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Abstract

Background

An emerging body of literature has indicated that moderate alcohol intake may be protective

against Alzheimer disease (AD) dementia. However, little information is available regarding

whether moderate alcohol intake is related to reductions in amyloid-beta (Aβ) deposition, or

is protective via amyloid-independent mechanisms in the living human brain. Here we exam-

ined the associations of moderate alcohol intake with in vivo AD pathologies, including cere-

bral Aβ deposition, neurodegeneration of AD-signature regions, and cerebral white matter

hyperintensities (WMHs) in the living human brain.

Methods and findings

The present study was part of the Korean Brain Aging Study for Early Diagnosis and Predic-

tion of Alzheimer’s Disease (KBASE), an ongoing prospective cohort study that started in

2014. As of November 2016, 414 community-dwelling individuals with neither dementia

nor alcohol-related disorders (280 cognitively normal [CN] individuals and 134 individuals

with mild cognitive impairment [MCI]) between 56 and 90 years of age (mean age 70.9

years ± standard deviation 7.8; male, n [%] = 180 [43.5]) were recruited from 4 sites (i.e.,

2 university hospitals and 2 public centers for dementia prevention and management)

around Seoul, South Korea. All the participants underwent comprehensive clinical assess-

ments comprising lifetime and current histories of alcohol intake and multimodal brain imag-

ing, including [11C] Pittsburgh compound B positron emission tomography (PET), [18F]
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fluorodeoxyglucose (FDG) PET, and magnetic resonance imaging (MRI) scans. Lifetime and

current alcohol intake were categorized as follows: no drinking, <1 standard drink (SD)/week,

1–13 SDs/week, and 14+ SDs/week. A moderate lifetime alcohol intake (1–13 SDs/week)

was significantly associated with a lower Aβ positivity rate compared to the no drinking group,

even after controlling for potential confounders (odds ratio 0.341, 95% confidence interval

0.163–0.714, p = 0.004). In contrast, current alcohol intake was not associated with amyloid

deposition. Additionally, alcohol intake was not related to neurodegeneration of AD-signature

regions or cerebral WMH volume. The present study had some limitations in that it had a

cross-sectional design and depended on retrospective recall for alcohol drinking history.

Conclusions

In this study, we observed in middle- and old-aged individuals with neither dementia nor

alcohol-related disorders that moderate lifetime alcohol intake was associated with lower

cerebral Aβ deposition compared to a lifetime history of not drinking. Moderate lifetime alco-

hol intake may have a beneficial influence on AD by reducing pathological amyloid deposi-

tion rather than amyloid-independent neurodegeneration or cerebrovascular injury.

Author summary

Why was this study done?

• An emerging body of literature has indicated that moderate alcohol intake may be pro-

tective against Alzheimer disease (AD) dementia.

• Preclinical studies from animal and cell culture models have demonstrated that moder-

ate alcohol intake confers protection by attenuating molecular amyloid-beta (Aβ)

pathology.

• Little information is available regarding whether moderate alcohol intake is related to

decreased Aβ deposition, or is protective via amyloid-independent mechanisms in the

living human brain.

What did the researchers do and find?

• We performed cross-sectional analyses of the baseline data from 414 middle- and old-

aged individuals with neither dementia nor alcohol-related disorders who participated

in the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer’s Dis-

ease (KBASE), an ongoing prospective cohort study.

• All participants were systematically interviewed on current and past alcohol intake and

underwent brain imaging to examine the associations of alcohol intake with various in

vivo AD pathologies.

• We observed that moderate lifetime alcohol intake (i.e., 1–13 standard drinks [SDs]/

week) was significantly associated with lower amyloid deposition compared to no drink-

ing, whereas current alcohol intake did not affect amyloid deposition.

Moderate alcohol intake and in vivo Aβ deposition
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• In contrast, neither lifetime nor current alcohol intake was associated with neurodegen-

eration of the AD–signature cortical regions or cerebral white matter injury.

What do these findings mean?

• The present findings from middle- and old-aged individuals with neither dementia nor

alcohol-related disorders suggest that moderate lifetime alcohol intake may have a bene-

ficial influence on AD by reducing pathological amyloid deposition.

• The findings should be cautiously interpreted because the present study had a cross-sec-

tional design and depended on retrospective recall for alcohol drinking history.

Introduction

Debate remains regarding whether alcohol intake has protective or harmful effects with respect

to the risk of dementia or cognitive decline. Although excessive alcohol intake is associated

with an increased risk of dementia or cognitive decline [1–4], an emerging body of literature

has indicated that moderate alcohol intake may be protective against both conditions [3,5–16].

Several human studies have reported that moderate alcohol intake is associated with a

lower risk of Alzheimer disease (AD) dementia [3,9–13]. Neurobiological findings from ani-

mal and cell culture models have demonstrated that moderate alcohol intake confers protec-

tion by attenuating molecular amyloid-beta (Aβ) pathology and blocking Aβ-induced damage

[17–20]. Moderate alcohol intake decreased Aβ peptides in AD transgenic mice by promoting

the non-amyloidogenic processing of amyloid precursor protein [17]. Moderate concentra-

tions of alcohol also protected cultured hippocampal neurons against Aβ-induced neurotoxic-

ity [18,19]. Furthermore, pretreatment with a moderate level of alcohol reduced Aβ
aggregation and prevented soluble Aβ toxicity in cultured cells by blocking the formation of

stable Aβ dimers with high cellular toxicity [20]. However, little information is available

regarding whether moderate alcohol intake is related to decreased Aβ deposition in the human

brain in vivo.

