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The quantitative understanding and precise control of complex
dynamical systems can only be achieved by observing their in-
ternal states via measurement and/or estimation. In large-scale
dynamical networks, it is often difficult or physically impossible to
have enough sensor nodes to make the system fully observable.
Even if the system is in principle observable, high dimensionality
poses fundamental limits on the computational tractability and
performance of a full-state observer. To overcome the curse of
dimensionality, we instead require the system to be functionally
observable, meaning that a targeted subset of state variables
can be reconstructed from the available measurements. Here, we
develop a graph-based theory of functional observability, which
leads to highly scalable algorithms to 1) determine the minimal
set of required sensors and 2) design the corresponding state ob-
server of minimum order. Compared with the full-state observer,
the proposed functional observer achieves the same estimation
quality with substantially less sensing and fewer computational
resources, making it suitable for large-scale networks. We apply
the proposed methods to the detection of cyberattacks in power
grids from limited phase measurement data and the inference
of the prevalence rate of infection during an epidemic under
limited testing conditions. The applications demonstrate that the
functional observer can significantly scale up our ability to explore
otherwise inaccessible dynamical processes on complex networks.
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Large-scale complex systems, including power grids, neuronal
networks, and food webs, are often represented as sets of

interconnected dynamical systems and referred to as dynamical
networks. Understanding the properties and control principles of
dynamical networks allows for the development of intervention
strategies that can shape the behavior of these systems to achieve
the desired functionality. As formalized by Wiener (1), the fun-
damental mechanism enabling precise control of a dynamical
system is feedback, which involves sensors, signals, and actuators
in a closed loop. A sensor provides immediate measurements of
a particular variable of the system. As the dynamical network
grows large, it becomes prohibitive to implement a sensor for
each state variable, be it due to cost or physical constraints. For
instance, our ability to measure each of the tens of billions of
neurons present in a human brain is physically limited. Likewise,
infrastructure and operation costs may impede the placing of
sensors in every node of a large technological system. Therefore,
the indirect estimation of the unmeasured states is essential for
the control of large-scale dynamical networks.

The property of a dynamical system that enables the recon-
struction of the entire system state from its control inputs and
sensor measurements is called observability (2). In particular,
observability constitutes the necessary and sufficient condition
that guarantees the existence and enables the design of full-state
estimators—such as Luenberger observers (3) and Kalman filters
(4). Despite the success of state observers in uncountable engi-
neering applications, high dimensionality is still an obstacle to the
direct use of these methods in large-scale dynamical networks

(5–7). This calls for different approaches and novel techniques
(8–14) to overcome the lack of scalability of existing methods.
Based on a graph-theoretic approach to controllability (15), Liu
et al. (9) presented an efficient method that, by duality, can
be used to determine a minimum set of sensor nodes required
to guarantee the observability of complex networks. However,
even if a minimum set of sensors is used, the state observer
will have the same dimension as the entire network, making its
design and implementation computationally expensive in large-
scale systems. Moreover, a minimum set of sensor nodes does not
guarantee good quality for the full-state reconstruction in higher-
order systems (16–20).

For many real-world problems, estimating the entire state
vector of a high-dimensional system is not necessary or even de-
sirable (6). It is often sufficient to focus on a particular subset of
nodes of interest. For instance, in decentralized control strategies
applied to network systems, each controller only requires feed-
back signals from a fraction of nodes in the neighborhood deter-
mined by the corresponding controlled area (21, 22). This is also
true for the detection and monitoring of unforeseen failures and
cyberattacks, which find several applications in supply networks
(23), power grids (24, 25), and autonomous vehicle coordination
(26). Similarly, in biomedical applications, estimation (diagnosis)
and control (intervention) often require monitoring of a reduced
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set of variables in the respective networks (27, 28). Examples
include regulatory network states associated with cancer (10) and
brain network states associated with Parkinson’s disease (29) and
epilepsy (30).

These practical problems motivate the concept of functional
observability (31, 32), which characterizes the existence of a
functional observer capable of reconstructing a targeted subset of
state variables from a limited number of sensors—even when the
network is not completely observable. Functional observability
can be related to the concept of target controllability (33–37),
which establishes the conditions for the existence of a controller
capable of steering a targeted subset of state variables and has
been applied to problems of drug target identification (38). How-
ever, despite the duality between (complete) controllability and
observability (2), such duality does not hold between target con-
trollability and functional observability. This is the case because
as we show, the state estimation of a subset of variables requires a
stronger condition than the dual condition to the control of a sub-
set of variables. Even though the design of functional observers is
a problem that dates back to the 1970s (39–41), previous studies
on functional observability (31, 32, 42) were based on numerical
rank-based conditions, without explicitly taking advantage of the
network topology, and thus do not lead to scalable algorithms
applicable to large-scale networks.

In this paper, we develop a graph-theoretic characterization of
functional observability and the associated algorithms for sensor
placement and observer design, making it possible to accurately
estimate the target states of a large-scale dynamical network
using minimal sensing and computational resources. The contri-
butions of this work are threefold. First, we propose the concept
of structural functional observability, which can be seen as a gen-
eralization of Lin’s structural observability (15). This allows us
to rigorously establish graph-theoretic conditions for functional
observability equivalent to the original rank-based conditions
(32). Second, based on the proposed theory, two highly scalable
algorithms are developed to solve the sensor placement and ob-
server design problems. The first algorithm determines a minimal
set of sensors placed on a dynamical network to ensure functional
observability with respect to a given set of target nodes. After
the sensor placement is decided, the second algorithm designs
a minimum-order functional observer whose output converges
asymptotically to the target states, achieving accurate estimation.
Third, we demonstrate the advantages of the proposed methods
with two concrete applications: the cybersecurity of power grids
and the monitoring of epidemic spreading. In power grids, we
show that the proposed functional observers can be implemented
as active detectors of cyberattacks, effectively providing state
estimates that allow for cross-validation among different infor-
mation sources and the detection of fake measurement data in
real time. In epidemics such as the COVID-19 pandemic, we
demonstrate that the proposed functional observer can infer the
fraction of infected population in areas where testing is limited
from the data collected in areas with sufficient testing; moreover,
our algorithms can also guide the optimal allocation of limited
testing resources.

Results
Complete and Functional Observability of Dynamical Systems. A
general linear dynamical system can be written as{

ẋ = Ax + Bu ,

y = Cx ,
[1]

where x ∈ R
n is the vector of state variables, u ∈ R

p accounts
for the control inputs or environmental influences, and y ∈ R

q

represents the direct measurement from available sensors in the
system. Matrix A, which is referred to as the system matrix,

encompasses the nodal dynamics and network interactions—and
can thus correspond to an adjacency matrix, a Laplacian matrix,
or more generally, a Jacobian matrix of the system. The system is
completely observable if it is possible to reconstruct the entire
state trajectory x (t) from the input vector u(t) and measure-
ment vector y(t). Complete observability is guaranteed when the
nq × n observability matrix

O =
[
C T (CA)T (CA2)T . . . (CAn−1)T

]T [2]

has full rank (43) [i.e., rank(O) = n]. Under this rank condi-
tion, there exist straightforward methods to design a full-state
observer. Such observer is an auxiliary dynamical system whose
states converge asymptotically to those of the original system
(Eq. 1) when taking y and u as inputs, providing an estimation of
the state vector x . Since the direct measurement y already con-
tains q linear combinations of state x , only (n − q) state variables
are required to be reconstructed, which can be accomplished by a
reduced-order state observer that we refer to as the Luenberger
observer (3) (Materials and Methods has details).

