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Endoglin, also known as cluster of differentiation 105 (CD105), is an auxiliary receptor in the
TGFβ signaling pathway. It is predominantly expressed in endothelial cells as a component
of the heterotetrameric receptor dimers comprising type I, type II receptors and the binding
ligands. Mutations in the gene encoding Endoglin (ENG) have been associated with
hereditary hemorrhagic telangiectasia type 1 (HHT1), an autosomal dominant inherited
disease that is generally characterized by vascular malformation. Secretory and many
endomembrane proteins synthesized in the Endoplasmic reticulum (ER) are subjected to
stringent quality control mechanisms to ensure that only properly folded and assembled
proteins are trafficked forward through the secretory pathway to their sites of action. We
have previously demonstrated that some Endoglin variants causing HHT1 are trapped in
the ER and fail to traffic to their normal localization in plasma membrane, which suggested
the possible involvement of ER associated protein degradation (ERAD) in their molecular
pathology. In this study, we have investigated, for the first time, the degradation routes of
Endoglin wild type and two mutant variants, P165L and V105D, and previously shown to
be retained in the ER. Stably transfected HEK293 cells were treated with proteasomal and
lysosomal inhibitors in order to elucidate the exact molecular mechanisms underlying the
loss of function phenotype associated with these variants. Our results have shown that wild
type Endoglin has a relatively short half-life of less than 2 hours and degrades through both
the lysosomal and proteasomal pathways, whereas the two mutant disease-causing
variants show high stability and predominantly degrades through the proteasomal
pathway. Furthermore, we have demonstrated that Endoglin variants P165L and
V105D are significantly accumulated in HEK293 cells deficient in HRD1 E3 ubiquitin
ligase; a major ERAD component. These results implicate the ERAD mechanism in the
pathology of HHT1 caused by the two variants. It is expected that these results will pave
the way for more in-depth research studies that could provide new windows for future
therapeutic interventions.
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INTRODUCTION

Hereditary hemorrhagic telangiectasia type 1 (HHT1; OMIM
187300), also known as Rendu-Osler-Weber syndrome, is an
autosomal dominant inherited disease that is generally
characterized by vascular malformation which can range from
small cutaneous and mucous membrane telangiectases to large
arteriovenous malformation (AVM) in the lungs, liver, brain, and
gastrointestinal tracts (McAllister et al., 1994; Richards-Yutz et al.,
2010). The disease affects 1 in 10,000 individuals, however the age
of onset of the disease and phenotype penetrance may vary
considerably amongst affected individuals (McDonald et al.,
2015). By the age of 21 the majority of patients develop
recurrent nasal bleeds (epistaxis), and by late adulthood
telangiectases of the lips, hands and face become apparent in
nearly all affected individuals. AVMs usually manifest as
congenital lesions that vary significantly in terms of lesion sites,

numbers, and severity of symptoms (McDonald, 2011). On the
other hand, large AVMs often account for serious consequences
such as stroke and fatal hemorrhages that can lead to death
(Karabegovic et al., 2004). HHT1 has been associated with
mutations in the transforming growth factor Beta (TGFβ) co-
receptor Endoglin (also termed as cluster of differentiation 105,
CD105) that is encoded by ENG (McAllister et al., 1994).
Haploinsufficiency due to loss of function is widely accepted as
the underlying functional mechanism for HHT1 (Galaris et al.,
2021).

TGFβ signaling pathway plays a key role in diverse sets of
cellular signaling activities during the early embryogenic
developmental stages and also throughout adulthood (Hata
and Chen 2016; Kashima and Hata 2018). The TGFβ signaling
pathway regulates cell growth, differentiation, apoptosis, and
immunological responses through a complex signaling systems
with multiple components that control gene expression in a

FIGURE 1 | Predicted structure of Endoglin WT and variants V105D and P165L. (A) shows 3D ribbon structure of Endoglin WT built by HOPE protein modelling
program based on a homologous structure. It shows mutation of amino acid variants Valine (V) to Aspartic acid (D) (Both in black). Focus on mutation site: The protein is
coloured grey, the side chains of both the wild type “V” and the mutant residue “D” are shown and coloured green and red respectively.(B) mutation of amino acid
variants Proline (P) to Leucine (L) (Both in black). Focus on mutation site: The protein is coloured grey, the side chains of both the wild type “P” and the mutant
residue “L” are shown and coloured green and red respectively.
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context dependent manner (de Caestecker 2004; Kashima and
Hata 2018). The TGFβ signaling cascade is initiated with the
ligand binding to the serine/threonine type II receptor dimer
which recruits and phosphorylate a type I receptor forming a
heterotetrameric complex (Shi and Massagué 2003). In addition
to Endoglin, some other TGFβ signaling pathway components
have been implicated in several single gene disorders involving
vascular malformations (Gariballa and Ali, 2020).