Previous findings for the influence of moderate alcohol intake on neurodegeneration and

cerebrovascular changes are controversial [21–30]. While many preclinical studies and some

human magnetic resonance imaging (MRI) studies suggested that moderate alcohol intake has

a protective effect against neurodegenerative or cerebrovascular injury [21–28], others did not

observe a protective effect of alcohol [29,30]. Although a postmortem pathological study did

not demonstrate any association between alcohol consumption and neuropathological lesions,

the study relied on only semi-quantitative assessment for AD pathologies restricted to only a

few brain regions [31].

We aimed to test the hypothesis that moderate alcohol intake is associated with reduced

cerebral Aβ deposition in middle- and old-aged individuals with neither dementia nor alco-

hol-related disorders [32]. Cerebral Aβ deposition was measured by [11C] Pittsburg compound

B (PiB) positron emission tomography (PET). We also tested the hypothetical associations of

moderate alcohol intake with AD-related neurodegeneration and cerebrovascular white matter

injury. The neurodegeneration of AD-signature regions was measured by both MRI and [18F]

fluorodeoxyglucose (FDG) PET imaging. Cerebral white matter hyperintensities (WMHs) on

MRI were used as a measure of cerebrovascular injury [33,34]. Additionally, we explored the

Moderate alcohol intake and in vivo Aβ deposition
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associations between other categories of alcohol intake and the neuroimaging biomarkers

mentioned above.

Methods

Participants

The present study was part of the Korean Brain Aging Study for Early Diagnosis and Prediction

of Alzheimer’s Disease (KBASE), an ongoing prospective cohort study that started in 2014. The

KBASE study aimed to search for new AD biomarkers and investigate how multifaceted lifetime

experiences and bodily changes contribute to the brain changes related to AD. The current

study analyzed the data of 414 individuals without dementia (280 cognitively normal [CN] indi-

viduals and 134 individuals with mild cognitive impairment [MCI]) between 56 and 90 years of

age (mean age 70.9 ± standard deviation 7.8; male, n [%] = 180 [43.5]) who were recruited as of

30 November 2016. Participants were recruited through 4 recruitment sites around Seoul, South

Korea. Potentially eligible individuals who participated in a dementia screening program at 2

public centers for dementia prevention and management or visited memory clinics at 2 univer-

sity hospitals (i.e., Seoul National University Hospital and SNU-SMG Boramae Medical Center)

around Seoul, South Korea, were informed about study participation, and those who volun-

teered were invited for an assessment of eligibility. In addition, volunteers from the community

were recruited through advertisements online, posters and brochures at the main recruitment

sites, and word of mouth (recommended by other participants, family members, friends, or

acquaintances). More detailed information on KBASE study characteristics including recruit-

ment has been published previously [35]. The CN group consisted of participants with a Clinical

Dementia Rating (CDR) [36] score of 0 and no diagnosis of MCI or dementia. All individuals

with MCI met the current consensus criteria for amnestic MCI, which are as follows: (1) mem-

ory complaints confirmed by an informant, (2) objective memory impairments, (3) preserved

global cognitive function, (4) independence in functional activities, and (5) no dementia.

Regarding criterion 2, the age-, education-, and sex-adjusted z-scores for at least 1 of 4 episodic

memory tests was<−1.0. The 4 memory tests were the Word List Memory, Word List Recall,

Word List Recognition, and Constructional Recall tests, which are included in the Korean ver-

sion of the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD-K) neuropsy-

chological assessment battery [37]. All individuals with MCI had a CDR score of 0.5.

The exclusion criteria were as follows: (1) presence of a major psychiatric illness, including

alcohol-related disorders; (2) significant neurological or medical conditions or comorbidities

that could affect mental function; (3) contraindications for an MRI scan (e.g., pacemaker or

claustrophobia); (4) illiteracy; (5) the presence of significant visual/hearing difficulties and/or

severe communication or behavioral problems that would make clinical examinations or brain

scans difficult; (6) taking an investigational drug; and (7) pregnant or breastfeeding.

The study protocol was approved by the institutional review boards of Seoul National Uni-

versity Hospital (C-1401-027-547) and SNU-SMG Boramae Medical Center (26-2015-60),

Seoul, South Korea, and the study was conducted in accordance with the recommendations of

the current version of the Declaration of Helsinki. The participants or their legal representa-

tives gave written informed consent.

Clinical assessments

All participants underwent comprehensive clinical and neuropsychological assessments

administered by trained psychiatrists and neuropsychologists based on the KBASE assessment

protocol [35], which incorporates the CERAD-K neuropsychological assessment battery

[38,39].

Moderate alcohol intake and in vivo Aβ deposition
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Assessment of alcohol intake

All participants were systematically interviewed by trained nurses to determine alcohol intake

using an interview form (S1 Interview Form) at the medical science building in the Seoul

National University medical campus, Seoul, South Korea. According to the World Health

Organization guideline [40], 1 standard drink (SD) was defined as any drink that contained 10

grams of pure alcohol. Because there are a wide variety of alcoholic beverages and brands, dif-

ferent beverages were categorized as follows: 1 can of beer (4.5% alcohol; 330 ml) = 1 SD; 1 bot-

tle of beer (4.5% alcohol; 640 ml) = 2 SDs, 1 bottle of local Korean spirit (20% alcohol; 360 ml)

= 6 SDs, 1 bottle of spirit (40% alcohol; 750 ml) = 24 SDs, 1 bottle of Korean traditional wine

(8% alcohol; 900 ml) = 6 SDs, and 1 bottle of wine (12% alcohol; 900 ml) = 9 SDs. Additionally,

the patterns of alcohol intake for each participant were categorized as follows: drinking status

(non-drinker, former drinker, drinker) and frequency and amount of alcohol intake (SDs/

drinking day, drinking days/week, SDs/week) during the past year (current) and lifetime.