In practice, it is often unnecessary to estimate the entire
state vector x . Instead, only a lower-dimensional function
z = Fx ∈ R

r is of interest, where r can be much smaller than
n. Given the desirable F, functional observability characterizes
the system property that enables the reconstruction of z from u
and y (31). The system is functionally observable if and only if
(32, 44)

rank
[
O
F

]
= rank (O) ; [3]

that is, if and only if the row space row(F ) is a subspace of the
observable space row(O). Clearly, complete observability is a
special case of functional observability for F = I . However, the
condition in Eq. 3 only guarantees the theoretical existence of a
functional observer (32). It does not readily lead to an algorithm
to design a functional observer (31, 44), for which two additional
conditions must be satisfied (40):

rank

⎡
⎢⎣

C
CA
F0

F0A

⎤
⎥⎦= rank

⎡
⎣ C
CA
F0

⎤
⎦ , [4]

rank

⎡
⎣λF0 − F0A

CA
C

⎤
⎦= rank

⎡
⎣CAC
F0

⎤
⎦ , [5]

where F0 ∈ R
r0×n and Eq. 5 must hold for every eigenvalue λ

of A. If a triple (A,C ,F ) satisfies Eq. 3, then there exists some
matrix F0 whose row space contains that of F [i.e., row(F0)⊇
row(F )] that satisfies Eqs. 4 and 5 for the triple (A,C ,F0)
(31). A functional observer of order r0 ≥ r can be designed
systematically after such a matrix F0 is determined (Materials and
Methods). Finding a matrix F0 with the minimum number of rows
r0 satisfying these conditions is then a crucial problem since the
functional observer order is directly related to the computational
costs of its design and real-time simulation (as demonstrated
below).

Structural Functional Observability. The rank-based conditions
(Eqs. 3–5) are not numerically stable and computationally
efficient for the design of functional observers for large-scale
systems. Here, we adopt a graph-theoretic approach that
explicitly leverages the network structure of the dynamical
system. The system matrix A can be structurally represented
as a corresponding inference graph G(A) whose nodes are the
internal state variables X = {x1, . . . , xn}. The links in G(A)
capture the interaction pattern among state variables: there is
a link from xj to xi on the graph G(A) if Aij is nonzero. A node
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xj on graphG(A) is a sensor node ifCij �= 0 for some i, and a node
xk is a target node if Fik �= 0 for some i. The sets of all sensor and
target nodes are denoted S and T , respectively. We assume that
each sensor or target is only related to one internal state variable,
meaning that each row of C or F has only one nonzero entry.
Throughout, the terms nodes and links are used exclusively in
connection with inference graphs and are not to be confused with
the vertices and edges, which are the corresponding terms used
for the network systems. Fig. 1A illustrates the representation of
the inference graph G(A) and the set of nodes estimated by a
minimum-order functional observer for the indicated sensor and
target nodes in a 10-dimensional system.

A system given by the triple (A,C ,F ) is said to be structurally
functionally observable if there exists a functionally observable
triple (Ã, C̃ , F̃ ), which shares the same structure as (A,C ,F ).
We define that triples (A,C ,F ) and (Ã, C̃ , F̃ ) have the same
structure if, according to the representation described above,
they share the same inference graph G(A), sensor set S, and
target set T . Thus, structural functional observability is purely
determined by the state interaction structure encoded by graph
G(A), the sensor node set S, and the target node set T —which
are all independent of the specific numerical entries of (A,C ,F ).
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Fig. 1. Structural functional observability of dynamical systems. (A) System
matrix A and corresponding inference graph G(A). The set of state variables
X = {x1, . . . , x10} is represented by nodes on the graph, where the set of
sensor nodes S = {x5, x8} (defined by C) is marked in blue and the set of
target nodes T = {x10} (defined by F) is marked in red. In this example, the
system is unobservable [rank(O) = 9 < n], but it is functionally observable
[rank[OT FT]T = rank(O)], enabling the design of a functional observer.
We show the minimum-order matrix F0 such that (A, C, F0) satisfies Eqs.
4 and 5. Nonzero elements in F0 determine the minimum set of auxiliary
nodes (highlighted in orange) whose states also have to be estimated
by a functional observer in order to estimate the state of the target
node. The number of rows of F0 is the order of the functional observer:
r0 = 2. (B) Example of a system that is observable and hence function-
ally observable. Since the system is completely observable, a Luenberger
observer can be designed. However, while such Luenberger observer has
order n − q = 8 because it estimates the state of every unmeasured node,
a functional observer can estimate the target node x10 with the much
smaller order r0 = 2. (C) Minimum sensor set for functional observability.
For the same graph and target set as in B, the sensor node x5 is a minimum
sensor set required for the functional observability of x10. However, the
absence of sensor node x8 increases the functional observer order to r0 = 7.
(D) Functional observability in a strongly connected graph. Due to the
stronger connectivity, the functional observer order increases to r0 = 5 (com-
pared with B) while remaining smaller than the Luenberger observer order
n − q = 8. Differences between graphs are indicated by the pink links.

In fact, if a triple (A,C ,F ) is structurally functionally observable,
a system that shares the same structure as (A,C ,F ) is function-
ally observable with probability one.

This structural approach allows us to establish a graph-
theoretic characterization of functional observability:

A system (A,C ,F ) is structurally functionally observable if
and only if 1) there exists a direct path from every target node
to some sensor node and 2) no target node is an element of a
minimal subset of nodes with a dilation.

A rigorous proof of this theorem is given in SI Appendix,
section 2. This result can be seen as a significant generalization
of Lin’s theory of structural controllability and, by duality,
of structural observability (15). Note that when F = I (or
equivalently, T = X ), our definition of structural functional
observability reduces to Lin’s structural observability. The latter
states that a pair (A,C ) is structurally observable if and only
if 1′) there exists a direct path from every state node to some
sensor node and 2′) the corresponding graph has no dilations.
More background on structural observability is presented in
SI Appendix, section 1. We further illustrate this characterization
in Fig. 1A, where the inference graph has no dilations due to
the presence of self-links and thus satisfies conditions 2 and 2′

for structural functional and complete observability, respectively.
However, because node x9 does not have a direct path to a sensor
node, condition 1′ for structural observability is not satisfied
for the pair (A,C ). Nevertheless, condition 1 is satisfied for
structural functional observability of the triple (A,C ,F ) since
one can identify a path from the target node x10 to a sensor node
(x5 or x8), hence rendering (A,C ,F ) structurally functionally
observable.

The above result lays a foundation for the functional ob-
server design in large-scale dynamical networks. To enable the
algorithm development, we further investigate two main design
problems:

1) How do we select the minimum set of sensor nodes S such
that a triple (A,C ,F ) is structurally functionally observable?

2) Given a structurally functionally observable triple (A,C ,F ),
how do we determine the minimum-order matrix F0 such that
Eqs. 4 and 5 are satisfied for (A,C ,F0) ? (In other words,
what is the minimum set of “auxiliary” state nodes that must
be estimated along with the target nodes so that the systematic
functional observer design is possible?)

The examples in Fig. 1 B–D illustrate that both questions are
intertwined and inherently related to the structure of G(A).

In the following sections, we assume that no target node is an
element of a minimal subset of nodes with a dilation. A sufficient
condition for this latter assumption is that every target node has
a self-link. The importance of including self-links in dynamical
networks models, especially for state control and estimation
applications, has been thoroughly discussed in the literature
(7, 45, 46). Indeed, dilations are not found in a broad range
of dynamical networks, including diffusively coupled systems.
Our assumptions can be satisfied for applications in networks of
coupled oscillators (47–49), power grids (50, 51), neuronal sys-
tems (52, 53), combustion networks (18, 54), regulatory networks
(55, 56), consensus problems (21), and multigroup epidemiolog-
ical models (57).