The Endoglin co-receptor has no intrinsic enzymatic activity,
however it enhances and stabilizes the binding of ligands to the
heterotetrameric receptors dimer (Kim et al, 2019). The signal is
propagated to the nucleus through phosphorylation of selective
sets of the transcription factors; SMADs, that can enter the nucleus
and regulate gene expression (Groppe et al., 2008; Massagué 2008).
Endoglin is a single membrane spanning receptor with a molecular
weight of 90–95 kDa forming a homodimer that is stabilized by
multiple disulphide bridges (Lux et al., 2000). The homodimer
consists of two extracellular domains: N- terminal orphan domain
(OR), C-terminal zona pellucida (ZP), a transmembrane domain
and a short cytoplasmic domain (Figure 1). Excision of the
extracellular domain gives rise to a soluble shorter isoform of
Endoglin (Endoglin S). The extracellular domains contain ligand
binding sites as well as attachment sites for N and O glycosylation
(Meurer and Weiskirchen 2020). X-ray crystallography studies
have demonstrated the interaction of the ligand with hydrophobic
(OR) domain, whereas protein homodimerization occurred
through cystine bridges in the ZP domain (Saito et al., 2017).
Endoglin is predominantly expressed in endothelial cells (EC) as a
component of the receptor complex comprising type I receptor
(ALK1) or ALK5, and type II receptor binding ligands such as bone
morphogenetic protein 9 and 10 (BMP9 and BMP10) and
transforming growth factor-β1 (TGF-β1) (Ollauri-Ibáñez,
López-Novoa, 2017; Pericacho 2017). This signaling cascade
leads to the activation of SMAD 1/5/8 transcription factors that
enter the nucleus and upregulate genes that promote endothelial
cells activation and control the wholemechanism of vasculogenesis
(Guerrero-Esteo et al., 2002; Castonguay et al., 2011). Mutations in
Activin receptor-like kinase gene (ACVRL1) encoding the type I
receptor ALK1, a major partner in the TGFβ signaling pathway,
has been associated with hereditary hemorrhagic telangiectasia
type 2 (HHT2, OMIM600376) (Johnson et al., 1996). Mutations in
ENG and ACVRL1 lead to similar phenotype and account for 85%
of hereditary hemorrhagic telangiectasias (Gallione et al., 2004).
The remaining cases are attributed to mutations in SMAD4, GDF2
(encoding BMP9), and other yet unknown genes (Shovlin et al.,
2020). Recently progress has been made in conventional therapies
that targets the angiogenic molecular pathway using inhibitors of
vascular endothelial cells factors (VECF) such as bevacizumab
(anti-VEGF antibody) (Buscarini et al., 2019). Nonetheless, the
molecular mechanisms underlying this life-threatening disease and
the loss-of-function traits associated with the disease phenotype
remains to be fully elucidated. Understanding the molecular
mechanisms by which these mutant proteins lose their function
could open up new windows for therapeutic interventions that
potentiate protein functional rescue. We have previously
demonstrated that defective trafficking of mutant Endoglin
variants play a major role in the disease pathology (Ali et al.,

2011). Sub-cellular localization of wild type Endoglin and
28 disease-causing variants have been investigated using
confocal microscopy and the results have shown that more than
50% of the mutant variants are retained in the ER and failed to
traffic to their normal localization on the plasma membrane (Ali
et al., 2011).

TGFβ receptors including Endoglin are classical examples of
secretory membrane proteins that undergo a series of quality
control checks and posttranslational modifications in the ER and
along the secretory pathway. The ER has adapted a highly conserved
quality control mechanisms to ensure that only properly folded and
assembled proteins can be dispatched to their functional sites (Sun
andBrodsky 2019). In addition, the unfolded protein response (UPR)
is triggered by unresolvedmutant proteins that accumulate in the ER
lumen and form aggregates that disrupt ER homeostasis. The three
arms of the UPRmechanism, including PERK (protein kinase RNA-
like endoplasmic reticulum kinase), Inositol-requiring kinase 1(IRE
I) and activating transcription factor 6 (ATF6), trigger the expression
of molecular chaperones that assist protein folding, and relief ER
stress (Christianson and Ye 2014; Hwang and Qi 2018).
Furthermore, the UPR mechanism aim to attenuate the
translation mechanism in order to reduce the work load on the
ER until normal cellular functions are restored (Preston and Brodsky
2017). Terminally misfolded proteins that fail to reach their proper
conformation after cycles of encounters with activated ER molecular
chaperones, will be targeted to the ER associated protein degradation
(ERAD) pathway (Preston and Brodsky 2017). Misfolded proteins
are recognized as ERAD substrates by resident ER molecular
chaperones (EDEM1, OS9, and XTP3-B) that all work in concert
with other co-chaperones to facilitate retrotranslocation of terminally
misfolded proteins through the HRD-1/SEL-1L translocon channel
to be degraded in the cytosol by the ubiquitin/proteasomal system
(reviewed in (Hwang and Qi 2018; Gariballa and Ali 2020).

In this study, we demonstrate that the degradation pathways of
wild type (WT) Endoglin is distinct from some disease-causing
ER-retained mutant variants. Our data shows that WT Endoglin
is degraded relatively quickly through both proteasomal and
lysosomal pathways, whereas the mutant variants P165L and
V105D, trapped in the ER, have a much longer half-lives, and get
degraded predominantly through the proteasomal degradation
pathways. Importantly, by means of CRISPR-Cas9 gene editing
technique, we confirm the important role of HRD-1 E3 ubiquitin
ligase in the retro-translocation of the mutant Endoglin variants
P165L and V105D from the ER to the cytosol where they undergo
proteasomal degradation. These findings further implicate ERAD
in the pathogenesis of HHT1 disease and possibly open up new
windows for therapeutic interventions.

MATERIALS AND METHODS

Generation of Stably Transfected Cell Lines
Human Embryonic Kidney 293 (HEK293) cells were transiently
transfected with pcDNA3.0 expression vector harboring the HA-
tagged WT Endoglin or the missense mutant variants P165L and
V105D designed through site directed mutagenesis described
previously (Ali et al., 2011). However, the V105D variant has
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been incorrectly referred to in Ali et al. (2011) as V125D.
pcDNA3.0 vector carries Neomycin resistance gene as a
selection marker. For selection of stably transfected cells, 48 h
after transfection, cells were grown in culture medium
supplemented with 700 μg/ml G418 sulphate. Monoclonal cell
lines were generated by limiting dilution in 96-well plates.
Single cell clones generated were validated for stable transgene
expression by immunoblotting and immunostaining against the
HA tag. Stable cell lines carrying an empty pcDNA3.0 vector were
also generated as negative control.