Among drinkers, those who drank more than 6 SDs per drinking day in the past year were

sub-classified as binge drinkers [10]. Among current non-drinkers, those who used to drink

regularly but have not drunk alcohol in the past year were sub-classified as former drinkers

[5,11]. Previous epidemiological studies on the effect of alcohol intake showed that there was a

clear difference in the risk of overall or AD dementia among no drinking (reference), former

drinking, mild drinking, moderate drinking, and high drinking groups [11,22,41]. Based on

these reports, our participants were categorized based on weekly alcohol intake as follows: no

drinking (reference category), former drinking, <1 SD/week (<10 grams/week; mild drink-

ing), 1–13 SDs/week (10–130 grams/week; moderate drinking), and 14+ SDs/week (�140

grams/week; unsafe drinking in the newly revised UK Department of Health guidelines [42]).

Assessment of potential confounders

Alcohol intake may be influenced by various other conditions. Therefore, all participants were

systematically evaluated about potential confounders, such as depression, vascular risk, body

weight, body mass index (BMI), occupational complexity, annual income, and apolipoprotein

E (APOE) genotyping. The Geriatric Depression Scale (GDS) [43] was used to assess depres-

sion. Body weight, height, and comorbidity rates of vascular risk factors (including hyperten-

sion, diabetes mellitus, dyslipidemia, coronary heart disease, transient ischemic attack, and

stroke) were assessed based on data collected by trained nurses during systematic interviews of

participants and their informants; BMI was calculated as weight in kilograms divided by the

square of height in meters, and a vascular risk score was calculated based on the number of

vascular risk factors [44]. With regard to occupational complexity, we considered only the lon-

gest-held occupation, classified into 4 levels based on the skill levels described in International

Standard Classification of Occupations [45]. Occupations at skill level 1 typically involve sim-

ple and routine physical or manual tasks. Occupations at skill level 2 include the performance

of tasks such as operating machinery and electronic equipment, driving vehicles, maintenance

and repair of electrical and mechanical equipment, and manipulation, ordering, and storage of

information. Occupations at skill level 3 include the performance of complex technical and

practical tasks that require complex problem-solving, reasoning, and decision-making in a

specialized field. Occupations at skill level 4 involve the performance of tasks that require com-

plex problem-solving, decision-making, and creativity based on an extensive body of theoreti-

cal and factual knowledge in a specialized field. Information about occupation was obtained

from self-report by the participants and confirmed by reliable informants. Annual income was

evaluated and categorized into 3 groups (below the minimum cost of living [MCL], at or more

than the MCL but below twice the MCL, twice the MCL or more; http://www.law.go.kr). The

Moderate alcohol intake and in vivo Aβ deposition
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MCL was determined according to the administrative rule published by the Ministry of Health

and Welfare, Republic of Korea, in November 2012. The MCL was 572,168 Korean Won

(KRW) (equivalent to US$507.9) for a single-person household and added 286,840 KRW

(equivalent to US$254.6) for each additional household member. Blood samples were obtained

via venipuncture, genomic DNA was extracted from whole blood, and APOE genotyping was

performed as previously described [46]. apolipoprotein ε4 (APOE4) positivity was coded if at

least 1 ε4 allele was present.

Measurement of cerebral Aβ deposition

All participants underwent simultaneous 3D PiB PET and 3D T1-weighted MRI scans using a

3.0T Biograph mMR (PET-MR) scanner (Siemens) according to the manufacturer’s guide-

lines; the details of PiB PET imaging acquisition and preprocessing are provided in S1 Method.

The automatic anatomic labeling algorithm and a region-combining method [47] were applied

to determine regions of interest (ROIs), to characterize the PiB retention levels in the frontal,

lateral parietal, posterior cingulate/precuneus, and lateral temporal regions. The standardized

uptake value ratio (SUVR) values for each ROI were calculated by dividing the mean value for

all voxels within each ROI by the mean cerebellar uptake value in the same image. A global

cortical ROI consisting of 4 ROIs was also defined, and a global Aβ retention value was gener-

ated by dividing the mean value for all voxels of the global cortical ROI by the mean cerebellar

uptake value in the same image [47,48]. Participants were classified as Aβ+ if global Aβ reten-

tion was>1.21, and as Aβ– if global Aβ retention was�1.21 [49].

Measurement of AD-signature neurodegeneration

All participants underwent FDG PET imaging using the abovementioned PET-MR scanner;

the details of FDG PET image acquisition and preprocessing are provided in S1 Method. AD-

signature FDG ROIs, such as the angular gyri, posterior cingulate cortex, and inferior temporal

gyri, which are sensitive to the changes associated with AD [50], were determined. AD-signa-

ture cerebral glucose metabolism (AD-CM) was defined as the voxel-weighted mean SUVR

extracted from the AD-signature FDG ROIs; the details of MRI acquisition and preprocessing

are provided in S1 Method. AD-signature cortical thickness (AD-CT) was defined as the mean

cortical thickness values obtained from AD-signature regions including the entorhinal, infe-

rior temporal, middle temporal, and fusiform gyrus regions, as previously described [50].