Minimum Sensor Placement for Functional Observability. According
to the theory and assumptions discussed above, the minimal
sensor placement problem is to determine a minimum set S such
that there is a direct path in G(A) from every target node to
some sensor node. We show that the minimum sensor placement
problem can be formulated as a set cover problem. For each
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candidate sensor node, let Ri denote the set of target nodes that
have a direct path to the state node xi ∈ X . By this definition, the
minimal sensor placement amounts to identifying the minimal
sensor set S such that the union of the sets Ri for all xi ∈
S covers the target set T (i.e., ∪xi∈SRi ⊇ T ). This is an NP-
hard problem (58), to which we provide an approximate but
highly scalable solution via Algorithm 1 (Materials and Methods),
where a breadth-first search determines Ri for each node xi ∈ X
and a greedy algorithm solves the set cover problem. Owing to
the submodularity of the problem (59), this approximation is
guaranteed to be near optimal.

Fig. 2 illustrates the application of Algorithm 1 to randomly
generated small-world (SW) and scale-free (SF) networks as well
as a selection of real-world networks. As expected, the results
show that a smaller number of target nodes tends to require a
smaller number of sensor nodes to guarantee the functional ob-
servability of a system. Fig. 2A shows, however, that the relation
between the minimum set of sensor nodes and the number of
target nodes depends on the network structure, where the num-
ber of sensor nodes can be substantially smaller if the network
connectivity is larger (i.e., higher parameters p and m in SW and
SF networks, respectively). Similar conclusions are also noted for
the real-world networks shown in Fig. 2B. As r approaches n, the
minimum number of sensor nodes tends to the number required
for complete observability. For example, in the metabolic net-
works analyzed, complete observability requires monitoring 8 to
16% of all metabolites, which is consistent with previous findings
(11). However, complete observability is often unnecessary for
many biomedical applications since the number of biomarkers
(e.g., target nodes whose activity is altered by a disease) is usually
much smaller than the network size (r � N ) (27). If only 1% of
the metabolites are biomarkers, then functional observability can
be guaranteed by placing sensors in only 0.17 to 0.24% of the
state nodes. Moreover, SI Appendix, Fig. S3 shows that, for the
same metabolic networks, around 78 to 85% of all metabolites
are observable from a single optimally placed sensor node. This
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Fig. 2. Minimum sensor placement in large-scale networks. Minimum
number of sensors q as a function of the number of target nodes r (nor-
malized by the network size N) in (A) randomly generated directed SW and
SF networks and (B) real-world networks. Each data point is an average
over 100 realizations of randomly selected target nodes. The minimum
set of sensor nodes S is determined using Algorithm 1. The SW and SF
networks were generated with N = 104 vertices, where each vertex is a
three-dimensional subsystem (i.e., n = 3N), while vertices in the real-world
networks are assumed to be one-dimensional subsystems (i.e., n = N). The
SW networks were generated using the Newman–Watts model, where p is
the probability of adding a new edge, and the SF networks were generated
using the Barabási–Albert model, where m is the number of existing vertices
a new vertex is connected to. Materials and Methods has more details on the
network datasets and models.

means, in particular, that in applications where all target nodes
belong to this set of observable nodes, functional observability
can be achieved with even fewer sensor nodes than shown in
Fig. 2B (where the targets were randomly chosen). In addition
to their significance for biological and ecological networks, these
results are also relevant for cyber–physical systems in engineering
applications (e.g., power grids and transportation networks),
where the monitoring and detection of potential failures or cy-
berattacks are often required to be conducted in specific nodes.

Minimum-Order Functional Observer Design. After the sensor
nodes have been selected, we need to further choose a matrix
F0 to enable the design of a functional observer. The theoretical
problem of finding a minimum-order F0 that satisfies Eqs. 4
and 5 was solved in the past decade (31). However, a direct
numerical implementation of the method (42) is not scalable
for high-dimensional systems because it iteratively uses singular
value decomposition (SVD) to construct a matrix F0 that
satisfies Eq. 4 and is followed by a combinatorial search to
augment the number of rows of F0 in order to satisfy Eq. 5
(SI Appendix, section 4). We circumvent these issues by adopting
the structural approach described in the previous sections, in
which we convert the rank-based conditions (Eqs. 4 and 5) into
equivalent graph-theoretic ones. This is achieved by first noting
that, if the corresponding graph of a dynamical system has a
self-link in every target node (as assumed throughout), then
Eq. 4 implies Eq. 5 with probability one for triples (A,C ,F0)
sharing the given structure (SI Appendix, corollary 1). In light of
this, only Eq. 4 needs to be considered to determine F0, and
hence the combinatorial search is no longer needed. We thus
propose Algorithm 2 (Materials and Methods) as a highly scalable
solution to determine matrix F0 with the smallest order possible
by adding suitable rows to F in such a way that Eq. 4 is satisfied.
In Algorithm 2, instead of invoking SVD, the rank condition in
Eq. 4 is verified by computing the maximum matching set of
an associated bipartite graph. The algorithm is shown to have
a computational complexity of order O(n2.5) (Materials and
Methods), which is a substantial improvement compared with
the complexity of order O(n4) of the numerical procedure in
ref. 42.

Fig. 3 A and B illustrates the minimum order of the func-
tional observer for randomly generated networks, determined by
Algorithm 2, as a function of the numbers of sensor and target
nodes. On average, a larger sensor set S leads to a lower order
r0, whereas a larger target set T results in a higher order r0. We
note that, overall, functional observers are of much lower order
compared with the corresponding Luenberger observers. This
leads to a significant improvement in computation efficiency and
scalability when designing and implementing observers in large-
scale networks. For a fixed number of target nodes, Fig. 3C shows
that the functional observer order normalized by the system
dimension, r0/n , tends to decrease as the network size increases
(in SF networks, r0/n exhibits weaker dependency on N as
m increases). This means that the order reduction gained by
the functional observer compared with the Luenberger observer
increases with the network size. The extent of this gain depends,
however, on other system properties, including the structure
of the inference graph G(A), the choice of target nodes in T ,
and how sensor nodes in S are placed. In particular, directed
links, self-links, and clustering in G(A) tend to lead to a larger
order reduction in the functional observer design for the random
model networks considered. This is illustrated in Fig. 3D, where
it is shown for both directed and undirected networks that the
functional observer order decreases sharply as a function of the
generalized clustering Cg, which is defined to account for both
clustering and self-links (Materials and Methods). Interestingly,
although directed graphs require a larger minimum set of sensor
nodes to guarantee the structural functional observability of a
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Fig. 3. Minimum-order functional observer design in large-scale networks. (A–C) Minimum functional observer order r0 (normalized by the system
dimension n = 3N) as a function of the normalized number of sensor nodes q/N (A), the normalized number of target nodes r/N (B), and the network size N
(C). The results are shown for random placement of sensor and target nodes in directed SW and SF networks (color coded by the respective parameters p and
m). The other parameters are set to (N, r) = (104, 0.1N) for A, (N, q) = (104, 0.3N) for B, and (q, r) = (0.3N, 100) for C. The black lines indicate the Luenberger
observer order (n − q) for comparison. (D) Normalized order r0/n in directed (solid lines) and undirected (dashed lines) SW and SF networks as a function
of the generalized clustering of the corresponding undirected graph (Materials and Methods), color coded by p and m for (N, q, r) = (104, 0.3N, 0.1N). (E)
Running time of Algorithm 2 as a function of n in directed SW networks for (q, r, p) = (0.3N, 0.1N, 0.2). The simulations were implemented in MATLAB,
and each network realization was run on a single core of an Intel Xeon Processor E7-8867 v4 at 2.4 GHz. (F) Normalized order r0/n as a function of q/N in
undirected SW (red; p = 0) and SF (blue; m = 3) networks for randomly (solid lines) and optimally (dashed lines) placed sensors, where (N, r) = (100, 0.1N).
In all panels, each data point corresponds to an average over 100 independent realizations of the network, target placement, and sensor placement (except
for the optimal placement in F).

system compared with undirected graphs [which only require
one sensor node (45)], directed graphs allow the design of func-
tional observers of smaller orders. This result also highlights
that Algorithm 2 brings computational improvement for both
directed and undirected network applications compared with
existing ones. Furthermore, Fig. 3E illustrates how the running
time of Algorithm 2 scales with the network size, showing that it
does not surpass our worst-case prediction.

