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Abstract

Coexistence of chronic rhinosinusitis (CRS) with asthma appears to impair asthma control.

Type-2 innate lymphoid cells (ILC2s) respond to the cytokines of thymic stromal lympho-

poietin (TSLP), interleukin (IL)-25 and IL-33, thus contributing to airway diseases such as

CRS and asthma. We investigate whether the augmented Th2-cytokines in CRS might be

related to sinonasal tract ILC2s corresponding to enhanced IL-25, IL-33 and TSLP release

in severe asthmatics, and be involved in asthma control. Twenty-eight asthmatics (12 non-

severe and 16 severe) with CRS receiving nasal surgery were enrolled. The predicted FEV1

inversely associated with CRS severity of CT or endoscopy scores. Higher expression of

Th2-driven cytokines (IL-4, IL-5, IL-9, and IL-13), TSLP, IL-25 and IL-33 in nasal tissues

was observed in severe asthma. Severe asthmatics had higher ILC2 cell counts in their

nasal tissues. ILC2 counts were positively correlated with Th2-cytokines. Nasal surgery sig-

nificantly improved asthma control and lung function decline in severe asthma and CRS.

The higher expression of IL-33/ILC2 axis-directed type 2 immune responses in nasal tissue

of CRS brought the greater decline of lung function in severe asthma. ILC2-induced the

upregulated activity of Th2-related cytokines in asthmatics with CRS may contribute to a

recalcitrant status of asthma control.

Introduction

Asthma and chronic rhinosinusitis (CRS), seemingly two distinct diseases, are instead viewed

as similar common airway diseases under the consideration of a united airway concept [1,2].

There is a strong association between CRS and asthma. The extent of chronic rhinosinusitis

had a direct relationship to low airway inflammation in patients with severe asthma, and nearly

half of those patients had undergone previous surgery for sinusitis [3,4]. The coexistence of

CRS with asthma appears to impair asthma control [3,5]. Further, an advanced sinus disease

has been documented to be a powerful, independent risk factor for diffcult asthma [6,7]. The
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long-term asthma control, including symptom scores, steroid dependence and emergency

department visit, would improve and remain stable after functional endoscopic sinus surgery

(FESS) treatment for asthmatic patients with CRS [8].

The link between CRS and asthma, two diseases in different location of airways, would be

complex. A type 2 helper T (Th2)-driven cytokine pattern has been proposed as the potential

major drivers for the development of unstable asthma, and improvement of CRS in asthmatics

can reverse the cytokine profiles [9]. Increased levels of interleukin (IL)-4 and IL-13 were

observed in the sinus lavage of CRS patients, and greater amounts of IL-13 mRNA-positive

cells were found in the sinus epithelium of CRS patients [10,11]. Anti-IL-4 treatment has been

reported effective in reducing nasal polyp burden in CRS patients with nasal polyps [12]. Lev-

els of IL-3, IL-4, and IL-5 correlated well with the eosinophil counts in tissue in asthma with

CRS [13]. These cytokines may impact epithelial and smooth muscle cells of lower airway, con-

tributing to airway hyper-responsiveness (AHR), mucus hypersecretion and subepithelial

fibrosis [14]. IL-13 also induces production of several matrix metalloproteinases, resulting in

airway remodeling [15].

The adaptive Th2 cells are no longer thought to be the only source of Th2-related cytokines.

Epithelial cell-derived cytokines, including thymic stromal lymphopoietin (TSLP), IL-25, and

IL-33 are critical regulators of innate and adaptive immune responses associated with Th2

cytokine-mediated inflammation in asthma [16]. These cytokines are upstream of IL-4 and IL-

13 and may have greater therapeutic potential, since they play an important “gate keeper” role

in mucosal homeostasis [17]. The type-2 innate lymphoid cells (ILC2s) respond to the cyto-

kines IL-25, IL-33 and TSLP, and produce the effector cytokines IL-4, IL-5, IL-9, IL-13 and

amphiregulin [18,19]. Since ILC2s have been detected in airway tissues [20], thus we hypothe-

size that the augmented Th2-cytokines in nasal tissue from CRS patients with asthma may be

derived from sinonasal tract ILC2s in response to enhanced IL-25, IL-33 and TSLP release.