Measurement of WMHs

All participants underwent MRI scans with fluid-attenuated inversion recovery (FLAIR) using

the abovementioned 3.0T PET-MR scanner; the details of the volume measurements of cere-

bral WMHs are provided in S1 Method.

Statistical analysis

In order to test the hypothetical associations between moderate alcohol intake and neuroimag-

ing biomarkers and to explore the association between other categories of alcohol intake and

the biomarkers, we planned to perform multiple regression analyses as follows. First, multiple

logistic regression analyses with lifetime (or current) alcohol intake category (i.e., no drinking,

<1 SD/week, 1–13 SDs/week, and 14+ SDs/week) as the independent variable and Aβ positiv-

ity as the dependent variable were conducted. In these analyses, to compare the effect of alco-

hol intake relative to no drinking, no drinking was used as the reference (i.e., no drinking

versus<1 SD/week, no drinking versus 1–13 SDs/week, or no drinking versus 14+ SDs/week)

Moderate alcohol intake and in vivo Aβ deposition
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within each model. Three models were tested, with stepwise control of the potential confound-

ers that could affect the association between alcohol intake and AD biomarkers. The first

model (Model 1) did not include any covariates; the second model (Model 2) included age,

sex, APOE4, vascular risk score, and GDS score as covariates; and the third model (Model 3)

included the covariates in the second model plus education (high school education or below

versus more than high school education), clinical diagnosis (CN versus MCI), occupational

complexity, annual income, body weight, and BMI [51]. Second, multiple linear regression

analyses were performed to compare the differences in global Aβ retention, AD-CM, AD-CT,

and WMHs among the lifetime (or current) alcohol intake groups while controlling for the

same covariates. In the analyses, global Aβ retention was used after natural log-transformation

to achieve normal distribution.

As sensitivity analyses, we also performed the same analyses after excluding binge drinkers

from lifetime or current drinkers in order to reduce the influence of the binge drinking pattern

on the association between the frequency and amount of alcohol intake and the neuroimaging

variables. Additionally, we did the same analyses after excluding former drinkers from current

non-drinkers to minimize the potential effects of forced abstainers who stopped using alcohol

because of other health concerns related to problem drinking.

In order to investigate the influence of age (younger [<75 years] versus older [�75 years])

[52], sex (female versus male), APOE4 (APOE4+ versus APOE4−), and clinical diagnosis (CN

versus MCI)] on the association between alcohol intake and neuroimaging biomarkers that

were significant in the analyses described above, the same regression analysis was repeated

including a 2-way interaction term between alcohol intake and each of the 4 neuroimaging

biomarkers as an additional independent variable.

All statistical analyses were performed using IBM SPSS Statistics 24.

Results

Participant characteristics

The demographic and clinical characteristics of the participants are presented in Tables 1 and S1.

Association of alcohol intake with cerebral amyloid deposition

The multiple logistic regression analyses revealed that a lifetime alcohol intake of 1–13 SDs/

week was significantly associated with lower Aβ positivity compared to the no drinking group,

even after controlling for potential confounders (Models 1, 2, and 3), while lifetime alcohol

intakes of<1 SD/week and 14+ SDs/week were not related to Aβ positivity (Table 2; Fig 1).

The results were similar even when different thresholds for Aβ positivity (i.e., global Aβ
retention > 1.19 [49] or>1.40 [50] instead of>1.21) were applied to define the Aβ positive

state (S2 Table). Similarly, the multiple regression analyses revealed significant (Models 1 and

2) association between a lifetime alcohol intake of 1–13 SDs/week and global Aβ retention

(Table 2). Meanwhile, current alcohol intake was not related to Aβ positivity or global Aβ
retention (Table 2).

Association of alcohol intake with neurodegeneration and WMHs

No group differences were observed in AD-CM, AD-CT, or WMHs between the lifetime (or

current) alcohol intake categories. The findings for the association between alcohol intake and

neurodegeneration or WMHs were not changed even after additional controlling for all the

covariates (Table 3).

Moderate alcohol intake and in vivo Aβ deposition
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Sensitivity analyses

Sensitivity analyses including only participants without binge drinking showed similar results

(S3 and S4 Tables). The results were also very similar after excluding former drinkers (S5 and

S6 Tables).

Influence of age, sex, APOE4, and clinical diagnosis on the association

between moderate alcohol intake and Aβ positivity

As shown in Table 4, the interaction between moderate lifetime alcohol intake and age was sig-

nificant, indicating that age moderates the association between moderate lifetime alcohol

Table 1. Demographic and clinical characteristics of participants by category of lifetime alcohol intake.

