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Abstract.
Background: The metabolomic and proteomic basis of mild cognitive impairment (MCI) and Alzheimer’s disease (AD)
is poorly understood and the relationships between systemic abnormalities in metabolism and AD/AMCI pathogenesis are
unclear.
Objective: The aim of the study was to compare the metabolomic and proteomic signature of saliva from cognitively normal
and patients diagnosed with MCI or AD, to identify specific cellular pathways altered with the progression of the disease.
Methods: We analyzed 80 saliva samples from individuals with MCI or AD as well as age- and gender-matched healthy
controls. Saliva proteomic and metabolomic analyses were conducted utilizing mass spectrometry methods and data combined
using pathway analysis.
Results: We found significant alterations in multiple cellular pathways, demonstrating that at the omics level, disease pro-
gression impacts numerous cellular processes. Multivariate statistics using SIMCA showed that partial least squares-data
analysis could be used to provide separation of the three groups.
Conclusion: This study found significant changes in metabolites and proteins from multiple cellular pathways in saliva.
These changes were associated with AD, demonstrating that this approach might prove useful to identify new biomarkers
based upon integration of multi-omics parameters.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenera-
tive disease characterized clinically by gradual loss
of memory, cognitive decline, and multiple behav-
ioral changes [1, 2] and is the most common form
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of dementia. The incidence of AD is projected to
increase by 300% over the next thirty years, mainly
due to the growing aging population in many coun-
tries worldwide [3], and this disease has therefore
become a global concern in terms of social and eco-
nomic impact [4–6]. In the United States alone, an
estimated 5.8 million people more than 65 years of
age are suffering from AD dementia [7]. In clinical
practice, patients are not usually diagnosed with AD
until the disease has progressed to an advanced stage
of cognitive impairment, and there are limited oppor-
tunities for reversing disease progression. However,
in earlier stages of the disease, often characterized
by mild cognitive impairment (MCI), there is sub-
stantially more scope to intervene and modify risk
factors in order to reduce the risk of cognitive decline
and dementia. Those individuals who are identified
with MCI have a higher risk of developing AD with
advancing age, with approximately 14–18% of MCI
patients over 70 years progressing to AD annually [8,
9]. Currently, the ability to detect the early stages of
AD and its progression is minimal, making it difficult
to determine the optimal clinical therapy. Therefore,
a minimally invasive approach is needed to identify
preclinical individuals with AD and MCI so that early
strategies can be put in place to prevent or reduce the
risk of developing clinical symptoms.

Methods for the investigation of AD are often
invasive, expensive, and cannot adequately identify
biomarkers [10–12]. If successful population-based
screening for AD is to be put in place, this will require
readily available, minimally invasive, and inexpen-
sive methods for a robust, low-cost diagnostic test
with high specificity and sensitivity. Previously, we
used cells from the buccal mucosa as a minimally
invasive strategy to identify potential biomarkers for
AD [13–15]. However, saliva is increasingly gaining
attention as a body fluid for the search of biomarkers
of health and disease [16]. Recent developments in
saliva proteomics have enabled the identification of
saliva proteins, and indeed one study demonstrated
approximately 40% of the blood proteins currently
used in blood-based diagnostics were present in saliva
[17].

It is not known precisely how AD is initiated
nor what controls the progression pathway. While
there have been many different hypotheses as to the
cause of AD, the exact triggers and mechanisms
remain elusive and are challenging to verify. Recent
developments in proteomic and metabolomic meth-
ods in disease models of AD have provided valuable
insights into the molecular basis of AD [18, 19].

Targeted metabolomics in saliva has also revealed
new biomarkers for AD [20]. Furthermore, combined
metabolomic and proteomic profiling of saliva may
reveal dysregulation of cellular functions that con-
tribute to the disease status of cells or may contribute
to the pathology and clinical presentation in AD.
Therefore, the aim of the study was to compare the
metabolomic and proteomic signature of saliva from
cognitively normal and dementia patients diagnosed
with MCI and AD, to identify specific cellular path-
ways altered with the progression of the disease.

