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Abstract: Despite advances in the diagnosis and treatment of the central nervous system malignancy
glioma, overall survival remains poor. Cytoskeleton-associated protein 2-like (CKAP2L), which plays
key roles in neural progenitor cell division, has also been linked to poor prognosis in lung cancer.
In the present study, we investigated the role of CKAP2L in glioma. From bioinformatics analyses
of datasets from The Cancer Gene Atlas and the Chinese Glioma Genome Atlas, we found that
CKAP2L expression correlates with tumor grade and overall survival. Gene set enrichment analysis
(GSEA) showed that MITOTIC_SPINDLE, G2M_CHECKPOINT, and E2F_TARGETS are crucially
enriched phenotypes associated with high CKAP2L expression. Using U87MG, U118MG, and LNZ308
human glioma cells, we confirmed that CKAP2L knockdown with siCKAP2L inhibits glioma cell
proliferation, migration, invasion, and epithelial-mesenchymal transition. Interestingly, CKAP2L
knockdown also induced cell cycle arrest at G2/M phase, which is consistent with the GSEA finding.
Finally, we observed that CKAP2L knockdown led to significant increases in miR-4496. Treating cells
with exogenous miR-4496 mimicked the effect of CKAP2L knockdown, and the effects of CKAP2L
knockdown could be suppressed by miR-4496 inhibition. These findings suggest that CKAP2L is
a vital regulator of miR-4496 activity and that CKAP2L is a potentially useful prognostic marker in
glioma.
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1. Introduction

Central nervous system (CNS) malignancies are responsible for significant morbidity
and mortality worldwide [1]. Among CNS malignancies, glioma is the most common,
accounting for 26% of all CNS neoplasms [2]. The most lethal of the gliomas is the glioblas-
toma (GBM) World Health Organization (WHO) grade IV [3]. Before 2016, glioma diag-
noses were based on cellular morphology and included astrocytoma, oligodendroglioma,
and ependymoma, based on the 4th version of WHO Classification for Brain Tumors [4].
Since the revision of the 4th edition of the WHO Classification [3] and recent updates [5–7],
the molecular information has played a critical role in prognosis prediction and treatment,
such as IDH1/2 [8,9], 1p19q [3], EGFR amplification [6], combined whole chromosome
7 gain and 10 loss [6], TERT promoter mutation [6], CDKN2A/B homozygous deletion [5],
and MGMT methylation status [10]. For instance, methylation profiles were recently used
to achieve better brain tumor classification for risk stratification [11,12]. However, despite
these advances in molecular stratification, overall survival among patients with GBM
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remains poor at 14.6 months [13,14]. Hence, there is an essential need to identify new
biomarkers and treatments that improve patient outcomes.

One group of potential targets is microRNAs (miRNAs), which are non-coding, single-
stranded RNAs that contain around 21–25 nucleotides and act post-transcriptionally to
influence gene expression [15–18]. In recent years, many significantly up/down-regulated
miRNAs have been detected in GBM, including miR-21, miR10, and miR92 [16,18–20], to
name just three. The actions of these miRNAs have been linked to cellular proliferation,
survival, invasion, and drug resistance [16,17]. Targeting miRNAs is now considered to be
a potentially effective way to modify the expression of oncogenes and tumor suppressor
genes to stop or slow tumor progression.

Cytoskeleton-associated protein 2-like (CKAP2L) gene, located on chromosome 2,
encodes a protein that is vital for cell division in neural progenitor cells [21] and is part of
the centrosome, located in the spindle, midbody, and spindle pole [22]. Previous studies
showed that loss of CKAP2L function leads to Filippi syndrome and microcephaly [23].
On the other hand, increased CKAP2L expression is associated with a poorer prognosis in
pulmonary adenocarcinoma patients [24]. Up to now, the role of CKAP2L in gliomas has
not been addressed. In the present study, therefore, we used bioinformatic analysis, clinical
validation, cell modeling, and miRNA screening to investigate the role played by CKAP2L
in gliomas.

2. Results
2.1. CKAP2L Expression Correlated with Tumor Grade and Overall Survival in Glioma

Statistical analysis showed a strong correlation between CKAP2L mRNA expression
and prognosis in both TCGA and the CGGA datasets. Among the 701 TCGA samples,
we found that CKAP2L expression correlated significantly (p < 0.0001) with tumor grade
(Figure 1A). When the dataset was subdivided based on tumor grade (normal, Gr-II, Gr-III,
and Gr-IV), CKAP2L mRNA expression significantly (p < 0.01) differed among groups,
though no difference was detected between normal brain tissue (n = 5) and Grade II glioma
(Figure 1A). This likely reflects the small number of samples of normal tissue. In addition,
after dividing TCGA dataset into high-CKAP2L (>5.526, n = 346) and low CKAP2L (≤5.526,
n = 346) subgroups based on the median CKAP2L expression, Kaplan–Meier analysis
showed that higher CKAP2L mRNA expression was significantly (p < 0.0001) associated
with a poorer prognosis (Figure 1B). Similarly, among the 325 glioma samples in the CGGA
dataset, CKAP2L mRNA expression correlated significantly (p < 0.0001) with the tumor
grade (Figure 1C). Moreover, after subdividing the dataset according to tumor grade (Gr-II,
Gr-III, and Gr-IV), CKAP2L mRNA expression significantly differed among the groups
(p < 0.0001). Furthermore, as with TCGA dataset, dividing the CGGA dataset into high-
CKAP2L (>1.465, n = 162) and low-CKAP2L (<1.465, n = 163) expression groups based on
the median expression showed that high CKAP2L expression was significantly (p < 0.0001)
associated with a poor prognosis (Figure 1D). These results indicate that CKAP2L expression
correlates with tumor grade and is associated with poorer overall survival. After further
breakdown by the tumor grading (Supplementary Figure S1), we found the grade III glioma
revealed a survival difference between the high and low CKAP2L expression groups at
TCGA and CGGA datasets (p < 0.001 and p = 0.017, respectively). In the grade II gliomas,
the curves were separated, but only the TCGA dataset reached statistical significance
(p < 0.001). In the GBM cluster, high and low CKAP2L expression groups’ curves only
revealed borderline significance (p = 0.054).
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Figure 1. Elevated Cytoskeleton-associated protein 2-like (CKAP2L) mRNA expression was associated with higher tumor 
grade and poor prognosis in glioma. (A) Box plot showing that CKAP2L gene expression correlates with World Health 
Organization (WHO) tumor grade in a TCGA dataset. (B) Kaplan–Meier curves showing that higher CKAP2L mRNA 
expression was significantly associated with poorer prognosis in a TCGA dataset p < 0.00001. (C,D) Similar results were 
obtained with the CGGA dataset. ** p ≤ 0.01, **** p ≤ 0.0001; Kaplan–Meier curves were compared using the log-rank test. 