Cell Culture, Transfection, and Treatments
HEK293 cells were cultured in Dulbecco’s modified Eagle’s
medium (Invitrogen) supplemented with 10% FBS (Invitrogen),
penicillin (10 U/ml) and streptomycin (100 μg/ml) at 37°C with 5%
CO2. For transfection experiments, cells were grown in 6-well
tissue culture plates and transfected with 1 µg plasmid DNA using
FuGENE HD transfection reagent. Co-transfection with 0.5 µg
plasmid vector harboring red fluorescence protein (RFP) (Thermo
Fisher Scientific) was carried out as a transfection efficiency control
for transient transfection of plasmid constructs carrying WT
Endoglin and mutant variants.

For cycloheximide chase assays, stably transfectedHEK293 cells
were treated with cycloheximide (100 μg/ml) and harvested at
specific time points (0, 2, 4, 8, 16, and 24 h). Cells were then lysed in
RIPA buffer and kept at −80°C for Western blot experiments.

For treatments with proteasomal or lysosomal inhibitors, cells
were grown in DMEMwith a supplement of 10% FBS, penicillin (10
U/ml) and streptomycin (100 μg/ml) until they reach 60–70%
confluency. Cells were then serum starved for 4–8 h followed by
incubation in serum free medium containing the indicated
proteasomal inhibitors (MG132 at 10 µM and Epoximycin at 100
nM), ERAD inhibitors (Eeyarestatin I at 5 µM/andKifunensine at 50
nM), and lysosomal inhibitors (Bafilomycin at 200 nM).

Protein Extraction, Western Blotting
Analysis, and Immunoprecipitation
After cells were harvested and pelleted, protein extraction was
carried out using RIPA lysis reagent (Sigma) supplemented with
protease inhibitors cocktail (Sigmafast protease inhibitor
cocktail). Cell lysates were then quantified using Bicinchoninic
Acid protein Assay (BCA kit, and Pierce), according to
manufacturer’s protocol. Equal amounts of protein were mixed
with Laemmli loading buffer, heated to 95°C for 5 min and then
resolved on an SDS-PAGE at concentrations relevant to the
protein sizes. However, Endoglin was found to aggregate at
the top of the acrylamide gel at 95°C, therefore cell lysates
were mixed with Laemmli buffer plus Dithiothreitol (DTT,
5 mM) and heated at 55°C for 10 min prior to loading into the
gel. This was followed by blotting onto a PVDF page and then
probed with the respective antibodies at an optimized dilution.
Detection was performed using Enhanced Chemiluminescence
Plus reagent (ECL plus, Pierce) and then it was visualized using
Typhoon FLA 9500 Imager (GE Healthcare Biosciences). ImageJ
software was used for densitometric quantification analysis of
immunoblots generated.

For immunoprecipitation, stably transfected HEK293 cells
were lysed in IP lysis buffer (Pierce Inc.) supplemented with
protease inhibitors cocktail (Sigmafast protease inhibitor
cocktail). After total protein extraction and quantification (as
described above), equal amounts of cell lysates were incubated
with anti-HA agarose beads (Pierce) for 2 h at 4°C. Beads
containing the immunoprecipitated proteins were collected by
centrifugation and washed three times with lysis buffer. Proteins
were eluted from the beads by boiling in Laemmli sample buffer
to be used for western blotting.

Endoglycosidase H Sensitivity and
Resistance Assay
Immunoprecipitated proteins were denatured in 1× glycoprotein
denaturation buffer (0.5% SDS and 1% β-mercaptoethanol) for
5 min at 100°C. The denatured proteins were incubated for 4 h at
37°C in the presence or absence of 10 U of endoglycosidase H
(Endo H; Sigma-Aldrich). The samples were then resolved on 8%
SDS/PAGE gels and analyzed by western blotting.

Triton X-100 Solubility Assay
The assay was carried out as in (Houck et al., 2014). In short,
harvested cells were lysed in TBS-Triton (50 mM Tris-Cl,
150 mM NaCl, 1% Triton X-100, and pH 7.6) and separated
into soluble fraction (supernatant) and aggregated fraction
(pellet) via 20,000 g centrifugation for 15 min at 4°C. 30 µg of
cell lysates were added to SDS sample buffer with 1.25% β-
mercaptoethanol and then resolved on an SDS-PAGE.
GAPDH was used as a marker for the soluble fraction and
Histone H3 was used as a marker for pelleted fraction.

Generation of HEK293-HRD1 Knockout Cell
Line Using CRISPR-Cas9 Gene Editing
KN2.0 non-homology mediated CRISPR kit (Origene inc.) was
used for HRD1 gene Knockout. The gene specific gRNA carrying
the sequence (ACTGTGGTGTACCTGACCAA) leads Cas9 to cut
the target genome, and the cutting site is repaired by the
integration of predesigned linear donor containing a puromycin
resistant gene for selection of cells that have the linear donor
encoding the reporter gene (GFP) integrated. The gRNA vector
plus the DNA donor were transfected into the cells using FuGENE
HD transfection reagent. Scrambled gRNA was used as negative
control. Cells were passaged 5 to 6 times before treatment with the
pre-determined kill dose for puromycin (0.7 μg/ml) for 7 days for
optimal selection of positive clones. Single cells were then seeded in
a 96 well plated using serial dilution of cell culture. After 2 weeks of
observation single cell wells were marked and grown on 6 well
plates for DNA/RNA and protein extraction. Bi-allelic gene
perturbation on the DNA level has been confirmed using
Sanger sequencing and gene knockout on the protein level was
validated using immunoblotting against HRD1.

