy for the same model, where it can be observed that the model
allowed good classification of samples (>90%). Moreover, 14 samples without known labels were
processed together with the ones with known labels in order to obtain the probability of class labels,
as presented in Table S3.
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Figure 6. (a) Plot of the predicted class probabilities for all samples using the OPLS-DA biomarker
model based on AUC and (b) box plot of the predictive accuracy (with an average of 0.910) of the
biomarker model based on 100 cross validations.

Most of the cases were classified in their respective group except for CTL49, BA71 and BA1, with a
probability score ranging from 0.729 to 0.829 (Table S3).

Finally, the metabolic pathway analysis was performed to determine which pathways were altered
in the groups under study.

Figure 7a,b presents the impacted pathways in the CTL-BC groups, respectively. The most
impacted metabolic pathways were the glycine metabolism, the glutamate metabolism, the butanoate
metabolism, glycolysis, the citrate cycle (TCA cycle), the taurine metabolism and the pyruvate
metabolism, indicated by the red and yellow colors. It can be also highlighted that the pathway
with the highest impact was the glycine metabolism (Figure 6b). The alterations are related to the
down-regulation of the tricarboxylic acid (TCA) cycle (e.g., the Warburg effect) and the increased
energy request in tumors [62]. It is well known that cancer cells convert more glucose into lactic
acid than normal cells even in aerobic conditions, leading to a disturbance of the TCA cycle and
their intermediates.

Based on these results, a successful differentiation and discrimination of samples was achieved
between the CTL and BC groups. The results indicate that the 1H NMR urinary profile represents a
useful approach to identifying potential BC biomarkers.
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4. Conclusions

This study assessed the metabolomic urinary profile of BC patients in active and follow-up stages
compared with that in healthy volunteers, using 1H NMR combined with multivariate statistical tools
(PCA, PLS-DA, and OPLS-DA) that were applied to two groups (BC and CTL). Thirty-three metabolites
were identified and quantified using Chenomx software. Multivariate statistical analysis revealed
some metabolites were significantly altered in BC patients. Of the metabolites detected, creatine,
glycine, serine, dimethylamine, trimethylamine N-oxide, α-hydroxyisobutyrate, mannitol, glutamine,
cis-aconitate, and trigonelline exhibited the highest sensitivities and specificities to discriminate BC
patients from healthy controls. A plot analysis revealed a metabolomic biosignature comprising an
array of several biochemical pathways altered in BC patients. A metabolic pathway analysis indicated
that the discriminatory metabolites potentially originated from several dysregulated pathways in BC:
the glycine metabolism, the glutamate metabolism, the butanoate metabolism, glycolysis, the citrate
cycle (TCA cycle), the taurine metabolism and the pyruvate metabolism. Moreover, although this was a
small sample cohort without discrimination against BC subtypes, the results obtained were promising,
indicating the usefulness of endogenous metabolites for biomarker discovery metabolites and the need
to investigate the related metabolomic pathways in order to improve the diagnostic tools of BC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/11/269/s1,
Figure S1: Scores plot (a) and loading plots (b) of PCA from urine samples based on 33 metabolites. For numbers
identification see Table 2.
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