Characteristic Lifetime alcohol intake category p-Value

No drinking <1 SD/week 1–13 SDs/week 14+ SDs/week

N 227 16 125 46

Age, years 71.8 (7.3) 70.1 (7.5) 69.6 (8.2) 70.1 (8.8) 0.077a

Male, n/N (%) 38/227 (16.7) 8/16 (50.0) 91/125 (72.8) 43/46 (93.5) <0.001b

APOE4 positivity, n/N (%) 53/226 (23.5) 1/16 (6.3) 29/125 (23.2) 15/46 (32.6) 0.192b

CN, n/N (%) 142/227 (62.6) 12/16 (75.0) 95/125 (76.0) 31/46 (67.4) 0.070b

MMSE 25.2 (3.5) 27.4 (2.8) 25.5 (3.4) 25.7 (3.5) 0.082a

Body weight, kg 58.2 (8.9) 62.6 (9.0) 64.7 (1.0) 66.5 (7.0) <0.001a

BMI, kg/m2 24.4 (3.1) 24.2 (2.9) 24.3 (3.1) 24.3 (2.6) 0.955a

Vascular risk score 1.1 (1.0) 1.1 (0.9) 0.9 (1.0) 1.1 (1.0) 0.480a

GDS score 6.6 (5.8) 2.1 (1.9) 6.3 (6.9) 7.3 (6.9) 0.028a

Education more than high school, n/N (%) 61/227 (26.9) 9/16 (56.3) 56/125 (44.8) 16/46 (34.8) 0.002b

Occupational complexity <0.001c

None, n/N (%) 65/226 (28.8) 2/16 (12.5) 8/125 (6.4) 0/46 (0.0)

Skill level 1, n/N (%) 16/226 (7.1) 0/16 (0.0) 11/125 (8.8) 1/46 (2.2)

Skill level 2, n/N (%) 71/226 (31.4) 5/16 (31.3) 42/125 (33.6) 19/46 (41.3)

Skill level 3, n/N (%) 24/226 (10.6) 0/16 (0.0) 23/125 (18.4) 8/46 (17.4)

Skill level 4, n/N (%) 50/226 (22.1) 9/16 (56.3) 41/125 (32.8) 18/46 (39.1)

Annual income status 0.702b

<MCL, n/N (%) 18/227 (7.9) 0/16 (0.0) 11/125 (8.8) 5/46 (10.9)

�MCL, <2×MCL, n/N (%) 98/227 (43.2) 8/16 (50.0) 57/125 (45.6) 24/46 (52.2)

�2×MCL, n/N (%) 111/227 (48.9) 8/16 (50.0) 17/125 (30.0) 193/46 (46.6)

Cerebral Aβ deposition

Aβ positivity, n/N (%) 79/223 (35.4) 5/16 (31.3) 23/121 (19.0) 12/46 (26.1) 0.015b

Global Aβ retention, SUVR 1.32 (0.4) 1.35 (0.5) 1.24 (0.3) 1.25 (0.3) 0.151a

Neurodegeneration

AD-CM, SUVR 1.38 (0.1) 1.40 (0.1) 1.41 (0.1) 1.40 (0.1) 0.347a

AD-CT, mm 2.80 (0.2) 2.80 (0.2) 2.82 (0.2) 2.81 (0.3) 0.826a

WMH volume, cm3 6.15 (5.7) 7.61 (6.6) 5.46 (4.7) 5.87 (5.6) 0.498a

Data are expressed as mean (standard deviation) unless otherwise indicated.
aBy 1-way analysis of variance.
bBy chi-squared test.
cBy Fisher’s exact test.

AD-CM, Alzheimer disease–signature cerebral glucose metabolism; AD-CT, Alzheimer disease–signature cortical thickness; APOE4, apolipoprotein β4; Aβ, amyloid-

beta; BMI, body mass index; CN, cognitively normal; GDS, Geriatric Depression Scale; MCL, minimum cost of living; MMSE, Mini-Mental State Examination; SD,

standard drink; SUVR, standardized uptake value ratio; WMH, white matter hyperintensity.

https://doi.org/10.1371/journal.pmed.1003022.t001
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intake and Aβ positivity, while any interaction between moderate alcohol intake and each of

sex, APOE4, and clinical diagnosis was not significant. Further subgroup analysis showed that

moderate alcohol intake was significantly associated with Aβ positivity only in the older sub-

group, not in the younger one (S7 Table). For the purpose of exploration, we also performed

the same analyses for the moderating effect of age, sex, APOE4, and clinical diagnosis on the

association between alcohol intake of<1 SD/week or 14+ SDs/week and Aβ positivity. Interac-

tion between these 2 alcohol intake categories and each of age, sex, APOE4, and clinical diag-

nosis was not significant (S8 Table).

Table 2. Results of the multiple logistic and linear regression analyses assessing the associations of stratified alco-

hol intake with Aβ deposition in participants overall.