Immunocytochemistry
HEK293 cells, stably transfected with pcDNA3.0 expression
vector harboring the HA-tagged WT Endoglin or the missense
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mutant variants P165L and V105D, were grown on coverslips.
Cells were then fixed by methanol at −20°C for 4 min. Fixed cells
were washed three times with PBS and incubated in (1% BSA in
TBST) blocking solution for 30 min at room temperature. For
immunofluorescence staining, the protocol was followed as in
(Ali et al., 2011).

Antibodies
Antibodies for Western blot analysis: Rabbit monoclonal anti-
HA-tag (Cell Signaling Technology, at 1:1,000 dilution), Rabbit
monoclonal anti-SYVN1 (Cell Signaling Technology, at 1:1,000
dilution), mouse monoclonal anti-GAPDH (Abcam, at 1:2,500
dilution) rabbit monoclonal Anti-HA (Cell Signaling, at 1:1,000
dilution), mouse monoclonal anti-RFP (Thermo Fisher Scientific,
at 1:1,000 dilution), rabbit anti- Endoglin P3D1 (Santa Cruz
Biotechnology, at 1:200 dilution), anti-Mouse IgG Peroxidase
antibody (Sigma Aldrich, at 1:40,000 dilution), and anti-Rabbit
IgG Peroxidase antibody (Sigma Aldrich, at 1:30,000 dilution).

Antibodies for immunofluorescence: mouse monoclonal anti-
HA-tag (Cell signaling Technology, at 1: 200 dilution), rabbit
polyclonal anti-calnexin (Santa Cruz Biotechnology, at 1 : 200
dilution), rabbit anti-Histone-H3 (Cell Signaling Technology, at
1:1,000 dilution), mouse monoclonal anti-HA (Cell Signaling
Technology, at 1: 200 dilution), Alexa Fluor 568-goat anti-
mouse IgG (Molecular Probes, at1:200 dilution), and Alexa
Fluor 488-goat anti rabbit IgG (Molecular Probes, at 1:
200dilution).

In Silico Analysis of Endoglin Variants P165L
and V105D
We have utilized HOPE software, which is a fully automated
protein modelling program, for the prediction of functional, and
structural effects of the two point mutations (P165L and V105D)
in Endoglin (Venselaar et al., 2010).

Statistical Analysis
Statistical analysis between each group and the control was conducted
by one-sample unpaired t-test (GraphPad Prism software). For the
time dependent cycloheximide chase assay comparison between
mutants groups and wild type was conducted using two-way
ANOVA and Dunnet’s multiple comparison test (GraphPad
Prism software); (*) p ≤ 0.05; (**) p ≤ 0.01; (***) p ≤ 0.00. In all
graphs, Error bars represent SEM from biological replicates indicated
as the number (n) on the figure legends.

RESULTS

Protein Modelling Reveals Functional and
Structural Defects in ER Retained P165L
and V105D Endoglin Variants
In an attempt to better understand the basis of misfolding and ER
retention of the two Endoglin variants P165L and V105D, we
used HOPE protein modelling which could shed light on the
possible structural effects of the two point mutations in Endoglin

and the possible consequences on their biological function
(Figure 1). ENG-V105D variant carries a point mutation as a
result of a substitution of amino acid Valine (V) to Aspartic Acid
(D), both colored in black (Figure 1A). The new amino acid
variant (D) is bigger and carries a negative charge compared to
the wild variant which is smaller and has a neutral charge. WT
residue (V) is also reported to be very conserved in that position
within a stretch of residues annotated in Uniport as required for
interaction with BMP9 ligand. HOPE has also predicted that
substitution of Proline (P) to Leucine (L) in ENG-P165L variant
to be damaging (Figure 1B). Both variants fall in the Orphan
domain where two conserved disulfide bonds involving
C30–C207 and C53–C182 are formed (Saito et al., 2017). The
structural disorder caused by the P165L variants is predicted to
disturb the cysteine bridge in this domain. The possible loss of
cystine bonding probably account for both distortion of the 3D
structure of the protein as well as exposure of buried hydrophobic
residues and possible formation of new cystine bonding that may
cause mutant protein aggregation.

Proteasomal Inhibition by MG132 Causes
Accumulation of Both WT Endoglin and
Mutant Variants P165L and V105D and
Partially Alters the Mobility of the Mutants
on SDS-PAGE Gels
We have demonstrated in a previous study that missense mutant
variants L32R, C53R, V105D (referred to wrongly as V125D),
P165L, I271N, W149R, D264N, and V311G transiently
transfected into HeLa and HEK293 cells are trapped in the ER
and failed to traffic to their indigenous cellular functional location
at the plasmamembrane (Ali et al., 2011). In order to investigate a
possible role of the ERAD mechanism in the degradation of ER
retained variants, HEK293 cell were transiently transfected with
pcDNA3.0 vectors harboring HA tagged Endoglin WT and
mutant variants P165L and V105D, then treated with the
proteasomal inhibitor MG132 (10 μM). Immunoblotting
analysis have shown an accumulation of both WT Endoglin
and the mutant variants P165L and V105D after the treatment
with MG132 (Figures 2A–C). This was followed by Endo H
sensitivity and resistant assay in an attempt to investigate the
glycosylation profiles of accumulated mutant variants P165L and
V105D (Figures 2A–C). The concept underlying Endo H assay is
that Endo H can cleave the carbohydrate moieties of ER localized
N-glycoprotein, whereas post-ER proteins are protected by
further modelling of the N- glycan in the Golgi complex that
renders these glycoproteins resistant to Endo H cleavage. The
Endo H assay for immunoprecipitated WT Endoglin and mutant
variants P165L and V105D was carried out before and after the
treatment of MG132. In both cases, WT Endoglin shows distinct
two bands indicating the mature (M) and precursor (P) receptor
protein at ~80 and ~90 KDa, respectively. Endo H treatment
neatly cleaves the precursor band to lower molecular weight band
(Figure 2A). On the other hand, Endo H digestion of Endoglin
variants P165L and V105D after MG132 treatment seemed to
result in alteration of Endoglin variants’ mobilities on the SDS-
PAGE gels (Figures 2B,C). This was indicated by a cleavage of the
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precursor protein leaving behind a smear pattern at the position
of the mature Endoglin band. This result which may indicate that
proteasomal inhibition could be a potential target for mutant
Endoglin variants’ rescue.