The results shown in Fig. 3 A–E concern sensors and targets
randomly placed in the inference graph. The sensor placement,
in particular, was implemented by first finding the minimum set
of sensor nodes for functional observability and then, increasing q
with randomly placed sensor nodes. As shown in Fig. 3F for undi-
rected networks, the functional observer order r0 decreases on
average as the number of sensors increases, even if the placement
is random. However, r0 can be further reduced by optimizing the
placement of the additional sensors. This is a computationally
demanding bilevel optimization problem, which—for illustration
purposes only—we solve using a (nonscalable) greedy algorithm
(Materials and Methods). Fig. 3F shows that such optimization
indeed leads to a functional observer with a consistently smaller
order compared with the average order for randomly placed
sensors. Even though this specific result is illustrated in a lower-
dimensional setting, we extrapolate from Fig. 3C that this optimal
sensor placement can be relevant for systems of any dimension.

Comparative Analysis of the Observers. Fig. 4 compares the per-
formances of the functional observer and Luenberger observer
when estimating the target variables of a large-scale network.

For the target state evolution illustrated in Fig. 4A, which is
representative of a trajectory starting away from equilibrium, the
transients of the target state estimation error ‖z (t)− ẑ ′(t)‖ are
presented in Fig. 4B for both observers initialized with unknown
initial conditions (SI Appendix, section 4). It can be seen that
the functional and Luenberger observers have similar dynamical
behavior and that their estimates converge to the target states
of the system. Statistical analysis further reveals that the two
observers perform asymptotically close to each other even under
the effects of modeling errors in the system matrix A (Fig. 4C).
(Note that if the system were functionally, but not completely,
observable, then the target estimation error is only guaranteed
to converge for the functional observer.)

Overall, the numerical results show that the considerable order
reduction demonstrated here for the functional observer design
does not compromise its efficacy. Fig. 4D, on the other hand,
shows that such order reduction significantly reduces the com-
putational costs both in the design (Algorithm 2) and in real-
time simulations of the functional observer. This computational
advantage of functional observers makes them superior or even
indispensable to observe large-scale networks, especially when
continual redesign of the observer is expected due to the evo-
lution of the system’s equilibrium and/or network structure.

Cyberattack Detection in Power Grids. The control of man-made
technological systems, such as power grids, supply networks,
interconnected autonomous vehicles, and swarms of robots, is
supported by sensing and communication infrastructure. De-
centralized control strategies (60), such as wide-area control in
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Fig. 4. Comparative performance of the observers for target state estimation in large-scale networks. (A) Dynamical evolution of the target vector z(t) =
Fx(t), where each color represents a different target variable zi(t). (B) Dynamical evolution of the target state estimation error ‖z(t) − ẑ′(t)‖, where z(t)
is the “true vector value” of the target state and ẑ′(t) is the estimated target state provided by the functional (blue) or Luenberger (orange) observer
initialized with random estimates. (C) Histogram of the steady-state estimation error ‖z(tf) − ẑ′(tf)‖ for tf = 4 s, where both observers are designed using a
system matrix Ã for different modeling errors σ. Here, each matrix entry is drawn from a uniform distribution as Ãij ∼ U [(1 − σ

2 )Aij , (1 + σ
2 )Aij]. (D) Running

time of the design algorithms (Left) and simulation time of the observer dynamics (Right) as a function of the network size N (computer specifications are
in Fig. 3E). The color code in C and D is the same as in B. In all panels, the results are shown for directed SW networks with randomly selected sensor and
target nodes. The undeclared parameters are set as (N, n, p, q, r) = (103, 3N, 0.2, 0.3N, 0.1N), where each parameter choice in C and D corresponds to 100
realizations of the network, sensor and target selection, and modeling errors (σ = 0 in D). SI Appendix, section 4 has details on the simulations.

power grids (22), are important to maintain system stability and
in particular, mitigate the impact of perturbations that could
lead to large-scale failures (61). However, such control strate-
gies rely on resilient communication networks between spatially
distributed components, which are arguably more vulnerable
to potential failures and cyberattacks than the physical systems
themselves. Indeed, there have been growing threats to cyber-
security, including cyberattacks to supervisory control and data
acquisition systems, which led to the massive 2015 power outages
in Ukraine (62), the 2000 Maroochy Water Services breach in
Australia (63), the 2010 Stuxnet computer worm attack on Iran’s
nuclear program (64), and communication outages in the western
United States power grid in March 2019 (65).

Two common types of cyberattacks are denial of service at-
tacks (e.g., via signal jamming) and deception attacks (e.g., via
data corruption) (66). Depending on the specifics of the attack,
modeling of the physical system dynamics and transmitted data
can still be used to design observers capable of recovering lost
data through state estimation. Crucially, state estimation can
also be used to detect deception attacks (23, 67, 68), which is
significant because such attacks are designed to evade detec-
tion. We now show, in the context of power grids, how func-
tional observers can be implemented for cyberattack detection
and data recovery and the extent of their computational ef-
ficiency improvement compared with the traditional full-state
estimators.

The power-grid dynamics can be modeled as a structure-
preserving network of coupled first- and second-order Kuramoto

oscillators (50, 51). In this model, the generators dynamics are
governed by the so-called swing equation,

2Hi

ωR
φ̈i +

Di

ωR
φ̇i = Pi +

N∑
j=1,j �=i

Kij sin(φj − φi), [6]

for i = 1, . . . ,ng, and the dynamics of load buses and generator
terminals are described as first-order phase oscillators,

Di

ωR
φ̇i = Pi +

N∑
j=1,j �=i

Kij sin(φj − φi), [7]

for i = ng + 1, . . . ,N , where ng is the number of generators,
nl is the number of load buses, N = 2ng + nl is the number of
oscillators (vertices), and n = N + ng is the system dimension.
Here, φi(t) is the phase angle of oscillator i at time t relative
to the frame rotating at reference frequency ωR, and Hi and Di

are the inertia and damping constants, respectively. In addition,
Kij = ViVjBij , where Bij is the susceptance of the transmission
line connecting buses i and j and Vi and Vj are the voltage mag-
nitudes at these buses. If there is no line connecting buses i and j,
Kij = 0. The power injection Pi represents power generation for
Pi > 0 and power consumption for Pi < 0.