METHODS

Patient samples

This study was approved by the local Human
Research Ethics Committees, CSIRO Ref 09/11,
Ramsay Healthcare Ethics Committee and South
Australian Health HREC. All methods were car-
ried out in accordance with the approved guidelines,
and all participants provided written informed con-
sent before participating in the study. Diagnosis
of MCI or AD was conducted by clinicians (Drs.
Hecker, Faunt, Johns, and Maddison) based on the
criteria outlined by the National Institute of Neu-
rological and Communicative Disorders and the
Stroke-Alzheimer’s Disease and Related Disorders
Association (NINCDS-AD&DA) [21] and by using
recommendations from the National Institute on
Aging-Alzheimer’s Association (NI-AAA) work-
groups on diagnostic guidelines for MCI [22] using
clinical criteria. The diagnosis of dementia due to
AD was made in the clinic setting and was consistent
with “probable AD” criteria described in the guide-
lines paper from the NI-AAA [23]. Data reported
in this study are from a total of 80 participants
from the South Australian Neurodegenerative Dis-
ease (SAND) cohort, including: 1) the cognitively
normal/healthy control (C) group (n = 40), which
consisted of healthy age- and gender-matched partici-
pants; 2) the MCI group (n = 20), clinically diagnosed
with MCI; and the 3) AD group (n = 20) clini-
cally diagnosed with AD. Patients with significant
cognitive comorbidities including head trauma, alco-
holism, learning disability, or Parkinson’s disease
(PD), were excluded from the study. Other exclu-
sion criteria for all groups were as follows; patients
who were undergoing chemotherapy/radiotherapy
treatment for cancer, and taking micronutrient sup-
plements (folate, vitamin B12) above recommended
intakes.
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Blood and saliva collection

Blood was collected and processed within 3 h of
collection. The RNAPro•SAL™ (Oasis Diagnostics
Corporation®, Vancouver, WA, USA) saliva collec-
tion system was used, which provides for rapid
salivary metabolite and protein collection and recov-
ery, cellular removal, and biomarker stability at
ambient temperature. All samples were stored at
–80◦C until analysis.

Biochemical measurements and statistics

Plasma vitamin B12, folate, vitamin D, homo-
cysteine, cholesterol, triglyceride, HDL-cholesterol,
and LDL-cholesterol were measured by a clinical
laboratory service; SA Pathology (Adelaide, South
Australia, Australia). C-reactive protein (CRP) was
measured using commercial enzymatic kits (Beck-
man Coulter Inc, Brea, CA, USA) on a Beckman
AU480 clinical analyzer (Beckman Coulter Inc, Brea,
CA, USA) with CV = 2.36%.

Apolipoprotein E genotyping

APOE genotyping for alleles APOE �2, �3, and
�4 were based on allele-specific PCR methodology
adapted to Real-Time PCR monitored by TaqMan
probe [24].

Chemicals

All chemicals used were MS grade or higher,
purchased from Sigma-Aldrich (Castle Hill, NSW,
Australia) unless specified otherwise. Acrylamide
and Bradford assay reagents were purchased from
BioRad Laboratories (Gladesville, NSW, Australia).
LC Proteomics FlexMix Calibration Solution and
Retention Time Calibration Mixture were purchased
from Thermo Scientific (Woolloongabba, QLD, Aus-
tralia). GC Retention Time Calibration standard and
isotopically labelled standards were purchased from
Cambridge Isotope Laboratories (Tewksbury, MA,
USA).