2.2. MITOTIC_SPINDLE Is the Key Enriched Phenotype in the High CKAP2L Expression 
Group 

To further understand the differences between the high and low CKAP2L expression 
groups, we performed gene set enrichment analysis (GSEA) with TCGA and the CGGA 
datasets. A total of 29 gene sets were significant at False Discovery Rate (FDR) < 25%, and 
12 gene sets were significantly enriched at a nominal p-value < 5%. The top up-regulated 
phenotype in the high-CKAP2L group from TCGA (LogFC > 5.526, n = 351) was MI-
TOTIC_SPINDLE, followed by DNA_REPAIR, G2M_CHECKPOINT, MTORC1_SIG-
NALING, and E2F_TARGETS (Figure 2A). Similar results were obtained with the CGGA 
dataset. The most up-regulated phenotypes in the high CKAP2L group among CGGA 
samples (LogFC > 1.465, n = 162) were E2F_TARGETS, G2M_CHECKPOINT, MI-
TOTIC_SPINDLE, DNA_REPAIR, and MYC_TARGETS_V1. Thus, four of the top five 
phenotypes were the same in the two datasets (Figure 2B). The details of each result are 
demonstrated in the (Supplementary Tables S1 and S2). 

Figure 1. Elevated Cytoskeleton-associated protein 2-like (CKAP2L) mRNA expression was associated with higher tumor
grade and poor prognosis in glioma. (A) Box plot showing that CKAP2L gene expression correlates with World Health
Organization (WHO) tumor grade in a TCGA dataset. (B) Kaplan–Meier curves showing that higher CKAP2L mRNA
expression was significantly associated with poorer prognosis in a TCGA dataset p < 0.00001. (C,D) Similar results were
obtained with the CGGA dataset. ** p ≤ 0.01, **** p ≤ 0.0001; Kaplan–Meier curves were compared using the log-rank test.

2.2. MITOTIC_SPINDLE Is the Key Enriched Phenotype in the High CKAP2L Expression Group

To further understand the differences between the high and low CKAP2L expression
groups, we performed gene set enrichment analysis (GSEA) with TCGA and the CGGA
datasets. A total of 29 gene sets were significant at False Discovery Rate (FDR) < 25%,
and 12 gene sets were significantly enriched at a nominal p-value < 5%. The top up-
regulated phenotype in the high-CKAP2L group from TCGA (LogFC > 5.526, n = 351) was MI-
TOTIC_SPINDLE, followed by DNA_REPAIR, G2M_CHECKPOINT, MTORC1_SIGNALING,
and E2F_TARGETS (Figure 2A). Similar results were obtained with the CGGA dataset.
The most up-regulated phenotypes in the high CKAP2L group among CGGA samples
(LogFC > 1.465, n = 162) were E2F_TARGETS, G2M_CHECKPOINT, MITOTIC_SPINDLE,
DNA_REPAIR, and MYC_TARGETS_V1. Thus, four of the top five phenotypes were the
same in the two datasets (Figure 2B). The details of each result are demonstrated in the
(Supplementary Tables S1 and S2).
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DNA_REPAIR, G2M_CHECKPOINT, MTORC1_SIGNALING, and E2F_TARGETS. (B) Similar results were obtained with 
the CGGA. Note that four of the top five phenotypes were the same in both datasets. 
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and H3K27M immunohistochemistry (IHC) staining showed that the glioma cases con-
tained pilocytic astrocytoma, diffuse astrocytoma with/without IDH-mutant, anaplastic 
astrocytomas with/without IDH-mutant, oligodendrogliomas, anaplastic oligodendrogli-
omas, glioblastomas with/without IDH-mutant, and diffuse midline glioma H3K27M-mu-
tant (Table 1). We observed that normal brain tissue samples showed negative or focally 
faint CKAP2L staining. By contrast, higher CKAP2L staining significantly correlated with 
tumor grade (p = 0.005, Figure 3A–E), further confirming that CKAP2L expression is asso-
ciated with higher tumor grade. However, no correlation was found among specific sub-
types (Table 1). To assess the relation between CKAP2L and glioma-related genes and 
other factors, we performed univariate and multivariate analyses. The results showed that 
age, MGMT methylation, EGFRvIII, p53, NF1, AxL, p-AxL, and H3Lys27 expression were 
associated with CKAP2L upregulation (Table 2). In addition, Cox regression analysis re-
vealed that older age, IDH1, loss of ATRX, and positive expression of AxL, p-AxL, NUR77, 
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Figure 2. Results of gene set enrichment analysis (GSEA) in high- and low-CKAP2L groups in TCGA and the CGGA
datasets. (A) In TCGA, the top phenotype in the high CKAP2L expression group was MITOTIC_SPINDLE, followed by
DNA_REPAIR, G2M_CHECKPOINT, MTORC1_SIGNALING, and E2F_TARGETS. (B) Similar results were obtained with
the CGGA. Note that four of the top five phenotypes were the same in both datasets.

2.3. CKAP2L Staining Correlates with WHO Grade in Glioma Tissues

To evaluate CKAP2L protein expression in human glioma tissues, we immunos-
tained tissue microarray slides containing gliomas of various WHO grades for CKAP2L.
After eliminating cases that lacked adequate specimens, 93 samples were examined, in-
cluding 10 samples of non-neoplastic brain tissue and 83 gliomas. IDH1, R132H, and
H3K27M immunohistochemistry (IHC) staining showed that the glioma cases contained
pilocytic astrocytoma, diffuse astrocytoma with/without IDH-mutant, anaplastic astrocy-
tomas with/without IDH-mutant, oligodendrogliomas, anaplastic oligodendrogliomas,
glioblastomas with/without IDH-mutant, and diffuse midline glioma H3K27M-mutant
(Table 1). We observed that normal brain tissue samples showed negative or focally faint
CKAP2L staining. By contrast, higher CKAP2L staining significantly correlated with tumor
grade (p = 0.005, Figure 3A–E), further confirming that CKAP2L expression is associated
with higher tumor grade. However, no correlation was found among specific subtypes
(Table 1). To assess the relation between CKAP2L and glioma-related genes and other fac-
tors, we performed univariate and multivariate analyses. The results showed that age,
MGMT methylation, EGFRvIII, p53, NF1, AxL, p-AxL, and H3Lys27 expression were associ-
ated with CKAP2L upregulation (Table 2). In addition, Cox regression analysis revealed
that older age, IDH1, loss of ATRX, and positive expression of AxL, p-AxL, NUR77, H3Lys27,
or PDGFRA were independent prognostic factors (Table 3).
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Table 1. CKAP2L immunostain scores in gliomas.