Protein degradation through the proteasomal pathway is
signaled with the covalent attachment of a chain of ubiquitin
molecules to protein substrate. In order to further consolidate our
findings that mutant variants P165L and V105D are
predominantly degraded through the proteasomal route, it was
necessary to investigate their ubiquitination status prior to
degradation. Immuno-precipitated Endoglin WT and mutants
were immunoblotted against ubiquitin before and after treatment
with proteasomal inhibitor MG132 (Figure 2D). Our results
show accumulation of higher molecular weight ubiquitinated
forms of both WT and mutant variants after MG132
treatment. However, mutant variants seem to be more heavily
polyubiquitinated than WT Endoglin. These results further
emphasize the role of the ubiquitin proteasomal pathway in
the degradation of Endoglin variants associated with HHT1.

Conformation Specific ENG-P3D1 Antibody
Confirms Misfolding of Mutant Variants
P165L and V105D in Stably Transfected
HEK293 Cells
In this study, we have generated stably transfected HEK293
clonal cell lines harboring the WT Endoglin and two mutant

variants P165L and V105D in order to elucidate the
detailed degradation pathway of these two ER-retained
variants and compare them with WT and hence shed light
on the cellular mechanisms underlying their loss of function
and degradation pathways. Confirmation of the generation of
clones of these stably transfected cells has been validated
through western blotting and immunofluorescence staining,
presented in Supplementary Figures S1, S2, and S3,
respectively.

In order to investigate the tertiary conformation of Endoglin
mutant variant P165L and V105D, cell lysates of stable clones
generated were probed with the conformation specific antibody
P3D1 (Figure 3A). The monoclonal antibody P3D1 recognize
the N-terminal region of 204 amino acids encoded by exons 1–5
and has reduced affinity to Endoglin monomer (Pichuantes
et al., 1997). We performed Western blot analysis under non-
reducing conditions and reducing conditions. The cell lysates
from stably transfected cell lines were denatured in sample
buffer with or without a reducing agent and analyzed by
western blotting. Our western blotting analysis revealed that
the P3D1 antibody only detected the wildtype Endoglin under
nonreducing conditions. The mutants were not recognized by
the P3D1 antibody indicating that mutation interfere with
native epitope conformation of the protein. Anti-HA
antibodies were able to recognize both non-reduced and
reduced forms of the mutant proteins, but the mobility of the
dimers were distinct from that of the wild type dimer. In order to

FIGURE 2 | Proteasomal inhibition of WT Endoglin and mutant Variants P165L and V105D in transiently transfected HEK 293 cells. (A–C) Immunoblots of
immunoprecipitated Endoglin species (WT, P165L, and V105D) digested with EndoH after treatment with proteasomal inhibitor (MG132) (10 μM). Endoglin mature band
at 90 KDa is indicated by (M) and precursor band at 80 KDa is indicated by (P). (D) Immunoprecipitated Endoglin WT and mutant variants P165L and V105D were
treated with 10 μMMG132 (+) or DMSO (−) for 16 h. The immunoprecipitates were immunoblotted with antibodies against Ubiquitin. Mouse IgG from IP beads are
shown as loading control. The ubiquitin blots were stripped and re-probed against HA for confirmation.
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elucidate the retention of mutant variant P165L and V105D in
the ER, cells were immunostained against Endoglin- HA tag
(Red) and the ER marker (calnexin) (Green) (Figure 3B).
Unlike WT Endoglin, mutant variants P165L and V105D
colocalized predominantly with the ER marker (calnexin).
Since no cell surface localized mutant Endoglin was detected
in immunofluorescence images, mutant dimers recognized by
anti HA antibody are most likely originated from the ER
retained mutant forms. These results corroborate the
inferences from the protein modelling data that the possible
loss or gain of cysteine bonding in the orphan domain could lead
to distortion of the 3D structure and possible mutant protein
aggregation.

The P165L and V105D Endoglin Variants are
Highly Stable In Vivo Compared to the Wild
Type Protein
To analyze the kinetic of Endoglin protein variants stability and
degradation in vivo, cycloheximide chase experiments were
carried out on HEK293 cells stably transfected with WT
Endoglin and the two mutant variants P165L and V105D.
Cycloheximide is a translation elongation inhibitor that blocks
global protein synthesis and hence protein half-life can be
determined. Stably transfected HEK293 cells were treated with
cycloheximide and cell lysates were prepared at 0-, 2-, 4-, 8-, 16-,
and 24-h intervals for Western blotting analysis (Figures 4A–C).
In the immunoblots, drastic decline in protein ENG-WT level
was observed over the chase experiment (Figure 4A). On the
other hand, P165L and V105D variants remained relatively stable
(Figures 4B,C). The line graph, depicting the densitometric
analysis of the immunoblots of cycloheximide chase assays
(n = 4), illustrates that WT Endoglin has a relatively short
half-life of less than 2 hours (Figure 4D). A significant
difference was detected between WT-ENG and both variants
P165L and V105D over the course of the chase period
(Figure 4D). Both mutant variants retained around 70% of
their initial protein band intensity until the end of the 24-h
chase period. However, our Triton X-100 solubility assay revealed
that both Endoglin WT and the two mutant variants P165L and
V105D are soluble in the non-ionic detergent (Triton X-100) and
hence are not likely to have form detergent insoluble aggregates
(Figure 4E). This was evidenced by the lack of any traces of
Endoglin in the pelleted fraction of lysate that is likely to comprise
the detergent insoluble protein aggregates.