Untargeted metabolomics

Saliva samples were prepared following a modifi-
cation of a previous method [25]. Briefly, aliquots
of saliva (100 �L) were processed using internal
standards (d27-myristic acid and D-Glucose 13C6
and L-Glutamine-amide-15N. Dried extracts were

derivatized before analysis on the GC-MS system.
GC-MS analysis was performed on an Agilent 6890B
gas chromatograph (GC) oven coupled to a 5977B
mass spectrometer (MS) detector (Agilent Technolo-
gies, Mulgrave, VIC, Australia) fitted with an MPS
autosampler. Total ion chromatogram (TIC) mass
spectra were acquired within a range of 50–650
m/z, with a 2.89 spectra s−1 acquisition frequency.
Data acquisition and spectral analysis for GC-MS
were performed using the Qualitative Analysis soft-
ware (Version B.010.00) of MassHunter workstation.
Qualitative identification of the compounds was
performed according to the Metabolomics Stan-
dard Initiative (MSI) chemical analysis workgroup
using standard GC-MS reference metabolite libraries
(Fiehn Metabolomics RTL Library, G166766A, Agi-
lent Technologies) and with the use of Kovats
retention indices based on a reference n-alkane
standard (C8–C40 Alkanes Calibration Standard).
Data were processed on Mass Profiler Professional
(v14.9, Agilent Technologies). To ensure quality con-
trol/quality assurance in the metabolomics analysis,
the sequence used for the analysis was randomly
prepared and comprised of 80 samples. The resid-
ual standard deviation (RSD) of the d27-Myristic
Acid, Glutamine-amide-15N, and Glucose 13C6 inter-
nal standards as a percentage was determined to be
6.8%, 4.1%, and 4.9%, respectively.

Untargeted proteomics

Saliva samples were prepared following a modifi-
cation of a previous method [26]. Saliva protein was
precipitated by cold acetone then air-dried before re-
dissolving in 8 M urea. An aliquot of protein (5 �g)
was reduced and alkylated. Proteins were then trypsin
digested and incubated at 37◦C overnight. The diges-
tion was stopped with 1 �L of 10% (v/v) formic acid
and filtered with a 0.22 �m filter. For each sample,
100 ng of the tryptic digested peptides were injected
onto the liquid chromatography-mass spectrome-
ter (LC-MS) for analysis. Tryptic peptides (100 ng)
were desalted and concentrated with a trap column
(PepMap100 C18 5 mm×300 �m, 5 �m, Thermo
Scientific, Waltham, MA, USA) and separated on
a nano column (PepMap100 C18 150 mm×75 �m,
2 �m, Thermo Scientific) using an UltimateTM 3000
RSLC nano-LC system (Thermo Scientific). The
eluted peptides were ionized with a Nanospray Flex
Ion Source (Thermo Scientific). The spray voltage
was set to 2.3 kV and the temperature of the heated
capillary was set at 300◦C. After ionization, mass
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Table 1
Age and gender, MMSE scores and various blood measurements between groups

C MCI AD ∗p ∗p
HC HC

versus versus
MCI AD

Sample number 40 20 20
Sex (F/M) 19/21 11/9 8/12 ns ns
Age 75.3 77.8 78.0 ns ns
MMSE 28.6 26.6 21.1 0.018 < 0.0001
APOE �4 allele positive (%) Homozygous E4/E4 % 7/40 (17.5%) 0% 11/20 (55%) 0% 10/20 (50%) 20%
Vitamin B12 (pmol/L) 303.8 ± 14.5 402.5 ± 42.6 395.6 ± 27.6 0.02 0.03
Folate (nmol/L) 30.1 ± 1.5 34.5 ± 2.2 33.9 ± 2.9 ns ns
Homocysteine (�mol/L) 14.1 ± 0.6 14.1 ± 0.9 15.6 ± 1.2 ns ns
Vitamin D3 (nmol/L) 69.1 ± 3.6 89.2 ± 5.8 70.7 ± 4.3 0.006 ns
Cholesterol (mmol/L) 4.79 ± 0.19 4.55 ± 0.32 4.98 ± 0.29 ns ns
Triglyceride (mmol/L) 1.43 ± 0.10 1.47 ± 0.15 1.19 ± 0.10 ns ns
HDL-cholesterol (mmol/L) 1.50 ± 0.05 1.71 ± 0.15 1.89 ± 0.15 ns 0.02
LDL-cholesterol (mmol/L) 2.65 ± 0.18 2.06 ± 0.22 2.32 ± 0.25 ns ns
Non HDL-cholesterol (mmol/L) 3.30 ± 0.20 3.04 ± 0.36 2.89 ± 0.22 ns ns
CRP (mg/L) 2.33 ± 0.39 1.76 ± 0.39 1.41 ± 0.32 ns ns
∗Bonferroni post-hoc test.