Average Intensity Average % Tumor Average Score Correlation *

Non-neoplastic brain tissue 0.67 10 10

Classification of gliomas

Pilocytic astrocytoma 1 5 5

No correlation
(p = 0.057)

Diffuse astrocytoma, IDH1-mutant 1 20 20
Diffuse astrocytoma, IDH1-wildtype 1 26.82 26.82

Anaplastic astrocytoma, IDH1-mutant 1 23.33 23.33
Anaplastic astrocytoma, IDH1-wildtype 1 40 40

Glioblastoma, IDH1-mutant 1 42.5 42.5
Glioblastoma, IDH1-wildtype 1 36.72 39.06

Oligodendroglioma, NOS 0.75 13.75 13.75 No correlation
(p = 0.960)Anaplastic oligodendroglioma, NOS 0.67 13.33 13.33

Diffuse midline glioma, H3
K27M-mutant 1.08 39.58 50.42

WHO grades of gliomas

WHO grade I 1 5 5 Positive
correlation
(p = 0.005 *)

WHO grade II 0.94 23.13 23.13
WHO grade III 0.86 25 25
WHO grade IV 1.02 38.10 42.20

* Differences were analyzed using the Pearson correlation method.
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Figure 3. Hematoxylin/eosin and immunohistochemical staining of CKAP2L in gliomas and normal brain. Panels on
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CKAP2L. (A,F) normal brain tissue, (B,G) grade I, (C,H) grade II, (D,I) grade III, and (E,J) Grade IV. Note that CKAP2L
staining is greater at higher tumor grades. Scale bar is 50 µm.
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Table 2. Univariate and multivariate analysis of risk factors associated with CKAP2L expression.

Univariate Analysis Multivariate Analysis

Variable Total OR (95% CI) p Value OR (95% CI) p Value

Age
<50 32 1
≥50 39 1.72 (1.48–2.28) 0.010 * 1.72 (1.48–2.26) 0.042 *

MGMT
Unmethylated 31 1
Methylated 40 1.07 (1.03–1.16) 0.714 1.08 (1.04–1.18) 0.008 *

EGFRvIII
Negative 54 1
Positive 17 1.42 (1.29–1.50) 0.089 1.49 (1.39–1.55) 0.012 *

P53
Negative 35 1

overexpression 36 1.39 (1.31–1.55) 0.081 1.44 (1.32–1.68) 0.007 *

NF1
Negative 37 1
Positive 34 1.39 (1.32–1.53) 0.081 1.40 (1.32–1.58) 0.013 *

AxL
Negative 25 1
Positive 46 1.23 (1.12–1.48) 0.297 1.27 (1.12–1.62) < 0.001 *

p-AxL
Negative 18 1
Positive 53 1.16 (0.98–1.63) 0.512 1.12 (0.96–1.55) 0.017 *

H3Lys27
Negative 9 1
Positive 62 2.39 (0.38–1.36) 0.020 * 2.47 (1.23–1.31) 0.010 *

* indicates the statistical significance, p < 0.05.

Table 3. Multivariate analysis for overall survival in gliomas.

Multivariate Analysis

Variable Hazard Ratio 95% Confidence
Interval p Value

Sex (male/female) 1.69 0.70–4.06 0.240

Age (<50/≥50) 6.05 2.36–15.52 <0.001 *

CKAP2L (≤20/>20) 0.43 0.17–1.05 0.063

IDH1 R132H (Negative/Positive) 2.87 1.05–2.87 0.040 *

ATRX (Preserve/Loss) 0.36 0.17–0.79 0.010 *

H3K27M (Negative/Positive) 0.60 0.19–1.96 0.398

MGMT (Unmethylated/ Methylated) 0.46 0.19–1.08 0.073

EGFR (Negative/Positive) 5.99 0.96–37.56 0.056

EGFRvIII (Negative/Positive) 1.10 0.44–2.77 0.845

P53 (Negative/Overexpression) 1.89 0.85–4.21 0.119

Neurofilament (Negative/Positive) 0.28 0.09–0.81 0.019

NF1 (Negative/Positive) 1.69 0.73–3.89 0.222
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Table 3. Cont.

Multivariate Analysis

Variable Hazard Ratio 95% Confidence
Interval p Value

AxL (Negative/Positive) 2.75 1.17–6.51 0.021 *

p-AxL (Negative/Positive) 4.49 1.53–13.16 0.006 *

NUR77 (Negative/Positive) 0.35 0.15–0.83 0.018 *

H3Lys27 (Negative/Positive) 0.33 0.11–0.99 0.049 *

PDGFRA (Negative/Positive) 9.73 1.74–54.48 <0.001 *
* indicates the statistical significance, p < 0.05.

2.4. Increased CKAP2L Expression in Human Glioma Cells

To further explore CKAP2L mRNA and protein expression in glioma, we performed
quantitative RT-PCR and Western blot analyses with normal brain tissue and the U87MG,
U118MG, and LNZ308 human glioma cell lines. We found that CKAP2L mRNA expression
was significantly higher in all three glioma cell lines than in normal brain tissue (p < 0.001,
Figure 4A, and Supplementary Table S3). Likewise, expression of CKAP2L protein was
higher in the three glioma cell lines than normal brain tissue (Figure 4B).
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2.5. Suppression of CKAP2L Inhibits Glioma Cell Growth