We illustrate our framework on the IEEE-118 benchmark sys-
tem given by the diagram in Fig. 5A and parameters in Materials
and Methods. Fig. 5A, Inset shows a zoomed-in representation
of the corresponding inference graph of the power-grid model

6 of 12 PNAS
https://doi.org/10.1073/pnas.2113750119

Montanari et al.
Functional observability and target state estimation in large-scale networks

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113750119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113750119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113750119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113750119/-/DCSupplemental
https://doi.org/10.1073/pnas.2113750119


PH
YS

IC
S

E

D

0 100 200
10-2

10-1

10 0

50 150

12

60

108

12

60

108

A B

C

0.8 1 1.2 1.4 1.6 1.8 2
0.04

0.06

0.08

Fig. 5. Deception attack detection in a power grid. (A) Diagram of the IEEE-118 network, which comprises 118 buses with ng = 54 generators (black circles),
each connected to a terminal bus (gray circles), and nl = 64 loads (gray squares). PMUs are randomly placed in |S| = ng/3 load and generator terminal buses
(blue symbols). The deception attack tampers with the transmitted measurement φ̄a(t) from the highlighted PMU (red circle). Inset illustrates the inference
graph of the dynamical system, where each generator bus (vertex) is represented by two state nodes (phase φi and frequency φ̇i in Eq. 6) and each generator
terminal and load bus is represented by a single state node (phase φi in Eq. 7). Links with state nodes outside the highlighted neighborhood are omitted. (B)
Dynamics of the oscillators’ phases {φi(t)}N

i=1 and the generators’ frequencies {φ̇i(t)}
ng
i=1 over time t. An additive perturbation, drawn from the Gaussian

distribution N (0, 0.01), is applied to each generator’s phase in steady state at t = 1 s. (C) Functional observer-based detection of a deception attack, where
the transmitted measurement φ̄a(t) of the terminal’s phase φa(t) (blue solid line) is replaced by the false data φ̃a(t) (red solid line). The data are reconstructed
with the state estimates φ̂(�)

a (t) provided by different functional observers (colored dashed lines), where the shaded window illustrates a time of detection
td = 0.5 s. (D) Histogram of the RMSE between the transmitted measurement φ̄a(t) and the state estimates φ̂(�)

a (t) provided by the functional observers
� = 1, . . . , 100 as a function of td. The histograms are shown for the system under attack (red) and not under attack (blue), where an estimate of the statistical
properties of the latter can be inferred from training data. Each histogram comprises 10,000 data points corresponding to 100 independent realizations of
the system perturbations with 100 functional observers designed for each realization. The contoured histogram at td = 1 s represents the hardest to detect
attack (smallest median value) for the simulated perturbations. (E) Running time of the observer design as a function of the observer order. The results are
color coded for functional (blue scale) and Luenberger (red scale) observers as the number of sensors |S| is varied for 100 independent realizations, where
the placement of the attack and PMUs is random in each realization and each data point is an average over 100 observers. In all simulations, the observers
were designed to estimate the target node φa using the system model (Eqs. 6 and 7) linearized around the equilibrium point and φ̂(�)

a (t) = φa(t) for
t < 1 s (Materials and Methods has details).

(Eqs. 6 and 7) around an equilibrium point. We assume that the
power grid is equipped with phasor measurement units (PMUs)
randomly placed on a subset of load and generator terminal
buses, comprising the set of sensor nodes S ⊆ {φng+1, . . . ,φN }.
The PMU measurements are transmitted to a control center in
real time to support automated control actions, human deci-
sion making, and cyberattack detection. We assume the system
initially operates in steady state when, taking advantage of an
otherwise inconsequential perturbation at time t = 1 s (Fig. 5B),
a deception cyberattack tampers with the measured data φa(t)

from one of the sensors, transmitting instead false data φ̃a(t) to
the control center for t > 1 s. For illustration purposes, in Fig. 5C,
we assume that the false data are copied from the measurements
of some neighboring vertex j [i.e., φ̃a(t) = {φj (t) :Kaj > 0}].

We show that this cyberattack can be successfully detected by
designing functional observers and cross-validating the transmit-
ted measurements φ̄a(t) against the state estimates φ̂

(�)
a (t) of

each observer �. This cross-validation takes place during the short
transient dynamics that follow the perturbation, where φ̄a(t)←
φ̃a(t) if there is an attack and φ̄a(t)← φa(t) otherwise. Since one
has no access to the true state estimation error φa(t)− φ̂

(�)
a (t),

such cross-validation is performed statistically, relying on the
state estimation of multiple functional observers designed from
distinct S(�) ⊂ S, with cardinality |S(�)|= |S|/2, as shown in
Fig. 5C. To cross-validate the state estimates against the trans-
mitted data, we use the root-mean-square error (RMSE) index:

RMSE =

√
1

td

∫ td+1

1

‖φ̄a(t)− φ̂
(�)
a (t)‖2dt , [8]

where td is the time of detection window defined as the time it
takes to reliably detect an attack after it is launched. Clearly,
the performance of the detection method depends on td (shaded
window in Fig. 5C), which is also a lower bound of the time
interval under which the system is left unprotected waiting for
a decision.

Fig. 5D shows that, after a short period of time (≈ 0.25 s), the
separation between the histograms corresponding to the attacked
and unattacked systems becomes statistically significant so that
reliable detection can be made. Since the separation between
the two histograms becomes more pronounced as time increases,
the detection becomes more accurate when a larger detection
window is allowed. While the histograms show an aggregate rep-
resentation of attacks under different perturbation scenarios, the
same conclusions hold for individual attacks. In our simulations,
reliable detection can be achieved even in the hardest to detect
attack among all realizations, as illustrated by the contoured
histogram for td = 1 s. The asymptotic convergence of the func-
tional observer is guaranteed if the perturbed state remains in the
attraction basin of the given equilibrium. For larger perturbations
crossing into the basin of a different equilibrium, the functional
observer has to be redesigned around the new equilibrium. Thus,
the extent to which the designed observer remains valid upon
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large perturbations is ultimately determined by the basin stability
of the nonlinear system, which can be assessed numerically as
proposed in refs. 69 and 70.

In applications with a constantly changing operation point,
such as smart power grids, algorithms for the design of controllers
and observers have to be sufficiently fast so that they can be
implemented in real time following a change of the equilibrium
operation point. Moreover, the statistical significance of the
cyberattack detection method increases with the number of im-
plemented observers. Thus, the method can be used statistically
only if, in addition, the algorithms for the observer design are fast
enough to allow for a sufficiently large number of observers to be
implemented in real time. To that end, Algorithm 2 provides a fast
and scalable solution for the design of minimum-order functional
observers. Fig. 5E shows for the IEEE-118 system that the func-
tional observer usually has a much smaller dimension than the
Luenberger observer as the number of PMUs increases, leading
to a running time reduction by a factor of up to a hundred. This
example illustrates for a small power grid the results anticipated
in Figs. 3 and 4, and we expect that the computational gain of the
functional observers will increase as the network size increases
(Fig. 4D).

Estimation of Epidemic Spreading under Limited Testing. Motivated
by the unprecedented impact of the COVID-19 pandemic, re-
cent studies have highlighted the importance of epidemiological
models for the design of containment measures. Such models
are useful for understanding the growth patterns and scaling
laws governing the epidemic spreading (71, 72) as well as for
developing control strategies (73–75), which ultimately support
policy-making decisions (76). For instance, these models can
inform decisions on social distancing and quarantine measures,
which cannot be taken lightly as they generally involve social
and economic costs. The quality of the model predictions (and
thus their ability to inform decisions) is strongly dependent on
the state of the epidemic in a population, which is often only
partially known due to limitations in testing and reporting. This is
especially the case for a new and rapidly evolving pandemic since
it takes time to mobilize medical resources and ramp up testing
capacity. In particular, as illustrated in the early stages of the
COVID-19 pandemic, the testing capacity can vary widely across
cities even within the same country. Therefore, it is important to
develop the ability to infer as much information as possible from

the available incomplete data. Previous work has shown that state
estimators can provide meaningful estimates of the true state of
the number of infected, susceptible, and recovered individuals in
an epidemic when sufficient data are available (74, 77).