spectra (MS1) and tandem mass spectra (MS/MS)
analysis was performed using an Orbitrap Fusion MS
(Thermo Scientific). MS survey scans of peptide pre-
cursors were performed in the Orbitrap detector and
the scan range was 400 to 1500 m/z at a resolution
of 120 K (at 200 m/z). The target value of automatic
gain control (AGC) was set as 4×105. The maximum
injection time for the MS was 50 ms. MS/MS was
performed on the most abundant precursors of charge
states 2+ to 7+ with intensity greater than 1×105 and
they were isolated by the quadrupole with a window
of 1.6 m/z.

Protein data analysis

Protein Discoverer 2.2 (Thermos Scientific) and
Sequest HT search engine were used to identify pep-
tides/proteins and quantify the relative abundance of
proteins. The spectrum data was searched against
the UniProt Homo-sapiens database (Proteome ID:
UP000005640, 20,311 sequences). Peptide spectral
matches were validated using the Percolar algorithm,
based on q-values and 1% false discovery rate (FDR).
Relative abundance was calculated from precursor
abundance intensity and normalized from the total
peptide amount.

Chemometric analysis and salivary metabolome
and proteome integration

The metabolomics and proteomics data, after
batch-effect adjustment and log transformation, were

analyzed using multivariate data analysis software
SIMCA (version 16, Sartorius Stedim Biotech,
Umeå, Sweden) and MetaboAnalyst 4.0 [27]. The
Gene Ontology Resource and Enrichr were used for
Enrichment analysis. The cut-off level for signifi-
cant metabolites was a signal-to-noise (S/N) ratio
of 10, while for proteins, it was a relative abun-
dance of 1×105. For statistical analysis of both
metabolome and proteome, a fold change of ≤ 0.5
(downregulation) or ≥ 2.0 (upregulation), and a
Benjamini–Hochberg adjusted p-value of ≤ 0.05 was
used. Metabolomic and proteomic outputs were inte-
grated using the ‘Joint-pathway analysis tool’ of
Metaboanalyst 4.0 and Paintomics 3 [28] and the
false discovery rate (FDR) was used to report adjusted
p-values.

RESULTS

The gender, age, Mini–Mental State Examination
(MMSE), APOE �4 allele status, plasma homocys-
teine concentration, CRP, plasma lipids, and vitamins
of the SAND individuals in each group are shown
in Table 1. There was no significant difference in
age or gender across groups. As expected, there was
a significant decrease in the MMSE scores of both
MCI (p < 0.018) and AD (p < 0.0001) groups com-
pared with the control group. The frequency (%) of
the APOE �4 carriers was increased in both MCI
and AD groups compared with the group control
(p = 0.011), with a moderate association (Cramer’s
V coefficient = 0.349). Vitamin B12 was significantly
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Fig. 1. Omics analysis data overview. A) Saliva sample group summary and the number of metabolite and protein features identified and
found to be statistically significant in the Alzheimer’s disease (AD) and mild cognitive impairment (MCI) groups compared to the control
group. B) Overview of proteins and metabolites classified based on chemical ontologies and structural similarity and function. Partial least
squares-data analysis (PLS-DA) score scatter plots for the (C) proteomics and (D) metabolomics datasets.

higher in the MCI and AD groups compared with the
control group, whilst both homocysteine and folate
tended to be higher (albeit not statistically signifi-
cant) and vitamin D3 was significantly higher in the
MCI group only as compared with healthy controls.
Plasma lipids and the inflammatory marker CRP were
not different between groups.