Given that U87MG and U118MG glioma cells exhibit higher CKAP2L mRNA ex-
pression than normal brain tissue, we next tested whether glioma phenotypes (increased
proliferation, invasion, and migration) could be suppressed by knocking down CKAP2L
expression using small interfering RNA (siRNA). After transfection of siCKAP2L or siRNA
(scramble siRNA) into U87MG and U118MG glioma cells, the expression of CKAP2L was
substantially reduced at both 25 nM and 37.5 nM siRNA supplementation (Figure 5A,B).
In order to avoid siRNA off-target effects, we chose 25 nM RNA for the following experi-
ment. Evaluation of cell proliferation 24, 48, and 72 h after the siRNA transfection revealed
that within 24 h in U87MG cells or 48 h in U118MG cells, cell number was significantly
lower in siCKAP2L-expressing cells than in the control group (Figure 5C,D). To further
investigate the relations between the cell decrease and proliferation ability, we looked
at the association of the CKAP2L versus the commonly used proliferation biomarkers
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in the TCGA dataset, including MKI67 [25] and MCM6 [25–27] expression, which have
been used in other brain tumor studies. The results demonstrated in Figure 6 showed
the high CKAP2L expression positively correlates with both proliferation markers, MKI67
and MCM6 (R = 0.906 and 0.782; R2 = 0.82 and 0.661, respectively, and both p < 0.0001)
in the TCGA dataset, as well as the CGGA dataset (R = 0.877 and 0.820; R2 = 0.769 and
0.672, individually; p < 0.0001). These findings supported the proposal that the CKAP2L
expression is correlated with proliferation ability.
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R2 = 0.769 and 0.672, respectively; p < 0.0001).

2.6. CKAP2L Knockdown Induces Cell Cycle G2/M Arrest

CKAP2L is known to be a component of the mitotic spindle [21], which helps to
segregate the chromosomes during the mitosis phase (M phase). To investigate the impact
of CKAP2L on mitotic function, we compared the cell cycle phase distributions between
glioma cells expressing siCKAP2L and siControl. We found that among U87MG and
U118MG cells, CKAP2L knockdown led to an increase in the numbers of cells in the G2/M
phase and a dramatic decrease in cells in the G1 phase (Figure 7A,B). Consistent with
that idea, Western blot analysis showed that cellular levels of cyclin B1 and p-cdc2 were
elevated by CKAP2L knockdown in both U87MG and U118MG cells (Figure 7C–E). Because
CKAP2L knockdown reduced cell proliferation, despite the increase in cells at the G2/M
phase, we suggest that the glioma cells were arrested at the G2/M phase.
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knockdown. * p < 0.05; ** p < 0.01; *** p < 0.001.

2.7. CKAP2L Knockdown Inhibits Invasiveness and Epithelial-Mesenchymal Transition (EMT)
in Glioma

To detect the relationship between CKAP2L expression and glioma cell malignancy,
cell invasion and wound-healing assays were carried out with U87MG glioma cells. In the
invasion study, fewer siCKAP2L-expressing cells migrated through the transwell mem-
branes, suggesting that CKAP2L suppression reduced the invasiveness of these tumor
cells (p < 0.05, Figure 8A). Similarly, wound healing was slower in cultures of CKAP2L
knockdown cells than control cells. Sixteen hours after wounding, the scratch area was
significantly larger in cultures of CKAP2L knockdown cells (p < 0.001, Figure 8B). In ad-
dition, evaluation of three EMT biomarkers (E-cadherin, Twist, and Vimentin) revealed
a significant decrease in Twist in CKAP2L knockdown cells (Figure 8C,D). This suggests
a decrease in EMT after CKAP2L knockdown, which also could contribute to the observed
reduction in invasiveness and slower migration.
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the gap. Relative levels of migrated cells are quantitated on the right. (C,D) Representative Western blot showing the effect 
of CKAP2L knockdown on the expression of the indicated epithelial-mesenchymal transition (EMT) markers. Quanti-
tative analysis of the Western blot data showing a trend toward reduction in Twist. * p < 0.05; ** p < 0.01; *** p < 0.001. 
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that the sub-G1 phase was very low when the concentration of miR-4496 was 0, 20, or 30 
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Figure 8. CKAP2L knockdown reduces invasion, migration, and epithelial-mesenchymal by U87 and U118 glioma cells.
(A) On the left are representative photomicrographs of the underside of transwell filters showing that fewer siCKAP2L-
expressing cells crossed the membrane from the upper chamber. Relative levels of invading cells are quantitated on the
right. (B) On the left are photomicrographs of scratch wounds showing that CKAP2L knockdown reduces migration into
the gap. Relative levels of migrated cells are quantitated on the right. (C,D) Representative Western blot showing the effect
of CKAP2L knockdown on the expression of the indicated epithelial-mesenchymal transition (EMT) markers. Quantitative
analysis of the Western blot data showing a trend toward reduction in Twist. * p < 0.05; ** p < 0.01; *** p < 0.001.

2.8. CKAP2L Knockdown Decreases Cell Numbers by Increasing miR-4496

Using a miRNA array to analyze miRNA expression in U87MG and U118MG glioma
cells expressing siCKAP2L or siControl, we identified three miRNAs that were upregulated
after CKAP2L knockdown in both cell types: miR-4496, miR-642b-3p, and miR-4740 (Table 4).
Among these three, the greatest increase was in miR-4496 levels, which were increased 4.469-
fold (Log2FC = 2.16) in U87MG cells and 5.24 (Log2FC = 2.39) in U118MG cells (Table 4).
To investigate the relation between miR-4496 and CKAP2L, we first tested the effect on cell
proliferation of exogenously applying miR-4496 to the two cell lines. As shown in Figure 9A,
cell numbers were significantly decreased when cells were exposed to 10 nM miR-4496 for
more than 48 h. To further confirm that these cellular reductions were not caused by cell
death, the cell cycle analysis was performed. The results showed that the sub-G1 phase was
very low when the concentration of miR-4496 was 0, 20, or 30 nM (Figure 9B). However,
an inconspicuous band showed when the contrition reached 40 nM, indicating that notable
cell death had occurred. Consequently, we presumed that the decreased cell number at the
10 nM miR-4496 (Figure 9A) was not relevant to cell death but more likely to be associated
with proliferation impairment. Thus, the effect of miR-4496 on glioma cell proliferation was
similar to that of CKAP2L knockdown. This suggests that suppressing CKAP2L led to increases
in miR-4496, which reduced glioma cell proliferation. To test that idea, we assessed the effect of
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the miR-4496 inhibitor. We found that in the presence of miR-4496 inhibitor, there was a dose-
dependent decline in the difference between cells expressing siCKAP2L and those expressing
siControl (Figure 9C). This suggests that suppressing CKAP2L decreased cell proliferation in
part by increasing levels of miR-4496, and that effect was reversed by miRNA-4496 inhibition.

Table 4. CKAP2L knockdown induces upregulation of miR-4496, miR-642b-3p, and miR-4740 in U87 and U118 glioma cells.