Here, we show that, for target estimation, functional observers
can be designed to provide reliable information using reduced
testing data compared with full-state estimators. As the
underlying dynamics in this case are inherently nonlinear, this
will give us the opportunity to demonstrate that the methods
established here for linear systems are also informative for
nonlinear ones. We illustrate this application for the estimation
of the infected population in a set of “target cities” (where
testing is inadequate) from the known case fatality rate in a set of
“sensor cities” (where sufficient testing is conducted). To this end,
consider the multigroup model of the spreading of an infectious
disease mediated by the air transportation network (57):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡi =−βi
SiIi
Pi

−
N∑

j=1,j �=i

Kji
Si

Pi
+

N∑
j=1,j �=i

Kij
Sj

Pj
,

İi = βi
SiIi
Pi

− γIi −
N∑

j=1,j �=i

Kji
Ii
Pi

+
N∑

j=1,j �=i

Kij
Ij
Pj

,

Ṙi = (1− η)γIi ,

Ḋi = ηγIi ,

[9]

for i = 1, . . . ,N , where N is the number of groups and
(Si , Ii ,Ri ,Di) are the susceptible, infected, recovered, and
dead (SIRD) individuals of group i with population size Pi =
Si + Ii + Ri +Di . Parameters γ and η are the recovery and
fatality rates, respectively; βi is the contact rate in group i; and
K is the adjacency matrix of the transportation network, where
Kij describes the number of individuals traveling from group j
to i daily. As indicated in Fig. 6A, we assume each group to be a
city in the United States and matrix K to describe the air traffic
between the cities’ airports, while (βi , γ, η) and K are chosen for
illustration purposes to reflect the early stages of the COVID-19
epidemic (Materials and Methods). The epidemiological model
(Eq. 9) can be represented as an inference graph, where each
state variable is a node and links represent linear and nonlinear
interactions between variables, as illustrated by Fig. 6B.

Within the idealized model model described by Eq. 9, if the
exact state of the epidemic is known at a given time, subsequent
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Fig. 6. Target state estimation in epidemics. (A) US air transportation network, where vertices represent cities and edges represent the direct flights.
The target (red) and sensor (blue) cities are highlighted. (B) Network flow between three cities (Upper) and the corresponding inference graph (Lower)
of the dynamical system (Eq. 9). The dynamics are taken into account by expanding each vertex i as a set of SIRD state nodes, where links represent the
linear (solid lines) and nonlinear (dashed lines) interactions between the state variables in the differential equations. (C) Box plot of the error between the
time tp of the epidemic peak in each target city and the predicted peak time t̂p. The red bars show predictions from free-run simulations, while the blue
bars show predictions given by the estimates of the designed functional observer, both for 100 independent realizations with arbitrary initial conditions.
The bottom, middle, and top of each box represent the 25th, 50th (median), and 75th percentiles of the sample, respectively; the whiskers mark the 5th
and 95th percentiles. For illustration purposes, this example assumed an outbreak initiated in Miami, Florida, and its spreading dominated by domestic air
transportation. Materials and Methods has simulation and modeling details.
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containment measures to “flatten the curve” could be designed
based on a free-run simulation of the model. Unfortunately, this
would not be the case in practice even if an accurate model was
available because as noted above, there are limitations on how
precise the data are on the number of infected individuals in a
population. This is illustrated in Fig. 6C (red) for the predicted
epidemic peaks in a set of 15 target cities. We circumvent this
limitation by designing a functional observer that provides more
reliable estimates of the number of infected individuals.

A salient property of this problem is that the epidemiological
model (Eq. 9) is nonlinear. Our algorithms are not guaranteed
to determine a minimum set of sensors and a minimum-order
functional observer if the system is nonlinear. Notwithstanding,
in many applications, Algorithms 1 and 2 can still be used to
identify a small set of sensor nodes S (relative to the number
of state variables) and a small order matrix F0 (compared with
that of a full-state observer) for the design of the corresponding
nonlinear functional observer. In particular, it can be shown that
the nonlinear functional observer for the system in Eq. 9 satisfies
the theoretical conditions for asymptotic convergence of the state
estimates (SI Appendix, section 5).

To design the functional observer, let a city i be a sensor
(target) city if Di ∈ S (if Ii ∈ T ) is a sensor (target) node. Given
the specified set of target cities, Fig. 6A highlights the selected
set of four sensor cities for functional observability as provided
by Algorithm 1. We then design the nonlinear functional observer
based on the inference graph associated with Eq. 9 and the sets S
and T using Algorithm 2 (SI Appendix, section 5). Fig. 6C (blue)
shows the estimated time of the epidemic peaks as provided by
the designed nonlinear functional observer. Clearly, there is a
great improvement in the estimation accuracy (i.e., a smaller
deviation between realizations of different initial conditions),
which highlights the observer’s resilience to false initial predic-
tions. Note that this functional observer is designed in a situation
where the system is unobservable but is functionally observable.
This highlights a fundamental advantage of our approach: when
the conventional full-state estimators are not applicable, our ap-
proach may still provide high-quality estimates of the nonlinear
system’s state from sparse measurement data.

Discussion
In large-scale complex networks, it often is physically impossible
to ensure complete observability or computationally prohibitive
to design full-state observers. This poses fundamental challenges
to our ability to observe, understand, and control network pro-
cesses. Yet, many practical applications only require the obser-
vation of a small subset of key variables, which we formalize
by introducing the notion of structural functional observability.
This work establishes graph-theoretical conditions for functional
observability, enabling direct application to large-scale network
systems. In particular, the resulting theory allows us to devise
highly scalable algorithms to optimally allocate sensors and de-
sign functional observers for accurate estimation of a target
subset of all state variables.

Observability and controllability are dual properties in control
theory (2), which lead to the natural question of what would be
the dual of functional observability. By parallelism, one might
be tempted to assume that a notion of “target observability” for
the given target set could be defined as the target controllability
condition (33) for the pair (AT,C T). However, we argue that—
in contrast with the target controllability condition for controller
design—such a notion of target observability does not lead to
the design of an observer capable of estimating the state of
the target nodes. Crucially, target estimation in this sense can
only be accomplished with functional observability, which is a
stronger condition than target observability. Indeed, based on the
observability Gramian, we can show that the initial condition of
the target nodes is uniquely reconstructable from measurements

if and only if Eq. 3 is satisfied (SI Appendix, section 3). This
leads us to a fundamental conclusion: despite not being strictly
dual, functional observability and target controllability are mirror
properties in terms of their functionalities.

Applications of the results presented here may include cy-
bersecurity in the decentralized control of infrastructure and
multiagent systems; state estimation for epidemic and ecosystem
management from incomplete observation; and identification of
biomarkers for prognosis, diagnosis, and treatment. In biomed-
ical and ecological applications, for example, assessment of the
state of the system must not interfere significantly with the
system dynamics in order to avoid mispredictions and adverse
effects. Our results provide a framework under which variables of
interest can be estimated from indirect measurements, avoiding
variables that interfere with the system’s function and control
actions. They also provide an alternative to reduce the compu-
tational costs associated with sensing, communication, and data
processing in infrastructure, supply, and technological networks
that require real-time feedback control (78).