The P165L and V105D Variants Show
Distinct Degradation Pathway Compared to
Wild Type
HEK293 cells stably transfected with Endoglin WT, P165L and
V105Dwere treated individually with Bafilomycin, Eeyarestatin I,
Epoximycin and MG132 for 24 h then harvested and cell lysates
were used for western blotting analysis to examine their stability
under these treatments. Immunoblots generated in Figures 5A–C
have been analyzed by densitometric analysis and illustrated in
bar graph (Figure 5D) depicting accumulation levels of Endoglin
relative to DMSO treated cells (control). These results show
significant accumulation of WT Endoglin (over 4 folds)
compared to DMSO only treated cells, when incubated with
the lysosomal inhibitor Bafilomycin (Figures 5A,D). On the
other hand, variants P165L, and V105D have shown a slight
accumulation (~1.8 folds), when treated with Bafilomycine
(Figures 5B–D). Treatment with the proteasomal inhibitors
(MG132) have also resulted in significant accumulation of WT
Endoglin (~4.5 folds), however treatment with the other
proteasomal inhibitor (Epoximycin) resulted in non-significant
accumulation level (Figures 5A,D). On the other hand, unlike
WT Endoglin, both Endoglin variant (P165L and V105D) have
shown significant accumulation level when treated Epoximycin
(2.5 and 4.5 folds), respectively (Figures 5B–D). Furthermore,

FIGURE 3 | Conformation distortion and subcellular colocalization of
mutant variants P165L and V105D. (A) Binding of the conformation
specific P3D1 antibody to only the cell surface localized, non-reduced
N-terminal epitope of ENG. Equal amount of cell lysate from stably
transfected cells expressing the wild type or mutants were resolved under
non-reducing (N) and reducing conditions and analyzed by both HA (top
panel) and P3D1 (bottom panel) antibodies. (B) Immunofluorescence
images showing colocalization of HA-tagged WT Endoglin and mutant
variants P165L &V105D with ER marker (Calnexin) in stably transfected
HEK-293 cells.
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treatment with MG132 have also resulted in significantly high
level of accumulation for both Endoglin variants P165L and
V105D (~5.2, and 5.5 folds), respectively (Figures 5B–D).
ERAD inhibition was achieved through the small molecules
kifunensine (Kif) and Eeyarestatin I (EerI). EerI inhibits the
deubiquitination mechanism associated with p97/VCP that
facilitates the efficient recycling of ERAD substrates through
the proteasomal pore (Stevenson et al., 2016). Treatment with
Kif, a potent inhibitor of mannosidase I enzyme, has not affected
the level of either WT Endoglin or the two mutant variants. On
the other hand it has also been observed that EerI treatment has
affected the mobility of both Endoglin variants on the gel, which
is represented by a highmolecular weight smearing pattern on the
immunoblots (Figures 5B,C), which most probably correspond

to polyubiquitinated form of mutant variants P165L and V105D.
This may also explain the drop of Endoglin level at the normal
molecular weight (80–90 KDa), represented by a faint band at this
position (Figures 5B–D). This result suggests that mutant
variants P165L and V105D are most likely degraded via the
ERAD machinery.

Significant Accumulation of P165L and
V105D Endoglin Variants as a Result of
HRD1 Deficiency
Misfolded protein variants trapped in the ER lumen such as
P165L and V105D are most likely recognized as ERAD substrates
and subjected to retro-translocation through the HRD1/SEL1L

FIGURE 4 | Cycloheximide (CHX) chase assay for stably transfected HEK293 Endoglin WT and the two mutant variants P165L and V105D. (A–C) HEK293 stably
transfected with p. ENG-WT, p. P165L, and p. V105Dwere treated with Cycloheximide (100 μg/ml) for the time points 0, 2, 4, 8, 16, and 24 h. (D) Line graph for Endoglin
Cycloheximide chase assay represents mean densities of WT Endoglin and mutants relative to untreated at 0 h, normalized with loading control (GAPDH). (E) Western
blot analysis of Endoglin WT and mutant variants’ aggregation state. Harvested cells were lysed in 1%Triton lysis buffer (TBSt) followed by centrifugation at
20,000 g at 4°C. Supernatant (S), Pellet (P), and Total Lysate (T) were resolved in SDS page and then immunoblotted against HA-ENG. Histone H3 was used as amarker
for P fraction and GAPDH for the T and S fractions. Error bars represent SEM from 4 independent experiments (n = 4). Statistical significance between two groups was
assessed using repeated measures two-way ANOVA; (*) p ≤ 0.05; (**) p ≤ 0.01; (***) p ≤ 0.001.
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translocon channel to be degraded in the cytosol through the
proteasomal machinery. In order to investigate the role of such
evolutionary translocon channel in the degradation pathway of
Endoglin WT and mutant variants P165L and V105D, we have
utilized CRISPR-Cas9 gene editing technology to create HEK293
cell lines deficient in HRD1 E3 Ubiquitin ligase. HRD1 knockout
was validated using Sanger sequencing and immunoblotting
against HRD1 (Supplementary Figure S4; Figure 6A),
respectively. Clonal HEK293 HRD1−KO cells were individually
transiently transfected with plasmid vectors harboring WT
Endoglin and mutant variants P165L and V105D (Figure 6).
For the purpose of transfection efficiency control, cells were co-
transfected with RFP plasmid vector. Immunoblotting results
have shown that Endoglin variants P165L and V105D have
significant protein accumulation in the two HEK293 HRD1−KO

cell lines (HRD1 KO 1# and HRD1 KO 2#) compared to that
observed in HEK 293Sc (scrambled control) (Figures 6A,B).
These findings emphasize the essential role of HRD1 E3
ubiquitin ligase in the degradation pathway of misfolded
Endoglin variants that further implicates the role of ERAD
machinery in the pathology of HHT1. On the other hand, WT

Endoglin has shown insignificant accumulation level in
HEK293 HRD1 KO cells, which could indicate that proteasomal
degradation of WT Endoglin does not process significantly
through the HRD1/SEL1 translocon channel.