The metabolomics and proteomics analysis
yielded 173 common metabolites and 923 common
proteins across the three saliva sample groups col-
lected [age-matched control, control (n = 40); MCI
(n = 20), and AD (n = 20)]. As illustrated in Fig. 1A,
statistical analysis indicated that 79 metabolites
and 346 proteins were nominally significant and
remained statistically significant after post correc-
tion for multiple comparisons (Benjamini-Hochberg
adjusted p < 0.05) in the saliva samples for the AD
group with respect to the control group. Conversely,
the MCI group comprised 374 proteins that were sta-
tistically significant, with only 6 metabolites found
to be statistically significant. The metabolites and

proteins were then classified based on chemical
ontologies and structural similarity and function to
characterize these datasets prior to integration and
biological interpretation. As illustrated in Fig. 1B,
the most identified proteins were characterized as
performing hydrolases, actin-binding, oxidoreduc-
tase, and transferase. The most abundant classes of
metabolites were sugars, amino acids, carboxylic
acids and saturated fatty acids.

In order to explore variations between these sam-
ple groups, the metabolomic and proteomic data
were first log transformed, normalized and analyzed
by multivariate statistics using SIMCA. Figures 1C
and 1D illustrate the partial least squares-data anal-
ysis (PLS-DA) score scatter plots for the proteomics
and metabolomics datasets, respectively. As evident
in Fig. 1C, the proteomics data alone can be used
to provide separation of the three groups. In the
AD group, 130 proteins were significantly changed
in abundance, whilst 155 proteins were changed in
abundance in the MCI group compared with controls
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Fig. 2. A) Metabolic (R2X = 0.464, R2Y = 802, Q2 = 703) and B) Proteomic (R2X = 0.462, R2Y = 0.996, Q2 = 0.973) profiles of AD samples
(n = 20) with respect to controls (n = 20).

(Log2fold change ≥ 1.5-fold, ≤-1.5-fold, adjusted
p ≤ 0.05). Enrichment analysis revealed some of the
proteins were actin and actin related protein, metallo-
protease and immunoglobulins. These proteins were
mapped to several pathways including neurologi-
cal disease, inflammation mediated by chemokine
and cytokine signal pathway, cytoskeletal regulation
by ρ-GTPase, and glycolysis. Conversely, for the
metabolomics datasets (Fig. 1D), most metabolites
showed an overlap between MCI and AD sam-
ples. However, this was not unexpected since the
progression of MCI to AD is gradual, and the spe-
cific biomarkers for MCI and its translation to AD
are not always ubiquitous [9]. In our analysis, all
metabolites whose concentrations were significantly
different between the control and MCI/AD groups
were observed to be significantly upregulated (Fold
change > 2.0) – and included rhamnose, L-tyrosine,
L-fucose, L-ornithine, L-aspartate, and serotonin.
Further analysis indicated that, in contrast to MCI,
there was a clear separation of metabolite and pro-
tein profiles in control and AD affected individuals,
indicated by good linearity (cumulative R2) and pre-
dictability (cumulative Q2) (Fig. 2).

The integration of metabolome and proteome pro-
files of AD and MCI though the ‘Joint pathway
analysis’ tool indicated a presence of 69 metabolic
pathways of which 15 were observed to be signifi-
cantly different (FDR p < 0.05) across both conditions
(Table 2).