This work also leads to fundamental questions worth pursuing
in future research. First, because our theory allows a decision
on whether the system is functionally observable or not from
the graph structure of the model alone, it is natural to consider
how to design functional observers when specific parameters of
the system are unknown. This could be addressed by combining
our graph-based methods with machine learning techniques to
enable data-driven state estimation by functional observers. Sec-
ond, while here we considered the sensor placement problem
and functional observer design in a preexisting cyber–physical
network, combining these approaches with the codesign of the
communication (and/or physical) layers of the system can lead to
further improved resilience against attacks and failures. In par-
ticular, the transition to renewable energy is leading to highly het-
erogeneous networks that integrate conventional synchronous
generators, converter-based distributed generation units (solar
and wind), flexible alternating current (AC) transmission sys-
tems, and high-voltage direct current transmission systems. To
ensure the functional observability and stable operation of future
power systems, detailed models of these critical components (79)
can be incorporated in the codesign of the communication net-
work for wide-area monitoring, protection, and control systems
(80). Third, it would be interesting to examine the estimation ac-
curacy, convergence rate, and stability of functional observers in
large-scale systems under modeling uncertainties, measurement
noise, and round-off errors. A systematic study of the theoretical
performance of functional observers in the presence of bounded
modeling and measurement errors is still an open problem in the
literature, which may be approached in a framework dual to the
problem of robust control (81). Finally, our application example
to epidemics illustrates how the modeling of the system structure
can be used to design functional observers in nonlinear systems.
Deriving conditions that allow our methods to be extended to
more general nonlinear systems with guarantees of optimality is
left for future work.

Materials and Methods
Observer Design. Both the Luenberger and the functional observer are aux-
iliary dynamical systems that can be designed under the following structure:{

ẇ = Nw + Jy + Hu,

ẑ = Dw + Ey,
[10]

where (N, J, H, D, E) are design matrices with consistent dimension. In a
properly designed Luenberger observer, ẑ converges asymptotically to the
(n − q) unmeasured states of the system (Eq. 1), while in a properly designed
functional observer, ẑ converges asymptotically to z0 = F0x. The initial state
w(0) of the observer can be assigned arbitrarily, and the initial state x(0) is
unknown.

Despite sharing the same equations (Eq. 10), the Luenberger and
functional observers have very different orders (defined by the dimension
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of vector w) and involve very different design procedures. In what follows,
the design procedure for each observer is presented using the linear trans-
formation

P−1AP =

[
A11 A12

A21 A22

]
, PB =

[
B1

B2

]
, F0P =

[
F1 F2

]
, [11]

where P = [C† C⊥] is the transformation matrix, C† is the Moore–Penrose
inverse of C, and C⊥ is the orthogonal complement of the row space of C.

If (A, C) is observable, then a stable Luenberger observer (with arbitrary
stable poles) can be designed by defining N = A22 − EA12, J = A21 − EA11 +

NE, H = B2 − EB1, and D = In−q, where E is a design matrix that can be
found using any pole-placement algorithm such that (A22 − EA12) is Hur-
witz. Note that w ∈ R

n−q.
If (A, C, F) is functionally observable and (A, C, F0) satisfies Eqs. 4 and

5 for some row(F0) ⊇ row(F), then a stable functional observer (with
arbitrary stable poles) can be designed as follows (40, 41). 1) Compute
N1 = (ΦΩ†A12 + F2A22)F

†
2 and N2 = (ΩΩ† − Iq)A12F†

2 , where Ω = A12F⊥
2

and Φ = −F2A22F⊥
2 . 2) Find Z using any pole-placement algorithm such

that N = N1 − ZN2 is Hurwitz. 3) Compute T = [T1 T2], where T1 = ΦΩ† +

Z(Iq − ΩΩ†) and T2 = F2. 4) Compute D = Ir , J = T1A11 + T2A21 − NT1, H =

TB, and E = F1 − DT1. Note that w ∈ R
r0 .

In this paper, we use the linear-quadratic regulator as a pole-placement
algorithm, which requires solving the algebraic Riccati equation XTP + PX −
PYR−1YTP + Q = 0 for P. For the Luenberger observer design, let E ← P,
X ← AT

22 + αI, and Y ← AT
12. For the functional observer design, let Z ← P,

X ← NT
2 + αI, and Y ← NT

1. In both cases, we define α = −100, Q = 10−3 · I,
and R = I, which leads to observers with minimum estimation energy (R �
Q). The diagonal terms in X guarantee that Z and E are designed to have the
rightmost eigenvalues equal to α. This ensures that their dynamics are dom-
inated by the same slowest eigenvalue, allowing a consistent comparison of
the observers’ performance despite their different orders.

Minimum Sensor Placement Algorithm. Algorithm 1 provides an approximate
solution to the minimum sensor placement problem in polynomial time. The
key steps are as follows. First, a breadth-first search is run for each target
node (for loop), allowing us to determine the sets of target nodes Ri ⊆ T
that have a direct path to each state node xi ∈ K ⊆ X in G(A), where K is a
set of candidate nodes for sensor placement. Note that a breadth-first search
has a complexity of order O(n + |E|) (82), where |E| is the cardinality of the
set of links E in G(A), and can be run in parallel for each xi ∈ T . Second,
a greedy algorithm is used (while loop) to find an approximation of the
minimum set of sensor nodes such that structurally functional observability
is guaranteed. In the worst-case scenario, the greedy search has a complexity
of order O(n2).

Algorithm 1: Minimum sensor placement

input: inference graph G(AT), target set T , candidate set K
output: sensor set S
initialize Ri ← ∅, ∀i = 1, . . . , |K|;
for all xi ∈ T

starting at node xi in graph G(AT), find the set of reachable nodes R′
i ⊆ X

using a breadth-first search algorithm;
for all xj ∈ K

if xj ∈ R′
i , then Rj ← Rj ∪ {xi};

end
end
initialize S ← ∅.
do

for all xi ∈ K\S, compute gain

Δ(xi) =
∣∣∣ ⋃

j:xj∈S∪{xi}
Rj

∣∣∣ − ∣∣∣ ⋃
j:xj∈S

Rj

∣∣∣; [12]

add the element with the highest gain

S ← S ∪ {arg max
xi

Δ(xi)|xi ∈ K\S}; [13]

while
⋃

j:xj∈S Rj �= T .

Minimum-Order Functional Observer Design Algorithm. For cases where
(A, C, F) is functionally observable, Algorithm 2 provides a scalable solution
to the problem of determining F0 of minimum order such that Eq. 4 is
satisfied for the triple (A, C, F0) (SI Appendix, corollary 2). In this algorithm,
we avoid numerical computation of the rank condition in Eq. 4, which is

numerically unstable and computationally demanding for high-dimensional
matrices [e.g., numerical rank computation based on SVD methods has a
complexity of order O(n3)]. Instead, we compute the structural (or generic)
rank of a matrix by finding the maximum matching of the corresponding
bipartite graph of such a matrix. This is a highly scalable alternative since
the maximum matching problem can be solved by the Hopcroft–Karp al-
gorithm, which has a complexity of order O(

√
nb|Eb|), where nb and |Eb|

are the numbers of nodes (columns and rows) and links (nonzero entries)
in the bipartite graph (matrix). SI Appendix, Fig. S2 presents an illustrative
example of Algorithm 2, where it becomes clear how we take advantage
of the structural properties of a dynamical system to augment F0 at every
iteration until Eq. 4 is satisfied.

Algorithm 2: Minimum-order functional observer design

input: functionally observable triple (A, C, F)
output: functional observer matrices (F0, N, J, H, D, E)
initialize F0 ← F, r0 ← rank(F0), M1 ← ∅, M2 ← ∅;
do

update G ← [CT (CA)T FT
0 ]

T;

build a bipartite graph B(V ,V′, EV ,V′ ), where V = {v1, . . . , v2q+r0
}

is a set of nodes with each element corresponding to a row of G,
V′ = {v′

1, . . . , v′
n} is the set of nodes with each element corresponding to

a column of G, and EV ,V′ is the set of undirected links (vi , v′
j ) defined by

the nonzero entries Gij of G;

find the maximum matching set Em associated with B(V ,V′, EV ,V′ ) (e.g.,
via the Hopcroft–Karp algorithm);

for all v′
i ∈ V′, if v′

i and each of its second neighbors are connected to a
link in Em, then update the set of right-matched nodes M1 ← M1 ∪ {v′

i };

define the set of candidate nodes K = M2\M1, where v′
j ∈ M2 if [F0A]ij

is a nonzero entry for some i;

draw an element v′
k ∈ K and update F0 ← [FT

0 (F′)T]T (r0 ← r0 + 1), where
F′ ∈ R

1×n and [F′]1j = 1 if j = k and [F′]1j = 0 otherwise;
while K �= ∅;
compute the functional observer matrices (N, J, H, D, E) for a triple (A, C, F0).