Alcohol intake Aβ positivity Aβ retention, SUVR

OR (95% CI)†, p-Value B (95% CI)‡, p-Value

Lifetime

Model 1a

<1 SD/week 0.850 (0.285 to 2.535), 0.771 0.014 (−0.105 to 0.132), 0.822

1–13 SDs/week 0.439 (0.258 to 0.747), 0.002 −0.057 (−0.108 to −0.005), 0.032

14+ SDs/week 0.660 (0.323 to 1.348), 0.254 −0.046 (−0.121 to 0.028), 0.220

Model 2b

<1 SD/week 1.508 (0.460 to 4.935), 0.498 0.061 (−0.050 to 0.172), 0.279

1–13 SDs/week 0.335 (0.166 to 0.678), 0.002 −0.059 (−0.116 to −0.003), 0.040

14+ SDs/week 0.411 (0.158 to 1.070), 0.069 −0.072 (−0.153 to 0.009), 0.080

Model 3c

<1 SD/week 1.316 (0.390 to 4.437), 0.658 0.038 (−0.066 to 0.142), 0.471

1–13 SDs/week 0.341 (0.163 to 0.714), 0.004 −0.047 (−0.100 to 0.006), 0.084

14+ SDs/week 0.423 (0.156 to 1.150), 0.092 −0.063 (−0.139 to 0.013), 0.103

Current

Model 1a

<1 SD/week 0.872 (0.324 to 2.344), 0.785 0.009 (−0.097 to 0.115), 0.865

1–13 SDs/week 0.486 (0.266 to 0.886), 0.019 −0.060 (−0.117 to −0.002), 0.042

14+ SDs/week 0.488 (0.193 to 1.233), 0.129 −0.046 (−0.133 to 0.040), 0.294

Model 2b

<1 SD/week 1.178 (0.389 to 3.564), 0.772 0.035 (−0.063 to 0.134), 0.485

1–13 SDs/week 0.496 (0.245 to 1.004), 0.051 −0.040 (−0.096 to 0.016), 0.162

14+ SDs/week 0.723 (0.244 to 2.141), 0.558 −0.008 (−0.095 to 0.080), 0.858

Model 3c

<1 SD/week 1.234 (0.398 to 3.824), 0.716 0.031 (−0.061 to 0.122), 0.508

1–13 SDs/week 0.503 (0.241 to 1.052), 0.068 −0.032 (−0.084 to 0.021), 0.235

14+ SDs/week 0.804 (0.261 to 2.477), 0.704 <0.001 (−0.081 to 0.082), 0.995

Global Aβ retention was used after natural log-transformation to achieve normal distribution.
†By multiple logistic regression analysis (no drinking served as the reference group).
‡By multiple linear regression analysis (no drinking served as the reference group).
aNot adjusted.
bAdjusted for age, sex, apolipoprotein ε4, vascular risk score, and Geriatric Depression Scale score.
cAdjusted for covariates in Model 2 plus education, clinical diagnosis, occupational complexity, annual income, body

weight, and body mass index.

Aβ, amyloid-beta; B, unstandardized regression coefficient; OR, odds ratio; SD, standard drink; SUVR, standardized

uptake value ratio.

https://doi.org/10.1371/journal.pmed.1003022.t002
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Discussion

In this study, we observed that lifetime alcohol intake of 1–13 SDs/week (moderate drinking)

was associated with lower cerebral Aβ deposition compared to the no drinking group in these

middle- and old-aged individuals with neither dementia nor alcohol-related disorders.

The present finding of an association between moderate alcohol intake and lower Aβ depo-

sition is in line with results from previous studies using animal or cultured cell models, which

indicated that moderate alcohol intake exerts a protective effect via attenuating Aβ accumula-

tion [17,20]. Many clinical and epidemiological studies have reported an inverse association

between moderate alcohol intake and the risk of AD dementia [3,9–13], and the present find-

ings regarding the association between moderate alcohol intake and decreased cerebral Aβ
positivity may explain this inverse association.

No drinking 1–13 SDs/week 14+ SDs/week

Lifetime alcohol intake category

〈1 SD/week

Fig 1. Aβ positivity rate according to lifetime alcohol intake category. Comparison of Aβ positivity rate for no drinking versus<1 SD/

week, no drinking versus 1–13 SDs/week, and no drinking versus 14+ SDs/week. Multiple logistic regression analyses were performed after

adjusting for age, sex, apolipoprotein ε4, vascular risk score, Geriatric Depression Scale score, education, clinical diagnosis, occupational

complexity, annual income, body weight, and body mass index. Aβ, amyloid-beta; SD, standard drink.

https://doi.org/10.1371/journal.pmed.1003022.g001
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While moderate lifetime alcohol intake had a significant association with Aβ deposition,

moderate current intake did not. This difference indicates that the protective effects of moder-

ate alcohol intake against Aβ pathology involve the chronic effects associated with long-term

exposure rather than an acute effect. The significant finding for lifetime intake only also sug-

gests that the protective association for moderate alcohol intake is not due to the inclusion of

forced abstainers, i.e., those who stopped using alcohol owing to other health concerns related

to problem drinking, among the reference group (i.e., non-drinkers). Forced abstainers were

classified as drinkers for lifetime alcohol intake status, whereas they were classified as non-

drinkers for current alcohol intake status.

Unlike for Aβ deposition, there were no associations between moderate alcohol intake and

neurodegeneration or WMHs. Similarly, previous human MRI studies did not observe an

association between moderate alcohol intake and cerebral gray matter volume [29] or total

Table 3. Results of the multiple linear regression analyses assessing the associations of stratified alcohol intake with AD-CM, AD-CT, and WMHs in participants

overall.

Alcohol intake B (95% CI)†, p-Value

AD-CM, SUVR AD-CT, mm WMHs, cm3

Lifetime

Model 1a

<1 SD/week 0.020 (−0.047 to 0.088),0.555 <0.001 (−0.113 to 0.113), 0.998 1.430 (−1.635 to 4.495), 0.359

1–13 SDs/week 0.027 (−0.003 to 0.056), 0.075 0.023 (−0.027 to 0.074), 0.360 −0.715 (−1.985 to 0.556), 0.269

14+ SDs/week 0.016 (−0.026 to 0.059), 0.447 0.013 (−0.058 to 0.085), 0.718 −0.307 (−2.163 to 1.549), 0.745

Model 2b

<1 SD/week 0.013 (−0.055 to 0.080), 0.713 −0.031 (−0.129 to 0.068), 0.543 1.495 (−1.569 to 4.558),0.338