The joint pathway analysis indicated that several
major pathways, including the �-alanine pathway,
citric acid cycle, cysteine and methionine meta-
bolism, and phenylalanine metabolism showed

Table 2
Significant pathways expressed in saliva from AD and MCI (com-

pared with controls)

Pathway Match FDR Impact
status

Glycolysis or Gluconeogenesis 14/61 1.19e−12 0.73
Pyruvate metabolism 5/45 0.1983 0.27
Aminoacyl-tRNA biosynthesis 12/74 1.26e−08 0.16
Arginine biosynthesis 5/27 0.0003 0.31
beta-Alanine metabolism 8/44 0.0007 0.60
Alanine, aspartate and glutamate

metabolism
5/61 0.0057 0.33

Propanoate metabolism 4/48 0.1983 0.15
Pentose phosphate pathway 5/47 0.0057 0.78
Phenylalanine, tyrosine and

tryptophan biosynthesis
2/11 0.0179 1.2

Valine, leucine and isoleucine
biosynthesis

3/12 0.0060 0.27

Phenylalanine metabolism 5/21 0.0073 0.6
Histidine metabolism 6/32 0.0102 0.32
Starch and sucrose metabolism 7/43 0.0102 0.36
Glutathione metabolism 4/56 0.2517 0.2
Pantothenate and CoA

biosynthesis
3/34 0.0467 0.15

Tyrosine metabolism 7/88 0.0467 0.39
Citric acid cycle (TCA cycle) 3/42 0.0467 0.37
Galactose metabolism 5/51 0.0467 0.28

significant increases in the AD group when compared
to the MCI group (Fig. 3).

One of the prominent observations was the accu-
mulation of cholesterol in the saliva of patients with
AD (Log2Fold change (FC) = +4.57), in contrast to
depletion in the MCI (Log2FC = –1.62). Addition-
ally, for arginine metabolism, a higher accumulation
of aspartate, putrescine and ornithine was observed
in the AD group compared with controls, which
was associated with lower aldehyde dehydrogenase 3



M. François et al. / Salivaomics for The Diagnostic of AD 1307

Fig. 3. Impact of major pathways associated with the MCI and AD conditions compared with the control group.

(Uniprot ID P51648) (Log2FC = –2.08) with respect
to MCI (Log2FC = –1.32). In tyrosine and phenylala-
nine metabolism, both tyrosine and phenylalanine
accumulation were observed in the AD group but
not in the control group. Significant accumulation of
downstream products of tyrosine metabolism were
further observed in the MCI group only. These
included hydroxyphenyl lactate, tyrosol, and tyra-
mine (Fig. 4A). Metabolomic-proteomic integration
indicated that such accumulation of the downstream
products of tyrosine metabolism was likely due
to downregulated aldehyde dehydrogenase family
enzyme activities in MCI and AD groups. It is known
that the members of this family (P51648, P43353,
P30838) catalyze numerous reactions in glycolysis
and tyrosine and phenylalanine associated pathways
(Fig. 4A). Energy pathways such as glycolysis, oxida-
tive phosphorylation and citrate cycle are the most
crucial metabolic pathways in eukaryotic cells due to
their role in energy generation.

Citric acid cycle showed three out of 42 ele-
ments that were differentially expressed only in
the AD group (impact = 0.37, FDR = 0.0467) where
it appeared to be somewhat upregulated. On the
other hand, upstream pathways such as glycoly-
sis and pyruvate metabolism showed higher impact
(Fig. 3) especially in AD. This was confirmed by
the upregulated pyruvate and downregulated citrate
cycle metabolites such as citrate, succinate, and
fumarate (Fig. 4) along with increased expression
of glycolysis proteins, especially for the AD group
as compared with controls. The downregulated suc-
cinate and fumarate, combined with low aldehyde
dehydrogenase activities in AD also indicated the
rerouting of citrate from citrate cycle [29, 30], causing
a further upregulation of glycolysis, resulting in pyru-
vate upregulation in AD (Fig. 4C). This indicated an
increased proteasome age activity, causing downreg-
ulation of oxidative phosphorylation and fragmenting
the citrate cycle and rerouting it toward other
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Fig. 4. Heatmaps showing metabolomic and proteomic expressions during (A) Tyrosine metabolism, (B) Pyruvate metabolism, and (C)
Glycolysis in the salivary matrix of AD and MCI patients with respect to control representatives (non-AD/MCI patients). The metabolites
and proteins used in the multi-omics integration were selected based on the fold changes (Log2FC ≥ 1.00 or Log2FC ≤ –1.00) with statistically
significant differences False discovery rates (FDR ≤ 0.05)). Note: The numerical IDs in parenthesis indicate Entrez Gene IDs of the proteins
involved in these pathways.