DISCUSSION

Secretory proteins enter the ER through a translocon pore in an
unfolded state, where they may undergo several posttranslational
modifications. These include N-glycosylation, proline
isomerization and disulfide bond formation, assembly of
multi-subunit complexes facilitated by molecular chaperones
that guide protein folding, and various complex assembly
processes (Cherepanova et al., 2016). Due to the stringent
quality control mechanisms dedicated to protein folding, it
was estimated that 12–15% of newly synthesized protein in the
ER are eliminated co-translationally through the proteasomal
system (Sun and Brodsky 2019). The ER quality control
mechanism (ERQC) is a surveillance mechanism which
ensures that, in order to proceed to the next compartment in

FIGURE 5 | Degradation pathway of WT and mutant Endoglin P165L and V105D. (A–C) Stable HEK293 cell lines harboring the HA-tagged ENG-WT and mutant
variants p. P165L and p. V105D were treated with Bafilomycin (200 nM) (lysosomal inhibitor), Eeyrestatin I (5 μM) and Kifunesine (50 nM) (ERAD inhibitors), MG132
(10 μM), and Epoximycin (100 nM) (proteasomal inhibitors). Total cell lysate was analyzed by immunoblotting against antibodies for HA- ENG and GAPDH. (D) Bar
graphs representing mean densities of WT Endoglin and mutants normalized with GAPDH. Endoglin level was expressed in (%) relative to DMSO treated (control).
Bars represent SEM from 4 different Experiment (n = 4). Statistical significance for each treatment relative to control was assessed using one sample t test, (*) p ≤ 0.05;
(**); p ≤ 0.01; (***) p ≤ 0.001.
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the secretory pathway, all proteins fit a predetermined criteria
that define the “normal”. The problem is exacerbated when
proteins persistently fail to reach their native folding states
due to disease-causing mutations (Chen et al., 2005). Some
aberrant, but partially functional proteins can be prematurely
selected for degradation by the ERQCmechanism, which can lead
to their loss of function within cells (Shao and Hegde 2016). A
classic example of this process is the degradation of certain
mutant variants of CFTR (cystic fibrosis transmembrane
conductance regulator) associated with cystic fibrosis disease
(Cheng et al., 1990).

Components of the TGFβ receptor complex, including
Endoglin, are examples of plasma membrane proteins that
enter the secretory pathway and get scrutinized by the ERQC
system, transported to the Golgi for additional specific
glycosylation, and then trafficked to their functional location
at the plasma membrane (Fisher et al., 2019). We have previously
reported that defective trafficking can prevent membrane
localization of Endoglin, TGFβ Type II receptor (TGFβ II),
BMP type II receptor (BMPR II), and ALK1, (John et al.,

2015). This leads to defective folding, retention in the ER,
followed by possible ERAD targeting, and protein elimination
(John et al., 2015; Meurer et al., 2019).

In this report, for the first time, we demonstrate that misfolded
Endoglin variants trapped in the ER are more stable than WT
Endoglin localized at the plasma membrane. Moreover, our
results have shown that misfolded Endoglin variants V105D
and P165L are predominantly degraded through the
proteasomal pathway, whereas Endoglin WT is degraded
through both the proteasomal and lysosomal pathways.

This result was intriguing since the proteasomal system is
essential for intracellular protein degradation, but an extracellular
role of this degradation machinery has rarely been reported
(Banik et al., 2020; Sawada et al., 2002). As mentioned above,
the protein folding process is error prone, therefore WT
membrane proteins are frequently degraded intracellularly
through the proteasomal pathway when they temporarily fail
to reach their proper conformation (Shao and Hegde 2016). It is a
process that has been adapted by the ERQC mechanism in order
to maintain protein homeostasis in the ER. Nonetheless, our

FIGURE 6 | EndoglinWT andmutant variants accumulation level in HEK293HRD1-KO cells. (A)Generated HRD1-Knockouts (1# and 2#) were transiently transfected
with pcDNA3.0 plasmid vectors harboring WT Endoglin and mutant variants (P165L and V105D). Total cell lysate was analyzed by immunoblotting against HA-ENG,
RFP, GAPDH, and HRD1 (B) Bar graphs representing mean densities of WT Endoglin and mutants normalized with GAPDH (loading control) and RFP (For transfection
efficiency control). Endoglin level was expressed in (%) relative to (scramble control). Bars represent SEM from 4 different Experiment (n = 4). Statistical significance
for Endoglin accumulation level in each cell line (relative to scramble control) was assessed using one sample t-test, (*) p ≤ 0.05; (**); p ≤ 0.01; (***) p ≤ 0.001.
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results also demonstrate that inhibition of the lysosomal pathway
results in excessive accumulation of WT Endoglin, which is most
likely attributed to the fully glycosylated mature receptor protein
localized at the plasma membrane. This finding could open a new
therapeutic target that might relieve the haploinsufficiency state
via moderate inhibition of WT Endoglin lysosomal degradation.
However, the process will require specific pharmacological agents
which modulates WT Endoglin degradation without an overall
inhibition of the lysosomal pathway.