Thus, an increase in Th2-cytokines expression in nasal tissues in CRS patients with severe

asthma might be associated with a greater number of ILC2, when compared with CRS patients

with non-severe asthma.

Materials and methods

Study populations

Twenty-eight asthmatic patients who met the diagnostic criteria of Global Initiative for

Asthma (GINA) guidelines [21] were prospectively transferred from outpatient clinics of Tho-

racic Medicine Department in Chang Gung Memorial Hospital for rhinologic examination

from March to December 2014. Sixteen patients with severe asthma (aged 57.6 ± 3.3 years, 6

women and 10 men) required either continuous or near-continuous oral corticosteroids,

high-dose inhaled corticosteroids, or both to achieve a level of mild-to-moderate persistent

asthma [22]. Twelve patients with non-severe asthma (aged 58.6 ± 3.8 years, 2 women and 10

men) used inhaled beclomethasone (0–1000 μg/d or equivalent) with perfect control of their

asthma symptoms. Presence of CRS was defined by the criteria of European Position Paper on

Rhinosinusitis and Nasal Polyps (EPOS) [23]. All of these patients with CRS and asthma

received functional endoscopic sinus surgery (FESS) after 3-month maximal medical treat-

ment, including nasal tropic corticosteroids and broad spectrum oral antibiotics, to control

their chronic sinusitis. Patients with histories of previous nasal surgery, recent upper airway

infection or systemic corticosteroid usage within 4 weeks were excluded from this study. This

study was approved by the Ethics Committee of Chang Gung Memorial Hospital (No. 101-

5069B). The study was conducted in accordance with the principles of Helsinki Declaration. A

written informed consent was obtained from all the subjects.

Impact of CRS on severe asthma
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Basic demographic data were recorded, including age, gender, pulmonary function tests,

sinus disease severity (Lund-Kennedy endoscopy score and Lund-Mackay computed tomogra-

phy (CT) score, and smoking status. The pulmonary function tests, including forced vital

capacity (FVC), forced expiratory volume in 1 second (FEV1) and FEV1/FVC ratio were mea-

sured the day before nose surgery. The yearly decline in FEV1 or FVC was measured by the

change in FEV1 within 5 years prior to the study. Allergy status, blood tests, questionnaires for

subjective disease severity, including Sino-Nasal Outcome Test-22 (SNOT-22) for rhinologic

symptoms and asthma control test (ACT) score were measured before nasal surgery. Unsched-

uled clinic or emergency department visit for exacerbation of asthma was recorded as well.

Nasal endoscopy, pulmonary function tests and ACT scores were performed 3 months after

nasal surgery.

Nasal tissue preparation, immunostaining and confocal laser

microscopic analysis

Mucosa tissue specimens of the middle turbinate facing middle meatus were obtained for

patients with non-severe and severe asthma with CRS. Nasal mucosal tissue specimens (3×4

mm) were rinsed in phosphate buffered saline (PBS) pH 7.6, and then processed for polymer-

ase chain reaction (PCR). Nasal tissue specimens were fixed in 10% formalin and embedded in

paraffin. After being de-waxed thoroughly in xylene and rinsed in absolute alcohol, sections

are incubated in 3% H2O2 for 30 minutes to quench endogenous peroxidase. Then the sections

were microwaved in citric acid buffer with 0.1% Triton for 5 minutes to enhance antigen expo-

sure followed by incubation in a 0.2% normal swine serum (DAKO, CA, USA) for 30 min to

block the positive and negative charges of tissues. Afterwards, the sections were subjected to

an one hour incubation with the specific IL-4, IL-5, IL-9, IL-13, IL-25, IL-33, and TSLP anti-

bodies (diluted 1:100) or the nonspecific purified rabbit IgG (diluted 1:100) as a control. Anti-