1–13 SDs/week 0.024 (−0.011 to 0.058), 0.173 0.014 (−0.037 to 0.065), 0.593 −1.085 (−2.577 to 0.407), 0.153

14+ SDs/week 0.023 (−0.026 to 0.072), 0.359 0.030 (−0.043 to 0.103), 0.417 −1.071 (−3.225 to 1.084), 0.329

Model 3c

<1 SD/week 0.018 (−0.047 to 0.084), 0.578 −0.017 (−0.110 to 0.076), 0.717 1.663 (−1.429 to 4.755), 0.291

1–13 SDs/week 0.016 (−0.017 to 0.050), 0.343 0.004 (−0.044 to 0.052), 0.873 −1.025 (−2.535 to 0.485), 0.183

14+ SDs/week 0.017 (−0.031 to 0.065, 0.481 0.038 (−0.031 to 0.107), 0.282 −0.909 (−3.099 to 1.281), 0.415

Current

Model 1a

<1 SD/week 0.026 (−0.034 to 0.087), 0.391 0.015 (−0.086 to 0.115), 0.771 0.397 (−2.293 to 3.087), 0.772

1–13 SDs/week 0.015 (−0.018 to 0.048), 0.366 0.033 (−0.023 to 0.088), 0.248 −0.139 (−1.563 to 1.285), 0.848

14+ SDs/week 0.039 (−0.010 to 0.088), 0.115 0.109 (0.026 to 0.191), 0.010 −1.121 (−3.261 to 1.102), 0.304

Model 2b

<1 SD/week 0.023 (−0.037 to 0.082), 0.455 0.001 (−0.086 to 0.088), 0.982 0.513 (−2.144 to 3.69), 0.704

1–13 SDs/week 0.008 (−0.026 to 0.042), 0.655 0.012 (−0.038 to 0.063), 0.626 −0.080 (−1.552 to 1.393), 0.915

14+ SDs/week 0.022 (−0.030 to 0.074), 0.411 0.067 (−0.011 to 0.144), 0.090 −0.925 (−3.202 to 1.353), 0.425

Model 3c

<1 SD/week 0.023 (−0.034 to 0.081), 0.427 −0.001 (−0.082 to 0.081), 0.986 0.473 (−2.198 to 3.144), 0.728

1–13 SDs/week 0.004 (−0.029 to 0.037), 0.818 0.003 (−0.044 to 0.051), 0.894 −0.070 (−1.552 to 1.412), 0.926

14+ SDs/week 0.020 (−0.031 to 0.070), 0.443 0.067 (−0.006 to 0.140), 0.070 −0.920 (−3.210 to 1.371), 0.430

†By multiple linear regression analysis (no drinking served as the reference group).
aNot adjusted.
bAdjusted for age, sex, apolipoprotein ε4, vascular risk score, and Geriatric Depression Scale score.
cAdjusted for covariates in Model 2 plus education, clinical diagnosis, occupational complexity, annual income, body weight, and body mass index.

AD-CM, Alzheimer disease–signature cerebral glucose metabolism; AD-CT, Alzheimer disease–signature cortical thickness; B, unstandardized regression coefficient;

SD, standard drink; SUVR, standardized uptake value ratio; WMH, white matter hyperintensity.

https://doi.org/10.1371/journal.pmed.1003022.t003
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brain volume [30]. However, several preclinical and human studies reported that moderate

alcohol intake has protective effects against vascular changes and atrophy in the brain. Studies

using cultured cell or animal models showed that moderate alcohol intake is protective against

ischemic brain injury [24,27], and human MRI studies have suggested that moderate alcohol

intake is protective against damage to cerebral gray [23] and white [21,22] matter. These dis-

crepancies may be related to methodological differences between studies. However, as sug-

gested in a systematic review of the chronic effects of moderate alcohol intake on the structural

and functional properties of the brain [53], the present findings based on both structural MRI

(cortical thickness and WMHs) and FDG PET (cerebral glucose metabolism) measures sup-

port that moderate alcohol intake did not exert its protective effects directly through neurode-

generative or vascular mechanisms.

Although excessive alcohol intake has been related with an increased risk of cognitive

decline [1–4], and U- or J-shaped association has been implied together with the decreased

risk of cognitive impairment with moderate alcohol intake [3,5–16], we did not find any asso-

ciation between higher alcohol intake and increased AD pathologies. Alcohol-related brain

damage (ARBD) [54] was suggested as an umbrella term for conditions including Wernicke–

Korsakoff syndrome, alcohol-related dementia, and other forms of persistent alcohol-related

cognitive impairment. ARBD encompasses a range of clinical presentations that manifest as

impairments in memory, executive functioning, and judgement, which are related to frontal

brain function. Several brain imaging studies also reported damage of the frontal lobe in indi-

viduals with alcoholism [55], while AD-CT and AD-CM measures mainly include temporo-

parietal degeneration. Therefore, we additionally analyzed the association between alcohol

intake and frontal lobe state (i.e., glucose metabolism, cortical thickness, and WMH volume of

the frontal region) in order to find out if there was any ARBD-like damage with alcohol intake.

Table 4. Moderating effects of age, sex, APOE4, and clinical diagnosis on the association between moderate life-

time alcohol intake and amyloid-beta positivity.