Algorithm 2 finds the minimum-order F0 in O((r0 − r)
√

nb|Eb|) time,
where nb and |Eb| are the numbers of nodes and links in B, respectively. This
follows from F0 being determined with (r0 − r) recursive iterations, in which
a maximum matching algorithm of O(

√
nb|Eb|) is run at each iteration.

This complexity order can be estimated as a function of n in a worst-case
scenario in which one has a single sensor node (q = 1) and a single target
node (r = 1), but, in order to satisfy Eq. 4, all other unmeasured nodes must
be estimated, resulting in r0 = n − q ≈ n and hence r0 − r ≈ n. Since there
are at most nb = 2q + r0 + n ≈ 2n nodes in B, let |Eb| = nbkavg, where kavg

is the average node degree in B. Thus, the complexity order is O(n2.5) if
we assume that kavg � n. Note that, being a worst-case scenario, this is
still a very conservative estimate since usually r0 � n (Fig. 3). This estimate
should be contrasted with the complexity order of O(n4) in the worst-case
scenario for the procedure in ref. 42, which requires computation of the rank
condition via SVD in approximately n iterations (SI Appendix, section 4).

Optimal Sensor Placement for Minimum-Order Functional Observers. Given
a functionally observable triple (A, C, F), one may be interested in how
to optimally place additional sensor nodes in a network such that the
functional observer order r0 is minimized. This is a bilevel optimization
problem

min
S⊆K\T ,|S|≤q

min
F0∈{0,1}n×n

J(S, F0), s.t. Eqs. 3 and 4. [14]

where K is a set of candidate nodes for sensor placement and J(S, F0) is
a cost function that returns the minimum order r0 = rank(F0) of a func-
tional observer. However, finding F0 depends on S (which defines matrix
C in Eqs. 3 and 4) and is “embedded” in a lower-level optimization task
that requires, for instance, use of Algorithm 2. This is a hard-to-solve
problem, but, for illustration purposes, in Fig. 3F we implement a (non-
scalable) greedy algorithm that recursively adds elements to S by letting
S ← S ∪ {arg maxxi Δ(xi)|xi ∈ K\S} until |S| = q, where Δ(xi) = J(S ∪
{xi}) − J(S), ∀xi ∈ K\S, and J(S) is the order of F0 returned by Algorithm 2
for this set S.
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Generation of Complex Dynamical Networks. For the generation of the N-
vertex complex networks used in Figs. 2–4, we explore the following param-
eters: m ∈ {1, 2, . . . , 7} for Barabási–Albert SF networks (83) and k = 2 and
p ∈ [0, 1] for Newman–Watts SW networks (84). Parameter m is the number
of edges of each vertex iteratively added to the network, k is the number of
nearest neighbors in a ring graph, and p is the probability of adding a new
edge. For each of these undirected networks, a directed model is generated
by randomly assigning a single direction to each edge.

Since we are concerned with dynamical networks, we consider that each
vertex in an SW or SF network is a dynamical system of possibly more than
one dimension. For illustration purposes, we assume that each vertex of
a network generated from these models is a three-dimensional subsystem
with the following general structure:

Av =

⎡
⎣−1 −1 0

1 −1 0
1 0 −1

⎤
⎦ . [15]

To include the effects of heterogeneity in the vertex dynamics of the dynam-
ical networks generated, we let the dynamics of each subsystem be defined
by Ai = λiAv for λi ∼ U [2, 5], where i = 1, . . . , N and U [a, b] is a uniform
distribution in the interval [a, b]. Thus, the system matrix A describing the
whole dynamical network is given by A = diag(λ1, . . . , λN) ⊗ Av − L ⊗ M,
where ⊗ is the Kronecker product operator, L is the Laplacian matrix of the
generated network, and M ∈ {0, 1}3×3 is defined by Mij = 1 if i = j = 2 and
0 otherwise. The term L ⊗ M means that the second state variable of all
subsystems is diffusively coupled according to L. Note that A has dimension
n = 3N, which is also the number of nodes in G(A).

The generalized clustering of the inference graphG(A), studied in Fig. 3D,
is defined as Cg = 1

n

∑
i,j,k A′

ijA
′
jkA′

ki/k2
i , where ki is the node degree of node

xi in G(A′) and A′ = (A + AT)/2. Note that the diagonal entries aii are
included to account for self-edges, which distinguishes Cg from the standard
clustering coefficient, and that the computation is effectively done for the
undirected counterpart of G(A).

For the results presented in Figs. 3 and 4, the target and sensor nodes were
chosen randomly among the first state variable of each subsystem (vertex)
Ai , under the condition that the sets of sensor nodes and target nodes are
nonoverlapping (i.e., S ∩ T = ∅). That is, Fij or Cij is a nonzero entry only
if (j + 2)/3 is integer, and thus S ∪ T can have at most N state nodes. This
procedure is relaxed in Fig. 2, where all state variables are candidates for
sensor placement (i.e., K = X ).

Real-World Networks Datasets. For the real-world networks used in Fig. 2B,
we take several adjacency matrices Aadj available in different real-world
datasets (described in SI Appendix, section 6). For each real-world network,
we define the system matrix A as the Laplacian matrix of Aadj in order to
model the energy/information flow in such systems as diffusive processes.

Parameters of the IEEE-118 Power-Grid Model. The IEEE-118 system is de-
rived from a representation of the US Midwest system with 118 buses, 54
generators, and 186 lines (85). The network parameters Kij and generator’s
mechanical power Pi are computed from the nominal AC power flow solu-
tion, the generator and load dynamical parameters Hi and Di are estimated
following the method provided in ref. 51, and the nominal frequency wR

is 60 Hz. The power flow equations were numerically solved using the
MATPOWER toolbox (85). The initial conditions were set, for all i, assuming
that the power system is in a synchronized steady state φ̇i(0) = 0, with φi(0)
determined by the power flow solution.

Parameters of the Epidemic Spreading Model. The parameters in Eq. 9 were
set as (β, γ, η) = (0.4, 0.16, 0.01) in order to mimic the coronavirus spread-
ing in each group according to results reported in ref. 72, where here, β
is the average value of βi . We define the contact rate of each group as
βi ∼ N (β, 0.01) to account for group heterogeneity in the simulation. The
air transportation network defined by K describes the traffic of passengers
according to the TranStats database for international and domestic flights
(https://www.transtats.bts.gov/). Multiple airports belonging to the same
city are combined into a single group (vertex) i with a population Pi given
by the corresponding city’s population. In Fig. 6, the epidemic peak time tp

is determined by numerically integrating Eq. 9 with the initial conditions
Ij(0) = 103 and Sj(0) = Pj − 103 if j is the index for Miami, Florida, and
Ij(0) = 0 and Sj(0) = Pj otherwise. The predicted peak time t̂p is determined
based on the free-run simulations and functional observer estimations, both
initialized with a false guess of the outbreak in a randomly selected city
k. That is, Ij(0) = 1 and Sj(0) = Pj − 1 if j = k and Ij(0) = 0 and Sj(0) = Pj

otherwise.

Data Availability. Codes and data have been deposited in GitHub
(https://github.com/montanariarthur/FunctionalObservability).
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