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ABSTRACT Microbacterium paludicola CC3 exhibits the capability to produce poly-
saccharide bioflocculants. Here, we report the whole-genome sequence of M. paludi-
cola CC3, which may be helpful in understanding the genetic basis of the biosynthe-
sis of polysaccharide bioflocculants as well as in promoting its production and
application in industrial fields.

Bioflocculants are mainly extracellular polymeric substances secreted by microor-
ganisms (1) and are widely applied in microalgae harvest (2) and wastewater

treatment (3), due to their harmless and biodegrading properties (4). The genome of
several strains that can produce bioflocculants have been sequenced, including those
of Paenibacillus shenyangensis, Agrobacterium tumefaciens F2, and Paenibacillus wulu-
muqiensis (5–7). However, the genomic data of bioflocculant-producing strains are still
rare, which limits the identification of key enzymes and metabolic pathways that are
involved in the biosynthesis of bioflocculants.

In this study, a novel bioflocculant-producing strain, Microbacterium paludicola CC3,
was sequenced with the Pacific Biosciences (PacBio) RSII platform using P6-C4 chem-
istry. The resulting sequencing reads with 320.4-fold coverage were then de novo
assembled using Hierarchical Genome Assembly Process (HGAP) (8, 9). Gene prediction
was performed against the assembled CC3 genome with GeneMarkS (10). Functional
characterization of predicted genes was based on a BLASTP search against GenBank’s
nonredundant (NR) protein database, the database of the Clusters of Orthologous
Groups of proteins (COG) (http://www.ncbi.nlm.nih.gov/COG/), and the Gene Ontology
(GO) Consortium (http://www.geneontology.org/). The metabolic pathways were pre-
dicted using the KEGG Automatic Annotation Server (KAAS) (http://www.genome.jp/
tools/kaas/). rRNAs and tRNAs were identified using Barrnap 0.4.2 (http://www
.vicbioinformatics.com/software.barrnap.shtml) and tRNAscan-SE version 2.0 (http://
lowelab.ucsc.edu/tRNAscan-SE/), respectively. The clustered regularly interspaced short
palindromic repeat (CRISPR) elements were detected using PILER-CR (11).

One gapless circular contig was assembled, which corresponded to the chromo-
some of M. paludicola CC3. No plasmid sequences were detected. The chromosome was
composed of 3,410,829 bp, with an average G�C content of 70.10%, which comprised
3,390 predicted genes, of which 3,209 were protein coding genes (CDSs), 32 were tRNA
genes, 146 were rRNA genes, and 3 were microRNA genes. Pseudogenes and prophage
genes were not identified, whereas 14 CRISPR candidates were detected in the genome
of strain CC3. A series of genes encoding polysaccharide biosynthesis/modification
proteins, such as mannose-1-phosphate guanylyltransferase (12), glucose-1-phosphate
thymidylyltransferase (13), dolichol-phosphate mannosyltransferase (14), dTDP-4-
dehydrorhamnose reductase (15), and genes involved in polysaccharide ABC-type
transporters were detected, which may function in the biosynthesis of polysaccharide
bioflocculant and transportation across membranes and cell walls (16, 17). In previous
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studies, the biomass wastes were directly used as carbon source of lignocellulose-
degrading strains to produce various value-added products at a low cost (2, 18).
Therefore, we are interested in the genes encoding the lignocellulose-degrading
enzymes. Genes encoding xylanase, cellulose, and amylase were identified, thereby
suggesting that strain CC3 can directly convert biomass waste into polysaccharide
bioflocculants.

Accession number(s). The sequence data for the genome of M. paludicola CC3 have

been deposited to GenBank under the accession number CP018134; the version
described in this paper is the first version. Strain CC3 has been deposited at the China
General Microbiological Culture Collection Center (CGMCC 1.15930).
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