U87 Normalized Intensity Coefficient of Variation log2FC * p-Value

Name of miR U87 with
siControl

U87 with
siCKAP2L

U87 with
siControl

U87 with
siCKAP2L

(siCKAP2L/
siControl)

(siCKAP2L/
siControl)

hsa-miR-642a-3p 467.39 3253.615 0.08381377 0.23918642 2.79934478 0.036951922
hsa-miR-4496 90.5 405 0.16408003 0.21300501 2.16193221 0.036620139

hsa-miR-642b-3p 144.875 391.245 0.18913124 0.1822687 1.43326365 0.04486455
hsa-miR-132-3p 56 101.75 0.22728432 0.02432308 0.86153006 0.03789425

hsa-miR-4740-3p 33.5 55.5 0.02110767 0.01274066 0.72832668 0.00103146
hsa-miR-4712-3p 65 106 0.13054279 0.05336655 0.70555264 0.02956881
hsa-miR-10a-3p 48 76.5 0.02946278 0.06470258 0.67242534 0.015924106
hsa-miR-491-3p 52.5 81 0.0404061 0.03491885 0.62560449 0.007606987

hsa-miR-4723-5p 4147.415 6316.36 0.08147367 0.01306662 0.60688099 0.01261677

U118 Normalized Intensity Coefficient of Variation log2FC * p-Value

Name of miR U118 with
siControl

U118 with
siCKAP2L

U118 with
siControl

U118 with
siCKAP2L

(siCKAP2L/
siControl)

(siCKAP2L/
siControl)

hsa-miR-668-3p 475.865 766.455 0.06281068 0.01006522 0.68764874 0.005594934
hsa-miR-4740-3p 33.5 63 0.02110767 0.0673435 0.91119073 0.010462609
hsa-miR-642b-3p 116.165 390.805 0.087228 0.02241797 1.75027347 0.001187312

hsa-miR-4496 89.5 469.16 0.05530444 0.04473299 2.39012043 0.001608935

* log2FC, FC indicates “Folds change”.
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(C) miR-4496 inhibitor concentration dependently suppressed the anti-proliferative effect of siCKAP2L, eliminating the
difference between siCKAP2L-expressing and siControl-expressing cells. * p < 0.05; ** p < 0.01.
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3. Discussion

At present, there is only limited information about the role of CKAP2L in glioma.
Cytoskeleton-associated protein 2 (CKAP2) is an important paralog of CKAP2L that functions
to stabilize microtubules and plays a key role in the regulation of cell division [28,29]. CKAP2
gene is also upregulated in various kinds of cancer, including breast [30], prostate [31,32],
stomach [33,34], and ovarian [35] cancers, as well as glioma [36]. We therefore hypothesized
that CKAP2L may play similar roles in glioma. Interestingly, CKAP2L also appears to function
during mitotic phases and to play a critical role in cell division. Furthermore, an earlier study
showed that downregulation of CKAP2L triggers multipolar spindles and cell cycle arrest [37],
which is consistent with our present findings in glioma cells and tissues.

From TCGA and CGGA glioma datasets, we noticed the difference in CKAP2L expres-
sion showed high significance (p < 0.0001) among the tumor grades. However, the error bars
(Figure 1A,C) are huge. One of the probable causes might be these grades were separated
based on the 4th version of the WHO Classification for Brain Tumors [4]. However, each
grade of the tumor is still heterogeneous. From the current point of view [3], the previous
classification could be further stratified by integrating molecular information [5–7]. For ex-
ample, the grade II glioma included oligodendroglioma, diffuse astrocytoma with/without
IDH mutant [3], glioma with glioblastoma molecular features [5,6], and cases with better
outcome [7]. Similarly, the grade III group is also heterogeneous and could be separated
into different prognostic groups. Hence, each grade of the tumor is heterogeneous and
mixed with good and bad prognosis cases, which might express different levels of CKAP2L
and consequently, a large error bar. However, there is no useful molecular information to
help break down both TCGA and CGGA datasets currently.

Furthermore, in the Kaplan–Meier plots, it seems that the CGGA has better overall
survival in both low and high CKAP2L at the end. To make a better comparison between
both datasets, we rescaled the Kaplan–Meier plots (Supplementary Figure S2). From these
plots, we did notice that the overall survival of both low and high CKAP2L seems to be
better in the CGGA, although the proportion of grade IV in CGGA is higher than TCGA.
However, if we checked overall survival time before the 4000 days, both trends were similar
or slightly better at the TCGA dataset. Additionally, the median cut-offs were very different
in both datasets. In the TCGA, the median CKAP2L expression was 5.526, but equal to
1.465 in the CGGA. To our knowledge, the data from CGGA used the same mRNA-seq
pipeline as the TCGA database from a similar platform (Illumina HiSeq 2000/2500) to
generate expression data [38] and both quantified in transcripts per million (TPM). Hence,
the possible reasons for the different cut-off might be due to different case numbers in each
grading. Additionally, another potential reason is that the level of sequencing coverage
is unclear and this might cause the difference in the values. Not surprisingly, a similar
issue was also noted in another glioma investigation [39]. Nevertheless, if we ignore the
absolute value and only separate them by the median, their overall survival trend was
similar (Supplementary Figure S2).

In previous sections, we have introduced the proposal that CKAP2L plays a vital role
in regulating cell division [37]. To further understand the impact of the CKAP2L expression
on cell growth, we investigated the effect of CKAP2L knockdown on the proliferation in
U87MG and U118MG glioma cells. From our data, we found CKAP2L knockdown sup-
presses U87MG and U118MG cell growth. To further support the proposal that the decrease
of cell number was due to the decline of proliferation ability, we looked at the association
of the CKAP2L versus two common proliferation biomarkers in the TCGA and CGGA
datasets, including MKI67 and MCM6, often used in brain tumor studies [25–27]. The re-
sults demonstrated in Figure 6 showed that the CKAP2L expression positively correlated
with MKI67 and MCM6 in the TCGA and CGGA. These findings support the proposal that
the CKAP2L expression is associated with proliferation capability. Additionally, from the
results of GSEA analyses, the E2F, mitotic spindle, and G2/M checkpoint are the leading
phenotypes in the high CKAP2L group. To our knowledge, the E2F is the crucial regulator
of the G1/S transition [40], and the G2/M checkpoint is essential for cell mitosis, as well as
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the mitotic spindle. These pieces of evidence all point out the changes in the proliferation
ability when the CKAP2L is different. Hence, we presumed that a lower cell number in the
siCKAP2L group than the control was due to decreased proliferation ability.