body labeling was visualized using an avidin-biotin complex method (LSAB 2 kit; DAKO, CA,

and DAB peroxidase substrate kit; Vector Laboratories, Burlingame, CA). Nasal tissues were

spun down on slide then fixed in methanol at -20˚C for 5 min. The cells were then blocked

with 1% BSA/PBS at room temperature for 30 min and incubated with the primary mouse

anti-human monoclonal antibodies, followed by anti-mouse. Secondary antibodies were used

for the detection of ST2R, CD25, or CRTH2 (Molecular Probes, Eugene, Ore) with FITC, PE

and Cy3 conjugates (Sigma-Aldrich, Stockholm, Sweden) to detect the expression of ILC2

cells. Nuclear staining was performed. After washing and air drying, the cells were mounted

with anti-fade mounting medium (Dako Cytomation). Images were acquired with a confocal

laser-scanning microscope (Leica) and analyzed by Metamorph Image Analysis (Universal

Imaging). Positively stained cells in merged images were counted to compare the number

ILC2s in each group, and presented as the cell counts in each mm3.

Real-time PCR analysis

The mRNA expression of IL-4, IL-5, IL-9, IL-13, IL-25, IL-33, and TSLP in nasal mucosa was

analyzed by real time PCR. Total cellular RNA was extracted from nasal mucosa and purified

using an RNeasy mini kit (Qiagen GmbH, Strasse, Germany). cDNAs were prepared from

1 μg of total RNA via reverse transcription at 37˚C for 60 minutes and at 95˚C for 5 minutes

using the High capacity RNA-to-cDNA kit (Applied Biosystems, Foster City, CA, USA)

according to the manufacturers’ protocols. Quantitative real-time PCR was carried out using

the TaqMan assay with primers specific for target genes (see S1 Table) and Applied Biosystems

7500 Fast Real Time PCR System (Applied Biosystems). The quantitative real-time PCR assay

was based on primers that specifically amplify our target genes. The primers and fluorogenic
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probes for RNA mentioned above and GADPH were purchased from Applied Biosystems.

The amplification efficiency of the specific primers and GADPH are validated in a preliminary

experiment. For the PCR analysis, each sample was run in triplicates in separate tubes to per-

mit quantification of the genes of target cytokines normalized to GADPH. The PCR condition

consisted of initial denaturation step of 95˚C for 20 seconds, followed by 50 cycles of amplifica-

tion at 95˚C for 3 seconds and at 60˚C for 30 seconds. Data analysis was performed using 7500

software version 2.0.4 (Applied Biosystems). The level of expression of target mRNA was

determined as the ΔCT method according to the manufacturer’s instructions (Applied Biosys-

tems: Relative quantization of gene expression ABI Prism 7700 sequence detection system.

The threshold cycles were used to calculate arbitrary mRNA concentrations by the difference

of Ct values between samples and calibrator (qPCR Human Reference Total RNA, Clontech

Laboratories). The presentation of cytokines mRNA was normalized to the level of GADPH

mRNA.

Statistical analysis

The data expressed as mean ± standard error of mean (SEM). Statistical significance for inter-

group comparisons was determined by Mann-Whitney U test for continuous variables and

Fisher’s exact test for categorical variables. The correlations between demographic data, clini-

cal laboratory tests, expression of cytokines in nasal tissue, as well as clinical symptom scores,

endoscopy scores, CT scores, pulmonary function tests, ACT scores, cytokine levels, and ILC2

cell counts were determined using the Spearman’s coefficient. All statistical analysis was per-

formed using the GraphPad Prism (version 5) software package (GraphPad Prism Software,

Inc, San Diego, CA). P value less than 0.05 is significant.