Variable or interaction OR (95% CI)† p-Value

Model for age effect

1–13 SDs/week 0.459 (0.211 to 1.000) 0.050

Agea 2.319 (1.243 to 4.325) 0.008

1–13 SDs/week × age 0.258 (0.073 to 0.918) 0.036

Model for sex effect

1–13 SDs/week 0.253 (0.084 to 0.761) 0.014

Sex 1.716 (0.791 to 3.726) 0.172

1–13 SDs/week × sex 1.158 (0.285 to 4.706) 0.838

Model for APOE4 effect

1–13 SDs/week 0.310 (0.137 to 0.702) 0.005

APOE4 6.397 (3.193 to 12.816) <0.001

1–13 SDs/week × APOE4 0.898 (0.268 to 3.011) 0.862

Model for clinical diagnosis effect

1–13 SDs/week 0.349 (0.144 to 0.845) 0.020

Clinical diagnosisb 5.088 (2.577 to 10.047) <0.001

1–13 SDs/week × clinical diagnosis 0.817 (0.242 to 2.761) 0.745

†By multiple logistic regression analysis controlling for age, sex, APOE4, vascular risk score, and Geriatric

Depression Scale score as covariates when appropriate.
aYounger (<75 years) versus older (�75 years).
bCognitively normal versus mild cognitive impairment.

APOE4, apolipoprotein ε4; OR, odds ratio; SD, standard drink.

https://doi.org/10.1371/journal.pmed.1003022.t004
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As shown in S9 Table, however, we did not find any significant results from those analyses.

These null findings may be because individuals with alcohol-related disorders were excluded

and, as a result, heavy drinkers (14+ SDs/week) in the present study consisted of individuals

without alcoholism or other severe alcohol problems.

The investigation of the influence of age on the association between moderate alcohol

intake and Aβ positivity revealed that the protective effect of moderate alcohol intake on Aβ
positivity was more prominent in older individuals (�75 years) than younger ones. This find-

ing may be due in part to age-associated increases in the Aβ positivity rate in individuals with-

out dementia [56]. In the present study, the Aβ positivity rate was 24.5% (n = 62) in the

younger age group and 37.3% (n = 57) in the older group. The relatively small proportion of

Aβ+ individuals in the younger group might decrease the likelihood of detecting a significant

difference. It is also possible, as mentioned above, that these age-related differences are related

to the chronic effects associated with long-term alcohol exposure. In contrast, sex, APOE4,

and clinical diagnosis did not have any moderating effect on the association between moderate

alcohol intake and Aβ positivity.

The present study had a couple of strengths. To the best of our knowledge, this study is the

first to show the association of moderate alcohol intake with Aβ accumulation in the living

human brain. The study included a relatively large number of participants who were well-char-

acterized through comprehensive clinical assessments including systematic interview for

detailed alcohol drinking history and multimodal brain imaging for in vivo AD pathologies

and WMHs. In addition, various potential confounders were systematically evaluated and con-

trolled in the statistical models in order to reveal the association between alcohol intake and

brain pathologies as clearly as possible. Even after controlling for all potential confounders, the

findings did not change. The results were also confirmed by sensitivity analyses conducted

after excluding binge or former drinkers.

Nevertheless, the present study also had several limitations that should be considered. First,

because this was a cross-sectional study, causal relationships cannot be inferred from the find-

ings. Second, in terms of lifetime alcohol intake, underestimation of drinking or retrospective

recall bias may have affected the results in older individuals. However, it is unlikely that under-

estimation of alcohol intake was significant because harmful drinkers and individuals with a

history of alcohol use disorder were excluded from the analyses, and moderate drinkers have

no reason to underestimate their alcohol intake. Moreover, to reduce recall bias, information

was obtained from reliable informants as well as the study participants. Additionally, a review

of self-report bias in the assessment of alcohol intake suggested that this recall bias is not

greater in older individuals than in the general population [57]. Third, about one-third of the

study participants were diagnosed with MCI, which may also raise some concern about the

accuracy of self-report for alcohol intake. However, although individuals with MCI have some

problems with their recent memory, their remote memory is very well preserved [58]: It is not

likely that individuals with MCI reported their history for alcohol intake more erroneously,

because the self-report for lifetime alcohol intake mainly depends on remote memory rather

than recent memory. In addition, even when we controlled for clinical diagnosis (CN versus

MCI) as an additional covariate in Model 3 (Tables 2, 3, and S2–S7), the results were still very

similar. Fourth, there are quite different alcohol intake patterns regarding the frequency and

regularity of intake, and the amount of alcohol consumed in a single session, within the mod-

erate drinking category. Although we obtained similar findings after excluding binge drinkers

in sensitivity analyses, a more detailed understanding of the influence of drinking patterns is

needed. Finally, although we did not find any significant association between alcohol intake

and neurodegeneration or WMHs, the lack of association may reflect a lack of statistical power

given the sample size.
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Although further long-term follow-up investigations in larger populations with heteroge-

neous alcohol intake patterns are still needed, the association of moderate alcohol intake with

reduced risk of pathological Aβ deposition (about one-third of the risk for no drinking)

observed in the present study may suggest that moderate lifetime alcohol intake may be benefi-

cial in preventing AD dementia or related cognitive decline.

In conclusion, the present findings from middle- and old-aged individuals with neither

dementia nor alcohol-related disorders suggest that moderate lifetime alcohol intake may have

some beneficial influence on AD by reducing pathological amyloid deposition rather than

amyloid-independent neurodegeneration or cerebrovascular injury.
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