Next, to further model the consequence of the CKAP2L expression on the cell cycle, we
examined the effect of CKAP2L knockdown on the cell cycle profile in U87MG and U118MG
glioma cells. The results showed that the cell fraction in the G2/M phase was dramatically
increased in both cell lines, while the fraction in the G1 phase was decreased (Figure 7A,B).
We also examined the cell cycle’s regulated proteins for validation, including Cyclin D1,
Cyclin B1, and p-cdc2 (CDK1). Our result showed the level of cyclin B1 and p-cdc2 protein
underwent a significant increase in the siCKAP2L treatment group (Figure 7C). Typically,
the shift from G2 to the M phase is triggered by the active cyclin B1/cdc2 complex. In other
words, suppression of the function of cyclin B1/cdc2 causes cell arrest [41]. The increase
of the cyclin B1/cdc2 complex was expected to trigger cell proliferation from our data.
However, the cell growth investigation revealed much less cell proliferation after being
supplanted with siCKAP2L compared to the control group (Figure 5C,D). The phenomenon
was also noted in another breast cancer study [42]. In previous publications, the rapid
and excessive increase of the cyclin B1-dependent/cdc2 in the G2 phase could cause cells
to stop entering the mitotic phase [43,44]. One publication even provided evidence that
the accumulation of cyclin B1 and cdc2 could induce chromosomal nuclear condensation,
segregation, and then blocked cells in prometaphase [42]. Interestingly, from the results of
GSEA analyses, the G2/M checkpoint’s alteration is a leading phenotype in cells expressing
a high level of CKAP2L. On the other hand, the lower expression of CKAP2L might decrease
the function of the G2/M checkpoint. Despite the increase in cells in the G2/M phase,
cell proliferation was significantly reduced; we therefore hypothesized that the arrested
cells were blocked at the G2/M checkpoint due to the possible presence of multipolar
spindles [37] that may be caused by suppression of CKAP2L expression. Moreover, apart
from the G2/M alteration in cell cycle analysis, we also noted that the G1 phase fraction
decreased (Figure 7A,B), matching with the reduced function of E2F in the lower CKAP2L
group identified in the GSEA analysis (Figure 2). Furthermore, in the cell cycle’s protein
validation, we also noticed the variation of cyclin D1, which is another critical contributor in
the G1/S transition. Compared to the U118MG, the U87MG supplemented with siCKAP2L
showed a much lower cyclin D1. Consistently, the cell proliferation rate also showed more
suppression in the U87MG (Figure 5C,D).

Our immunohistochemical staining showed that levels of CKAP2L protein correlated
with the mRNA levels and that CKAP2L upregulation was associated with higher tumor
grades, which was consistent with the bioinformatics analysis of TCGA and the CGGA
datasets. In addition, our survival analysis suggested that higher CKAP2L levels were
associated with a poorer prognosis. However, the significance level was weak (p = 0.063),
which may be due to the limited number in the study sample. A larger sample size will be
needed in future investigations. We also found that age, MGMT methylation, EGFRvIII,
p53, NF1, AxL, p-AxL, and H3Lys27 expression were associated with CKAP2L upregulation,
and Cox regression analyses showed that older age, IDH1, loss of ATRX, and positive
expression of AxL, p-AxL, NUR77, H3Lys27, or PDGFRA were the independent prognostic
factors. We anticipate that this information will be useful to future investigations into
the pathogenesis and progression of glioma. Additionally, a few unexpected results in
the multivariate survival analysis, including MGMT, EGFR, EGFR vIII, and H3K27M are
not statistically significant in our data. These factors are usually described as decisive
prognostic markers for gliomas [10,45–47]. There were a few possible reasons for this.
Firstly, the data shown here were the quantification of protein expression. However, the
recommended analyzed tools for these genetic alterations are based on polymerase chain
reaction (PCR) or fluorescence in situ hybridization (FISH). The protein expression might
not be relevant to the gene expression. Take MGMT as an example; the scientist noticed
the MGMT protein expression is poorly correlated with MGMT promoter methylation [46].
Additionally, in the EGFR and EGFR vIII, it was also found there were around 10% of
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cases with EGFR protein expression lacking real EGFR gene amplification [47,48]. Hence,
precise and more proper methods might be needed for these genes’ tests. Secondly, another
possible reason is that the analyzed cases were relatively small and might cause the
expression of H3K27M to not reach significance. Lastly, in the recent update, the poor
prognostic H3K27-mutant glioma needs to fulfill four requirements, including diffuse
growth pattern located in the midline, glioma, and the evidence of H3K27M-mutant, which
cannot merely rely on the staining of H3K27M [45].

It is now recognized that miRNAs play critical roles in GBM [16–18] and that their dif-
ferential expression between malignant and normal tissue may crucially impact prognosis
and potential treatments. In an effort to identify potential miRNA targets, we analyzed a
miRNA array and identified miR-4496 to be the most significantly increased after CKAP2L
knockdown (Table 4). Indeed, it appears that treating cells with exogenous miR-4496
mimics the effects of CKAP2L knockdown, and the effects of CKAP2L knockdown can be
blocked by miR-4496 inhibition. However, the miRNA regulation and mechanisms are
incredibly complicated [16]. Its small length could silence several mRNA targets, and the
mRNA could also be regulated by more than one miRNA [16]. From our data, miR-4496
and the miR-642b-3p, and miR-4740 were revealed to be upregulated when suppressing
CKAP2L. Each of them could play a potential role in the CKAP2L. Hence, these results
implied that miR-4496 is a potential regulator of CKAP2L activity but needs further vali-
dation for clinical application. To date, there is no mechanism proposed to explain how
CKAP2L mediates the regulation of miR-4496 and how this miRNA mediates the CKAP2L
phenotype. In one study, the author noticed the low expression of decreased self-renewal
ability in the colon cancer-initiating cells (CICs) through reregulated β-catenin expression
via E2F1 and miR-4496 overexpression, which correlated with better prognosis [49]. In
another study, they found that miR-4496 could attenuate the in vitro self-renewal and
tumor-initiating capacity of CagA-expressing CICs by targeting β-catenin expression [50].
More recently, the androgen receptor could also suppress prostate cancer cell invasion
through changing the miR-4496/β-catenin signals [51]. These reports all addressed the
proposal that miR-4496 has a role in cancer suppression by acting on β-catenin levels and
improving the outcome. Hence, it will be worthwhile to focus here and further clarify
miR-4496/β-catenin signals with CKAP2L for the glioma in future work.