Lysosomal degradation has also been implicated in the
degradation process of another TFGβ receptor; BMPR2,
associated with familial Pulmonary hypertension (HPAH). It is
a genetic disease characterized by elevated pulmonary pressure
due defective arterial formation (Gomez-Puerto et al., 2019). The
study demonstrates that in addition to proinflammatory
cytokines, BMPR2 heterozygosity can cause augmentation of
the autophagic influx, which could be secondary to the role of
BMPR2 signaling in autophagy regulation (Gomez-Puerto et al.,
2019). We have demonstrated in a previous study that a number
of disease-causing variants of BMPR2 are trapped in the ER (John
et al., 2015). Therefore, defective trafficking followed by
premature degradation of these variants through ERAD was
proposed as the most likely mechanism underlying the
disease’s loss of function phenotype. Thus far, no study has
investigated the degradation pathway of these variants and
therefore the molecular mechanism underlying the disease
pathology remains to be elucidated.

The ERADmechanism has become evidently implicated in the
pathogenesis of numerous diseases including cystic fibrosis,
emphysema, acromesomelic dysplasia-type Maroteaux,
Robinow syndrome, and various neurodegenerative diseases
such as Parkinson and Alzheimer (Chen et al., 2005; Hume
et al., 2013; Kaneko et al., 2017). In a recent review, we
proposed investigating the role of the ERQC mechanisms
including ERAD, in the pathology of various diseases
associated with the TGFβ component including HHT1
(Gariballa and Ali 2020). In this study, we have demonstrated
that mutant variants trapped in the ER are prematurely degraded
through the proteasomal pathway which directly implicates the
ERAD mechanism in the degradation process. Variants P165L
and V105D have shown a longer cellular half-life than the WT
Endoglin, possibly triggering the UPR mechanism and a cascade
of events that usually leads to the elimination of misfolded
proteins (Christianson and Ye 2014; Wu and Rapoport 2018).
In order to further investigate the implication of ERAD
components in the degradation pathway of these mutant
variants, we utilized CRISPR Cas9 editing technology in order
to investigate a direct involvement of major ERAD components
in the degradation pathway of Endoglin variants. Here, we have
demonstrated that deficiency of HED1 E3 ubiquitin ligase in
HEK293 cells causes accumulation of misfolded variants of
Endoglin retained in the ER. These results indicate that
HRD1/SEL1L retro-translocon channel plays a key role in the
elimination of these misfolded variants. In mammalians, a
number of E3 ubiquitin ligases have been reported to play a
role in the ubiquitination of ERAD substrates including HRD1,
gp78, RMA1/RNF5, TEB4, TRC8/RNF139, RNF170, RNF103,

and RFP2/TRIM1, which are all possible candidates for ERAD
substrate ubiquitination (Christianson and Ye 2014; Kadowaki
et al., 2018). TRIM21/Ro52 E3 ubiquitin ligase was previously
found to play a role in the proteasomal degradation of unfolded
IgG1 (Takahata et al., 2008). Recently, it has also been shown to
interact with soluble Endoglin (sEng); a circulating proteolytic
product of the transmembrane receptor protein (Gallardo-Vara
et al., 2019). However its role in the proteasomal degradation of
mutant variants of Endoglin transmembrane receptor remains to
be elucidated. Nevertheless, the purpose behind the availability of
numerous E3 ligases dedicated to ERAD substrates
ubiquitination is still unclear. However, variability of ERAD
substrates in terms of their target destination (cytosolic,
plasma membrane, etc.) and mutation localization could be
one of the reason for the dedication of this huge number of
E3 ubiquitin ligases embedded in the ERmembrane. Nonetheless,
HRD1 has been one of the most studied and best characterized E3
ligase and has recently been identified as a core component of
ERAD substrates ubiquitination (Carvalho et al., 2010; Baldridge
and Rapoport 2016; Schoebel et al., 2017; Kadowaki et al., 2018;
Wu et al., 2020; Taguchi et al., 2021). Loss of HRD1 has been
reported to be directly linked to accumulation of amyloid β (Aβ)
implicated in Alzheimer Disease (Kadowaki and Nishitoh 2013).
Accumulation of Aβ triggers the UPR mechanism which resolves
the situation by inducing apoptosis, leading to neurodegeneration
(Calabrò et al., 2021). HRD1 has also been shown to accelerate the
degradation of cytotoxic aggregates of polyglutamine (polyQ)
involved in development of Huntington disease (Yang et al.,
2007). Interestingly, in this study, we see a reversed scenario
where ERQC components such as HRD1 play a role in a
premature degradation mechanism leading to a pathological
condition characterized by loss of function traits. Premature
mutant protein degradation through the proteasomal pathway
has also been the underlying cause for certain classes of Cystic
fibrosis (CF) (Meacham et al., 2001). Extensive work has been
done in order to investigate CFTR biogenesis including protein
folding and trafficking (Glozman et al., 2009; Balch et al., 2011).
Identification of key players in the CF pathology has resulted in
various classes of CF modulators, achieving remarkable progress
in personalized treatment for CF patients (Lopes-Pacheco 2016).
Therefore, we predict that a more in-depth investigation into the
molecular mechanisms that orchestrate premature elimination of
Endoglin variants is likely to result a wider range of therapeutic
targets.

In conclusion, this study has demonstrated that ER retained
Endoglin variants P165L and V105D show high stability in the ER
lumen compared to WT Endoglin, however they are not likely to
form permanent insoluble aggregates. Furthermore, we have
shown that these mutant variants degrade through the
proteasomal pathway and very likely through the ERAD
mechanism, while WT Endoglin seem to degrade through both
lysosomal and proteasomal pathways. Although our results have
shed a light on the degradation mechanism of WT Endoglin and
two disease causing variants, we still need to extend our studies to a
wider range of cell lines includingHHT1 patients’ Endothelial cells.
Furthermore, the molecular mechanisms of Endoglin biogenesis
including chaperone assisted folding, trafficking and protein
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fidelity checkpoints must be elucidated in order to design specific
modulators for various types Endoglin variants.
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