Results

Clinical characteristics of study populations

The demographic data of 28 asthmatic patients were summarized in Table 1. The non-severe

asthmatics had better pulmonary tests and ACT score. Patients with severe asthma and CRS

received more combination therapy, anti-IgE therapy and oral corticosteroids in the control

of asthma compared to those of non-severe asthmatics with CRS. There was no difference

between these two groups, in terms of age, gender, atopy, blood IgE levels, coexistence with

CRS or nasal symptom-specific SNOT-22 scores. The severe asthmatics tended to have higher

peripheral eosinophil counts although the difference did not reached a significant level

(P = 0.114). The lack of difference in eosinophil counts may be attributed to a greater number

of severe asthmatics under prednisolone treatment (Table 1). Patients with severe asthma had

significantly higher CRS severity in terms of endoscopy scores and paranasal sinus CT scores

when compared to non-severe asthma patients (P = 0.033 and 0.034, respectively) (Fig 1A and

1B). A significant negative correlation was observed between pre-operative FEV1 predicted

value and endoscopy scores or paranasal sinus CT scores (Fig 2A and 2B). Patient with severe

asthma and CRS had a greater yearly decline in either FVC or FEV1 compared to patients with

non-severe asthma and CRS (Fig 3A and 3B, respectively).

Expression of TSLP, IL-25, IL-33, IL-4, IL-5, IL-9 and IL-13 in nasal

tissues

There was a strong expression of TSLP, IL-25, and IL-33 in the epithelium, the endothelium of

small vessels and subepithelial infiltrating cells in the nasal tissue derived from severe asthma

patients with CRS (Fig 4B, 4D and 4F, respectively). In contrast, the expression of TSLP, IL-25,

Impact of CRS on severe asthma

PLOS ONE | DOI:10.1371/journal.pone.0171047 February 15, 2017 4 / 16



and IL-33 in non-severe asthma patients with CRS group was very weak (Fig 4A, 4C and 4E,

respectively).

Immunoreactivity of Th2-derived cytokines (IL-4, IL-5 and IL-13) was only weakly detected

in the epithelium of nasal biopsy specimens of non-severe asthma patients with CRS (Fig 4G,

4I and 4M, respectively). Conversely, in severe asthma with CRS, Th2-derived cytokines of IL-

4, IL-5, and IL-13 were markedly expressed in the epithelium, endothelium, subepithelial infil-

trating cells, and mucus glands (Fig 4F, 4J and 4M, respectively). IL-9 immunoreactivity was

found to a less magnitude in the epithelium, endothelium, and mucus glands in patients with

severe asthma with CRS (Fig 4L). The mRNA expression of TSLP, IL-25 and IL-33 was signifi-

cantly higher in patients with severe asthma and CRS compared to those of non-severe asthma

with CRS (Fig 5A–5C). The Th2-derived cytokines, IL-4, IL-5, IL-9, and IL-13 mRNA expres-

sion was also markedly increased in the patients with severe asthma patients with CRS (Fig

6A–6D).

ILC2 cells in nasal tissues

To investigate whether the ILC2+ cells, a key player to bridge the innate immunity, were

involved in the up-regulation of the corresponding Th2-derived cytokines in nasal tissues,

ILC2+ cells were identified by immunostaining with ST2R (IL-33 receptor), CRTH2 (receptor

of prostaglandin D2) and CD25 (α-chain of IL-2 receptor) in nasal mucosa tissues. Increased

number of ILC2 cells was detected in nasal tissue derived from patients with severe asthma

and CRS, while rare in non-severe asthmatics with CRS (Fig 7A and 7B, respectively). There

was a significant correlation between cell number of ILC2+ cell and the levels of IL-13, IL-5 or

Table 1. Clinical characteristics of study subjects.

Characteristic Non-severe Asthma Severe Asthma

Number 12 16

Age (y) 58.6 ± 3.8 57.6 ± 3.3

Gender: female/male 2/10 6/10

FVC predicted value (%) 82.8 ± 4.9 64.8 ± 4.4†

FEV1 predicted value (%) 78.1 ± 4.3 50.1 ± 4.3†

FEV1/FVC (%) 87.5 ± 3.0 73.8 ± 3.4†

ACT score 24.1 ± 0.3 19.7 ± 0.6†

Current smoker (n) 6 5

Atopy (n) 5 8

Serum IgE (IU/ml) 588.6 ± 275.6 410.2 ± 126.0

Eosinophil count (%) 1.9 ± 0.8 5.1 ± 1.3

SNOT-22 score 64.6 ± 8.6 51.1 ± 8.0

Medication over previous year1

ICS alone 3 0

ICS + LABA 8 12

ICS + LABA + LAMA 1 4

Daily oral corticosteroids2 0 5

Data expressed as mean ± SEM. FVC, forced vital capacity; FEV1, forced expiratory volume in 1 second; ACT, asthma control test; IgE, immunoglobulin E;