Our findings indicate that CKAP2L is an important prognostic marker in glioma.
Reduction of its expression may lead to mitotic spindle dysfunction, triggering cell cycle
arrest at the G2/M checkpoint, thereby suppressing cell proliferation. Moreover, by
manipulating miR-4496, one may be able to suppress the oncogenic effects of CKAP2L,
which may be a potentially useful addition to the treatments for glioma.

4. Materials and Methods
4.1. Analysis of Data from the TCGA and CGGA Databases

To understand the role of CKAP2L mRNA expression in glioma, we extracted the data
from The Cancer Genome Atlas (TCGA; UCSC Xena) and the Chinese Glioma Genome
Atlas (CGGA). The samples obtained from UCSC Xena, https://xenabrowser.net/ (ac-
cessed on 2 June 2020), contained 701 cases, including 5 normal samples and 258 grade II,
271 grade III, and 167 grade IV glioma cases. Additionally, another 325 glioma samples
obtained from the CGGA database, http://www.cgga.org.cn/ (accessed on 2 June 2020),
included 103 grade II, 79 grade III, and 139 grade IV cases, as well as 4 cases without
grading details. Statistical comparisons of CKAP2L mRNA expression among tumor grades
were made using multiple t-tests and one-way ANOVA. These cases were also divided
into high and low CKAP2L expression groups around the median CKAP2L expression
level Kaplan–Meier plot that were then constructed to compare overall survival between
the high and low CKAP2L expression groups. Furthermore, this was done to understand
the regression between CKAP2L expression versus two proliferation markers, MKI67 and
MCM6. We also downloaded these datasets from The Cancer Genome Atlas (TCGA; UCSC
Xena) for further investigation.

https://xenabrowser.net/
http://www.cgga.org.cn/
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4.2. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA, https://www.gsea-msigdb.org/gsea/index.
jsp, accessed on 10 June 2020) was conducted by comparing the high- and low CKAP2L
expression groups in TCGA (>5.526, n = 351 vs. ≤5.526, n = 350) and the CGGA (>1.465,
n = 162 vs. ≤1.465, n = 163) datasets. Data were analyzed against the hallmark gene sets
v7.1 available in the Molecular Signatures Database. For all other parameters, the default
settings were used.

4.3. Tissue Microarray Slide Preparation, Immunohistochemistry, and Scoring

The array of brain tumor tissue, clinical information, histology diagnosis, and pathol-
ogy grade (GL2083b) was purchased from GenDiscovey Biotechnology Inc., https://www.
biomax.us/ (accessed on 5 April 2020), for immunohistochemistry (IHC). The commercial
Tissue Array contained 132 cases of brain astrocytoma, 31 brain glioblastoma, and 9 brain
oligodendroglioma, with 8 each of adjacent normal brain tissue. The core measured 1 mm
in diameter with 5 µm tissue thickness. Immunohistochemical staining was performed
using an automated immunostainer (Ventana Benchmark®XT), which ensured consistent
results. Before staining, antigen retrieval was performed by heating the samples at 125 ◦C
for 30 min in sodium citrate buffer (0.01 M sodium citrate, pH 6.2) using a pressure cooker.
We switched off the cooker when it reached full pressure, and then waited till the pressure
was released. Next, we took the retrieval slides and washed 3 times for 5 min each in
phosphate-buffered saline (PBS). Thereafter, the slides were uploaded to the autostainer
following the manufacturer’s protocol, and the selected antibodies were evaluated by
checking their binding to both positive and negative controls. Following optimization
of the retrieval and the antibody concentration, robust staining of the positive, but not
the negative, control was observed. The test slides were then examined and scored using
a semi-quantitative scoring system, same as previous publications [52,53], that took into
consideration staining intensity and percentage of cells stained. The staining intensity of
tumor components was scored from 0 to 3 as follows: 0 = negative, 1 = weakly positive,
2 = moderately positive, 3 = strongly positive. In addition, the percentage of tumor cells
stained was estimated from 0% to 100%. Later, the percentage of cells at each intensity was
multiplied by the corresponding intensity to generate an immunostaining score that ranged
from 0 to 300. Finally, the immunostaining score of each sample was used for statistical
analyses. The antibodies list showed as (Supplementary Table S4).

4.4. Statistical Analysis of the Association between CKAP2L Expression and Other Factors

To determine whether CKAP2L IHC scores correlate with tumor grades, we used
Pearson’s correlation to evaluate the relation between CKAP2L expression and other
possible independent factors. We also performed univariate and multivariate analyses and
Cox proportional hazards regression to assess the association between factors significantly
associated with CKAP2L and overall survival. The linear regression was used to evaluate
the association between CKAP2L versus MKI67 and MCM6. Values of p < 0.05 were
considered significant.

4.5. Human Glioma Cell Lines and Lysate Preparation

The U87MG, U118MG, and LNZ308 human glioma cell lines were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum
(FBS), 100 U/mL penicillin, and 100 mg/mL streptomycin. Cultures were kept in an incu-
bator under 5% CO2 at 37 ◦C. For Western blot analysis of CKAP2L expression, the cells
were lysed in lysis buffer, which contained 100 mM Tris-HCl, 150 mM NaCl, 0.1% SDS, and
1% Triton X-100. GAPDH, Actin, and β-actin served as an internal control. Normal brain
cell lysate purchased from Biocompare (MBS537208, San Francisco, CA, USA) also served
as a control.

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.biomax.us/
https://www.biomax.us/
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4.6. Transfection of siCKAP2L and siControl into Glioma Cell Lines and Cell Proliferation Assays

CKAP2L siRNA (siCKAP2L) and siControl were purchased from Dharmacon (Lafayette,
CO, USA, product ID, M-018844-00-0005). Using DharmaFECT 1 Transfection Reagent,
U87MG and U118MG cells grown in 12-well plates were transfected with 25 and 37.5 nM
siCKAP2L or siControl (Dharmacon, USA). Cells from each group were then seeded into
12-well plates at a density of 5 × 104 cells/well and incubated overnight at 37 ◦C. To collect
the cells, 200 µL 10% FBS DMEM and 100 µL of 0.05% trypsin were added to each well.
Cell proliferation was tested 24, 48, and 72 h after transfection. After preparing a mixture
of 10 µL of each cell line and 10 µL trypan blue, cells excluding the dye were counted
using a TC20™ Automated Cell Counter (Bio-Rad, Hercules, CA, USA). Cell proliferation
assays were replicated three times with each cell line. Finally, Western blot analysis was
performed to detect cell cycle checkpoint (cyclin B1, cyclin D1, p-cdc2, and cdc2) expression
in the cells following siCKAP2L and siControl transfection.