pathways [31]. This could be further gauged from the
increased antigen processing and presentation, espe-
cially through the outputs of antigen-processing cells
and leukocyte transendothelial migration (Fig. 5A,
B). It appeared that metabolites and proteins con-
tributing to PD also increased throughout the
transition of MCI to AD (Fig. 5C).

DISCUSSION

Cognitive impairment detection at an early stage is
vital, as the disease causes irreversible degeneration
of cognitive capabilities in affected individuals. The
likelihood of MCI transitioning to dementia annu-
ally lies between 14–18% [8, 9] and therefore, it is
vital to identify and characterize the biomarkers asso-
ciated with this transition to enable early diagnosis.
Recent untargeted metabolomic analysis has shown
the increased levels of glutamate, ornithine, cytidine
and sphinganine-1-phosphate [32], and galactose and
acetone [33] as probable biomarkers for the transition

from MCI to AD. However, the presence of these
metabolites as biomarkers of MCI to AD transition is
doubtful and variable results exist [34, 35]. Addition-
ally, elevated tau and phosphorylated tau proteins in
cerebrospinal fluid have been reported to be indicative
of an increased risk of MCI progression to AD [36].
However, salivary tau proteins have shown no cor-
relation with AD in a recent study [37], indicating a
necessity to search for more reliable biomarkers, and
preferably from non-invasive biofluids such as saliva.
To determine potential non-invasive biomarkers for
AD, we carried out saliva proteomic and metabolomic
analyses utilizing mass spectrometry methods. We
found significant alterations in metabolites and pro-
teins from multiple cellular pathways, demonstrating
that at the omics level, disease progression impacts
numerous cellular processes. These include energy
production, cell/organelle structure, signal transduc-
tion, mitochondrial function, cell cycle progression,
and proteasome function. Therefore, this approach
could be used to identify new biomarkers with the
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Fig. 5. The heatmaps show proteomic expressions of (A) antigen processing and presentation and (B) leukocyte transendothelial migration in
salivary matrix of AD and MCI patients with respect to their age- and gender-matched controls. C) Heatmaps showing proteomic expression
during Parkinson’s disease in salivary matrix of AD and MCI patients with respect to controls. The metabolites and proteins used in the
multi-omics integration were selected based on the fold changes (Log2FC ≥ 1.00 or Log2FC ≤ –1.00) with statistically significant differences
(False discovery rates (FDR ≤ 0.05)). Note: The numerical IDs in parenthesis indicate Entrez Gene IDs of the proteins involved in these
pathways.

results based upon integration of multi-omics param-
eters for better prediction and diagnostics.

Microglial and astrocyte cells have been shown
to produce considerable levels of pro-inflammatory
proteins that cross-migrate from cerebral matrix to
blood [37]. Prior studies observed changes in serum
with increased phenylalanine and tyrosine concentra-
tions. In fact, a high phenylalanine/tyrosine ratio was
shown to be a good indicator of AD, caused by the
downregulated phenylalanine-4-hydroxylase activity
which could prevent stress response metabolites such
as L-DOPA and epinephrine [32, 38, 39]. In our cur-
rent study, phenylalanine and tyrosine accumulation
was observed in the AD group, and this correlated
with the downregulation of aldehyde dehydrogenase.
This enzyme plays a critical role in detoxification and

elimination of reactive oxygen species. A recent study
with ALDH2 knockout mice has indicated a muta-
tion of this protein in AD patients showing APOE �4
allele causes increased oxidative stress and mitochon-
drial dysfunction and neuroinflammation [40, 41].
This effect was consistent with the findings from our
studies, with downregulated tyrosine and citrate cycle
metabolism, leading to increased glycolysis during
MCI to AD transition. As the downstream effect of
these perturbations, follow-up expression of antigen
processing and presentation genes such as CTSS,
HLA, HSPA5, TAP2, and TNF have been strongly
associated with AD [42].