SNOT-22, Sino-nasal outcome test-22; ICS, inhaled corticosteroids; LABA, long-acting beta-2 agonist; LAMA, Long-acting muscarinic antagonist.
†P < 0.01 compared with non-severe asthma.
1P < 0.01 analyzed by Chi-square test for trend.
2Daily dose of prednisolone was 5 to 10 mg/day.

doi:10.1371/journal.pone.0171047.t001
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Fig 1. Comparison of the severity of CRS between non-severe asthma group (n = 12) and severe asthma group (n = 16). The results based on

the comparison of endoscopy score (A) and paranasal sinus CT score (B). The significance is indicated.

doi:10.1371/journal.pone.0171047.g001

Fig 2. Correlation between predicted FEV1 value (%) and CRS severity. The results were presented in endoscopy score (A) and paranasal sinus

CT score (B) for all asthmatic patients. The patient number and significance are indicated.

doi:10.1371/journal.pone.0171047.g002
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IL-9 mRNA expression in nasal tissues (Table 2). The yearly decline in FEV1 was significantly

correlated with the cell numbers of ILC2+ cells in the nasal tissues derived from of patients

with severe and non-severe asthma with CRS (Fig 7C).

Pulmonary function and asthma control before and after nasal surgery

Sixteen severe asthma patients with CRS and 12 non-severe asthma patients with CRS received

nasal surgery. Severe asthma patients with CRS had better improvements in FVC and FEV1 3

months after nasal surgery compared with non-severe asthma patients (Fig 8A and 8B). Fur-

thermore, asthma control in terms of ACT score was significantly improved from 19.7 ± 0.6 to

23.4 ± 0.3 (n = 16, P< 0.001) in severe asthma patients 3 months after surgery, while the ACT

score was not changed in non-severe asthma patients (from 24.1 ± 0.3 to 24.1 ± 0.2, n = 12).

The effect of nasal polyps

Five asthmatics patients with CRS had nasal polyps in this investigation, including one in non-

severe asthma group and the other four in severe asthma group. Patients with nasal polyps had

significant greater endoscopy score and CT score (both P = 0.011). Besides, in severe asthma

group, compared with CRS patients without nasal polyps, those with nasal polyps had higher

expression of IL-13 (P = 0.004) and IL-5 (P = 0.009) in nasal tissue but similar results in other

cytokines, ILC2 cell numbers, yearly decline in pulmonary functions, and post-operative ACT

scores. If we excluded all patients with nasal polyps, severe asthmatics (n = 12) still had signifi-

cantly higher expression in IL-33-axis cytokines, Th2 cytokines, ILC2 cells, yearly decline of

pulmonary functions, and post-operative improvements in ACT scores than those in non-

severe asthmatics (n = 11).

Fig 3. Yearly decline of pulmonary function before nasal surgery. Yearly decline of FVC (A) and FEV1 (B) before nasal surgery in non-severe and

severe asthmatics with CRS.

doi:10.1371/journal.pone.0171047.g003
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Fig 4. Immunohistochemistry studies in nasal mucosa. The expression of TSLP, IL-25, IL-33, IL-4, IL-5,

IL-9 and IL-13 in nasal tissues derived from patients with non-severe asthma (left panel, A, C, E, F, G, I, K and

M) or severe asthma (right panel, B, D, F, H, J, L and N) with CRS. The magnification is 400X. Open

arrow = epithelium, close arrow = endothelium, arrow = mucus gland.

doi:10.1371/journal.pone.0171047.g004
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Discussion