4.7. RNA Isolation and Real-Time Reverse Transcription-PCR

Total RNA was extracted using TRIzol™ Reagent (Thermo Fisher Scientific, Waltham,
WA, USA) and reverse transcribed to single-stranded cDNA with Tetro™ Reverse Tran-
scriptase (Bioline, Taunton, MA, USA). For qRT-PCR, the PCR reactions were carried
out using a StepOne™ Real-Time PCR System (Thermo Fisher Scientific, USA) with
Fast Plus EvaGreen qPCR Master Mix (Biotium, Fremont, CA, USA). Thermocycling
was performed with 0.25 µM each primer (PrimerBank) and 2.5 µL of the cDNA dilu-
ent. The PCR protocol entailed denaturation for 2 min at 95 ◦C followed by 40 cycles
of a touch-down PCR protocol (5 s at 95 ◦C and 30 s annealing at 60 ◦C). The primers
used were as follows: for CKAP2L, 5′-GAGCCAAAACACCAAGCCTTA-3′ (forward)
and 5′-GGAGTTTAATGCTGATGGACCTT-3′ (reverse); for GAPDH, 5′-GCACCGTCAAG
GCTGAGAAC-3′ (forward) and 5′-ATGGTGGTGAAGACGCCAGT-3′ (reverse).

4.8. Western Blot Analysis

The glioma cell lines (including U87MG, U118MG, and LNZ308) were washed three
times with PBS and lysed in RIPA buffer (100 mM Tris-HCl in pH 8.0, 0.1% SDS, 150 mM
NaCl, and 1% Triton 100). The protein lysates (20–40 µg, depending on the concentration)
were separated by 10% SDS-PAGE and analyzed by immunoblotting with antibodies
against polyclonal rabbit anti-human CKAP2L (HPA039407, Sigma–Aldrich, St. Louis, MO,
USA) and anti-GAPDH (sc-47724, Santa Cruz, CA, USA) antibodies and monoclonal mouse
anti-ACTN (sc-17829, Santa Cruz, USA). After repeating the experiments, the quantification
was performed using ImageJ (National Institutes of Health, Bethesda, MD, USA).

4.9. Cell Cycle Assessment

U87MG and U118MG cells were transfected with 25 nM siCKAP2L for 72 h, har-
vested, fixed with 70% ethanol, briefly washed with PBS/1% FBS, and then incubated with
10 mg/mL RNAse A and 50 mg/mL propidium iodide in PBS plus 1% Tween 20 for 30 min
at 37 ◦C in the dark. Flow cytometric analysis was performed using FACS Calibur flow
cytometer (BD Biosciences, Franklin Lakes, NJ, USA). The cell fractions in the respective
cell cycle phases were calculated using Cell Quest Pro software (BD Biosciences, USA).

4.10. Wound Healing Assays

U87MG glioma cells were plated in 12-well plates supplemented with mitomycin C at
a density of 5 × 104 cells/well and incubated overnight, after which they were transfected
with siCKAP2L or siControl as described above. After incubation for an additional 48 h,
a scratch wound was made in the cultures using a 200-µL pipet tip. The cells were then
washed with PBS, and the scratched area was photographed under a microscope (0 h).
One microliter of DMEM supplemented with 10% FBS was then added to each well, and
after incubation for 16 h at 37 ◦C under 5% CO2, the medium was removed and the
scratched area was photographed again.
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4.11. Cell Invasion Assays

Cells were plated at a density of 5 × 105 cells/dish in 10-cm dishes and incubated
for 24 h, after which they were transfected with siCKAP2L or siControl and incubated for
an additional 48 h. The transfected cells were then taken up, suspended in serum-free
DMEM, and aliquots containing 2 × 105 cells in 500 µL of DMEM were seeded into the
upper chambers of Transwell plates, and 750 µL of DMEM supplemented with 10% FBS
medium was added to the lower chambers. After incubation for 16 h, the membranes
between the upper and lower chambers were fixed with formalin, stained with crystal
violet, and photographed under a microscope.

4.12. miRNA Screening and Experiments

After transfecting U87MG and U118MG cells with siCKAP2L or siControl, total
RNA was extracted from each sample and its quality confirmed spectrophotometrically
(OD260/280 = 1.8–2, OD260/230 = 2–2.5, and RIN = 10). Samples of total RNA from
the siCKAP2L or siControl transfectants were then screened using a Human miRNA
OneArray®, https://www.phalanxbiotech.com/onearray-mirna-microarrays/ (accessed
13 April 2020), for analysis of differentially expressed genes encoding miRNAs. Genes
were considered differentially expressed when there was a log2|Fold change| ≥ 0.585 and
p < 0.05. In addition, miR-4496 was purchased from Dharmacon (product ID, C-302100-
00-0005), after which U87MG and U118MG cells were transfected with 10 nM or 50 nM
miR-4496 using DharmaFECT 1 Transfection Reagent (Dharmacon, USA). miR-4496 levels
were then measured 24, 48, and 72 h after transfection. To assess the effect of miRNA
inhibitor, U87MG and U118MG glioma cells were transfected with 5, 10, or 15 nM miR-4496
inhibitor (Dharmacon, USA), and cell numbers were counted 48 h later.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/1/197/s1, Supplementary Figure S1: The Kaplan-Meier plot between high and low CKAP2L
expression groups in different grading glioma. Supplementary Figure S2: Compare the survival
curve between TCGA and CGGA. Supplementary Figure S3: The Kaplan-Meier survival plot for
high and low CKAP2L-score groups. Supplementary Table S1: GSEA result of high versus low
CKAP2L expression from Xena UCSC (TCGA) Supplementary Table S2: GSEA result of high versus
low CKAP2L expression from CGGA. Supplementary Table S3: CKAP2L_mRNA_4Cq and44Cq.
Supplementary Table S4: Details of the antibodies used in this project.
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Abbreviations

CKAP2L cytoskeleton-associated protein 2-like
EMT epithelial-mesenchymal transition
FDR False Discovery Rate
GBM glioblastoma multiforme
IHC immunohistochemistry
miR microRNA
siRNA small interfering RNA
WHO World Health Organization
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