An upregulated arginine metabolic pathway has
been recently shown in AD, especially leading to an
increase in ornithine levels through the urea cycle
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Fig. 6. General metabolic behavior in saliva during MCI to AD transition. Note: The indicates individual pathway behavior during the
transition. Zigzag indicates break in the pathway.

[32]. Our results were in line with this observation,
albeit with slight differences as there was a moder-
ate increase in arginine metabolism intermediates in
MCI and AD compared to controls. However, a minor
reduction of arginase 1 activity was observed when
comparing the MCI to AD. Arginine metabolism is
important for synthesizing polyamines, which act as
agonists for neurotransmitter binding N-methyl-D-
aspartate (NMDA) receptors [19]. Indeed, inhibition
of arginase activity reversed amyloid-driven neuronal
dysfunction and AD symptoms in animal models of
AD [43].

Critical risk factors for AD such as hypercholes-
terolemia and increased serum saturated fatty acids
are critical risk factors for AD [44] with gradu-
ally increasing levels of cholesterol associated with
AD progression for instance [45]. We did not find
significant changes in plasma total cholesterol in

the MCI or AD groups compared with the con-
trol group. However, we observed decreased saliva
cholesterol levels in MCI, while levels significantly
increased in AD when compared with the control
group. Additionally, the expression of steroid hor-
mone biosynthesis enzymes appeared to be disrupted
in the transition from MCI to AD, possibly preventing
cholesterol degradation and subsequently accelerat-
ing AD progression. The study’s observations were
in line with the previously shown association with
AD of genes involved in sterol regulatory proteins
and ATP-binding proteins [46].

One of the peculiar observations from our study
was the expression of PD biomarkers in the MCI to
AD transition (e.g., Parkinson’s disease protein 7;
PARK7). Although PD is considered distinct from
AD, recent pathological studies have shown that some
similarities exist between the transition from MCI to
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AD and PD. These include downregulated NR4A1
gene expression which was similar in PD and AD
[47]. We intend to conduct future studies that directly
compare salivary metabolites and proteins that com-
pare PD with AD, and these results may show the
correlations and distinct differences for PD and AD
pathologies and may shed additional light on their
relationship.

In a study investigating serum metabolomic pro-
filing in patients with AD, a total of eleven com-
ponents were chosen as biomarker metabolites
between AD and control groups, and these metabo-
lites were closely related to seven biological
pathways: arginine and proline metabolism, pheny-
lalanine metabolism, �-alanine metabolism, primary
bile acid synthesis, glutathione metabolism, starch
and sucrose metabolism, and steroid hormone
biosynthesis. These serum data may be useful for
further understanding AD pathogenesis [39] and
our saliva data which demonstrates similar pathway
changes thus could provide a simpler non-invasive
approach. It is important to note that two MCI and 13
AD participants were taking cholinesterase inhibitors
medications; however, these medications are unlikely
to affect the significantly impacted pathways revealed
in our study. Overall, we found that biomarkers pre-
viously reported in cerebral, blood, and liver studies,
were also observed in saliva. Additionally, the inte-
grated proteomic-metabolomics approach displayed
a greater model predictability for MCI to AD transi-
tion at the early stages of neurodegeneration (Fig. 6).
This is the first pilot study identifying changes and
abundance of saliva proteins and metabolites using
an omics approach for the assessment of developing
AD risk. Saliva has an additional advantage that it
can be self-collected multiple times in a stress-free
manner. As such, these practical aspects support the
logical step to utilize saliva in the search for early AD
biomarkers. Furthermore, this study provides further
evidence that MCI and AD pathology is not restricted
to neuronal cells but involves substantial changes in
peripheral tissues.
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