Coexistence with CRS has been well known to hinder asthma control. Medical treatment of

CRS improves asthma control and reduces AHR [24]. Although nasal blockage or aspiration

of nasal contents have been proposed as possible contributing factors, a systemic response

Fig 5. The mRNA expression of TSLP, IL-25 and IL-33 in nasal tissue. Real-time PCR analysis of TSLP (A), IL-25 (B), and IL-33 (C) mRNA

expression in nasal tissues derived from non-severe and severe asthmatics with CRS. The significance is indicated.

doi:10.1371/journal.pone.0171047.g005

Impact of CRS on severe asthma
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seems to play a more important role in this relationship [25]. This study has provided pro-

inflammatory cytokine profiles in nasal tissues of CRS linking with severe asthma and asthma

control. Our results have demonstrated that the severity of CRS is associated with asthma sta-

bility and negatively correlated with the pulmonary function. Pre-operative subjective quality

Fig 6. The mRNA expression of Th2- cytokines in nasal tissue. Real-time PCR analysis of IL-4 (A), IL-5 (B), IL-9 (C), and IL-13 (D) mRNA

expression in nasal tissue derived from patients with non-severe and severe asthma with CRS. The significance is indicated.

doi:10.1371/journal.pone.0171047.g006

Impact of CRS on severe asthma
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Fig 7. The presentation of ILC2 in nasal tissue and its relation with yearly decline of pulmonary function. (A)

Simultaneous immunocytochemical staining of nasal tissues derived from non-severe (left panel) and severe asthmatics

(right panel) for ST2 receptor (green), CD25 (red) and CRTH2 (purple) to represent ILC2+ cells that were positive for triple

immunostaining (ST2R+/CD25+/CRTH2+) cells (white). (B) The mean cell number of immunostained ILC2+ cells per mm3

in nasal tissues derived from non-severe and severe asthmatics. The significance is indicated. (C) Correlation of the ILC2

+ cell numbers in nasal tissues and yearly decline in FEV1 of non-severe and severe asthma. The patient number and

significance are indicated.

doi:10.1371/journal.pone.0171047.g007

Table 2. Correlation between number of ILC2+ cells and Th2 cytokine mRNA in nasal tissue.

Cytokines R N P value*

IL-13 0.582 28 0.001

IL-4 0.299 28 0.123

IL-5 0.661 28 < 0.001

IL-9 0.577 28 0.001

*The analysis was made by Spearman’s test.

doi:10.1371/journal.pone.0171047.t002
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of life scores do not always correlate with the objective measurements for severity of sinus dis-

eases judged by endoscopy scores or CT scores [26,27]. Thus, severe asthmatics with CRS in

this investigation had higher endoscopy scores and CT scores but similar SNOT-22 scores.

Nevertheless, surgical treatment of CRS significantly improved asthma control and pulmonary

function, which further confirmed the impact of CRS on asthma control.

We have demonstrated an increased expression of Th2-cytokines, IL-4, IL-5, IL-9, and IL-

13 at either protein or mRNA levels in nasal tissues of severe asthmatics compared with non-

severe asthmatics. Increased gene expression or secretion of the Th2-cytokines has been estab-

lished in poor control of asthma [28,29]. These Th2-cytokines promote the survival and migra-

tion of eosinophils, enhance airway hyper-responsiveness [30], increase mucus production

and transformation of airway fibroblasts to myofibroblasts, leading to airway remodeling and

airflow limitation in asthma [30]. A blockage of IL-4Rα or IL-13, thus inhibiting IL-4 and/or

IL-13 activity in asthma, has been shown in preventing asthma exacerbations in the context of

withdrawal of LABA and ICS, increases in FEV1 and reductions in the usage of short-acting

beta-2 agonists in patients with moderate to severe asthma [31,32]. After removal of the nasal

polyposis or nasal tissue, the pulmonary function of FEV1 and FVC and symptom score were

significantly improved in severe asthma patients but not in non-severe asthma, suggesting the

Th2-derived cytokines from CRS nasal tissues may be implicated in the pathogenesis of severe

asthma.

Although the cellular source of Th2-derived cytokines is not elucidated in this study, it may

be partly related to the release of IL-25, IL-33 and TSLP. IL-33, IL-25 and TSLP released from

mucosal surface have been shown to activate type 2 innate lymphoid cells (ILC2), which

directly secrete Th2 cytokines [18,19], and dendritic cells leading to the production of IgE via

B cells [33]. IL-33 also directly acts on CD4+ T cells, mast cells and eosinophils to aggravate

Fig 8. The improvement in pulmonary function after operation. The improvements in FVC (A) and FEV1 (B) of non-severe and severe

asthmatics with CRS 3 months after nasal surgery.

doi:10.1371/journal.pone.0171047.g008
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adaptive phase of type 2 immune responses [34]. In animal studies, IL-33 and to a less extent,

TSLP are involved in mediating both innate and adaptive chronic type 2 immune responses to

chronic exposure to natural airborne allergens [35], including airway inflammation and IgE

antibody production. In severe asthma patients with CRS, there was an upregulated expression

of IL-33, IL-25 and TSLP in their nasal tissues, compared to those in non-severe asthma

patients. There was also an increased number of ILC2 in CRS nasal tissues of severe asthma

patients. The cell number of ILC2 in CRS nasal tissues was significantly correlated with mRNA

expression of Th2-cytokines, IL-5, IL-9, and IL-13. Our results are compatible with previous

reports that functional importance of ILC2 is involved in Th2-mediated inflammatory process

of chronic rhinosinusitis [36]. ILC2s-directed Th2 cytokines in nasal tissues may directly or

aggravate adaptive Th2 immunity to augment lower airway inflammation, leading to the subse-

quent unstable status of severe asthma.

ILC2 are lineage negative lymphocytes, that is, they are negative for surface expression of

known lineage markers. In humans, the combinations of CD1a, CD3, CD4, CD11b, CD11c,

CD14, CD16, CD19, CD20, CD123, TCRb, TCRd, CD235a, and FceR1 have been used to

exclude analogous lineage-positive cells [37,38]. Positive markers for human ILC2 include

CRTH2 (prostaglandin D2 receptors), IL-33R, IL-7R, T1/ST2, CD161, c-kit [37]. In this study,

we did not exclude analogous lineage-positive cells, but the co-existence of ST2 and CRTH2

seems to be specific for IL-25, IL-33 responsive ILC2 cells [37].

All subjects in this study received nasal corticosteroids and anti-histamine for at least 3

months. The persistent existence of Th2-cytokines in CRS nasal tissues of patients with severe

asthma indicates that the release of these cytokines is corticosteroid insensitive. It is still con-

troversial whether ILC2 cells are corticosteroid resistant [39,40]. Corticosteroids have been

shown to induce ILC2 cells apoptosis in one report [39]. On the other hand, TSLP has been

shown to confer ILC2 cell partial resistance to corticosteroids. Thus, it is unknown in this

study whether the high number of ILC2 cells in CRS nasal tissues of severe asthma is cortico-

steroid resistant and persistently releases Th2-cytokines with nasal corticosteroid therapy.

Since severe asthma is associated with corticosteroid resistance, it is also possible that the

persistent existence of Th2-cytokines in CRS nasal tissues may be attributed to systemic corti-

costeroid resistance of severe asthma. The supposed role of ILC2 cells is drawn based on obser-

vational correlations, and further investigation with more patients, longer duration of follow-

up would be requisite to conclude a more definite causative mechanism.

In summary, patients with severe asthma had more severe CRS endoscopically and radio-

logically than patients with non-severe asthma. An enriched presentation of IL-33/ILC2 axis-

directed Th2 cytokines in CRS nasal tissue leads to a rapid decline in lung function associated

with poor asthma control. Future novel therapeutics targeting IL-33/ILC2-associated type 2

immunity might be beneficial to severe asthmatics with CRS who are refractory to current

standard medical treatments.
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