
RESEARCH ARTICLE

Evaluation of parameters affecting

performance and reliability of machine

learning-based antibiotic susceptibility testing

from whole genome sequencing data

Allison L. HicksID
1*, Nicole WheelerID
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Abstract

Prediction of antibiotic resistance phenotypes from whole genome sequencing data by

machine learning methods has been proposed as a promising platform for the development

of sequence-based diagnostics. However, there has been no systematic evaluation of fac-

tors that may influence performance of such models, how they might apply to and vary

across clinical populations, and what the implications might be in the clinical setting. Here,

we performed a meta-analysis of seven large Neisseria gonorrhoeae datasets, as well as

Klebsiella pneumoniae and Acinetobacter baumannii datasets, with whole genome

sequence data and antibiotic susceptibility phenotypes using set covering machine classifi-

cation, random forest classification, and random forest regression models to predict resis-

tance phenotypes from genotype. We demonstrate how model performance varies by drug,

dataset, resistance metric, and species, reflecting the complexities of generating clinically

relevant conclusions from machine learning-derived models. Our findings underscore the

importance of incorporating relevant biological and epidemiological knowledge into model

design and assessment and suggest that doing so can inform tailored modeling for individ-

ual drugs, pathogens, and clinical populations. We further suggest that continued compre-

hensive sampling and incorporation of up-to-date whole genome sequence data, resistance

phenotypes, and treatment outcome data into model training will be crucial to the clinical util-

ity and sustainability of machine learning-based molecular diagnostics.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007349 September 3, 2019 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hicks AL, Wheeler N, Sánchez-Busó L,
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Author summary

Machine learning-based prediction of antibiotic resistance from bacterial genome

sequences represents a promising tool to rapidly determine the antibiotic susceptibility

profile of clinical isolates and reduce the morbidity and mortality resulting from inappro-

priate and ineffective treatment. However, while there has been much focus on demon-

strating the diagnostic potential of these modeling approaches, there has been little

assessment of potential caveats and prerequisites associated with implementing predictive

models of drug resistance in the clinical setting. Our results highlight significant biological

and technical challenges facing the application of machine learning-based prediction of

antibiotic resistance as a diagnostic tool. By outlining specific factors affecting model per-

formance, our findings provide a framework for future work on modeling drug resistance

and underscore the necessity of continued comprehensive sampling and reporting of

treatment outcome data for building reliable and sustainable diagnostics.

Introduction

At least 700,000 deaths annually can be attributed to antimicrobial resistant (AMR) infections,

and, without intervention, the annual AMR-associated mortality is estimated to climb to 10

million in the next 35 years [1]. As most patients are still treated based on empirical diagnosis

rather than confirmation of the causal agent or its drug susceptibility profile, development of

improved, rapid diagnostics enabling tailored therapy represents a clear actionable interven-

tion [1]. The Cepheid GeneXpert MTB/RIF assay, for example, has been widely adopted for

rapid point-of-care detection of Mycobacterium tuberculosis (TB) and rifampicin (RIF) resis-

tance [2], and the SpeeDx ResistancePlus GC assay used to detect both Neisseria gonorrhoeae
and ciprofloxacin (CIP) susceptibility was recently approved for marketing as an in vitro diag-

nostic in Europe.

Molecular assays offer improved speed compared to gold-standard phenotypic tests and are

of particular interest because of their promise of high accuracy for the prediction of AMR phe-

notype based on genotype [2, 3]. Approaches for predicting resistance phenotypes from

genetic features include direct association (i.e., using the presence or absence of genetic vari-

ants known to be associated with resistance to infer a resistance phenotype) and the applica-

tion of predictive models derived from machine learning (ML) algorithms. Direct association

approaches can offer simple, inexpensive, and often highly accurate resistance assays for some

drugs/species [2] and may even provide more reliable predictions of resistance phenotype than

phenotypic testing [4–6]. However, these approaches are limited by the availability of well-

curated and up-to-date panels of resistance variants, as well as the diversity and complexity of

resistance mechanisms. ML strategies can facilitate modeling of more complex, diverse, and/or

under-characterized resistance mechanisms, thus outperforming direct association for many

drugs/species [7–9]. With the increasing speed and decreasing cost of sequencing and compu-

tation, ML approaches can be applied to genome-wide feature sets [8,10–18], ideally obviating

the need for comprehensive a priori knowledge of resistance loci.

While prediction of antibiotic resistance phenotypes from ML-derived models based on

genomic features has become increasingly prominent as a promising diagnostic tool [8, 11–15,

17], there has been no systematic evaluation of factors that may influence performance of

such models and their implications in the clinical setting. The extent to which ML model

accuracy varies by antibiotic is unclear, as is the impact of sampling bias on model perfor-

mance. It is further unclear what the most relevant resistance metric (i.e., minimum inhibitory
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concentration [MIC] or categorical report of susceptibility) for such a diagnostic might be and

how amenable different species might be to genotype-to-phenotype modeling of antibiotic

resistance.

We used set covering machine (SCM) [19] and random forest (RF) [20] classification as

well as RF regression algorithms to build and test predictive models with seven gonococcal

datasets for which whole genome sequences (WGS) and ciprofloxacin (CIP) and azithromycin

(AZM) MICs were available. AZM is currently part of the recommended treatment regimen

for gonococcal infections, and with the development of resistance diagnostics, CIP may repre-

sent a viable treatment option [21–23]. While the majority of CIP resistance in gonococci can

be attributed to gyrA mutations, AZM resistance is associated with more diverse and complex

resistance mechanisms [23, 24], offering an opportunity to evaluate ML methods across drugs

with distinct pathways to resistance. The range of datasets and sampling frames enables assess-

ment of sampling bias on model reliability. Further, the availability of MICs, as well as distinct

European Committee on Antibiotic Susceptibility Testing (EUCAST) and Clinical and Labo-

ratory Standards Institute (CLSI) breakpoints, for these drugs allows for evaluation of predic-

tive models based on different resistance metrics. Finally, extension of these analyses to

Klebsiella pneumoniae and Acinetobacter baumannii datasets for which WGS and CIP MICs

were available allows for assessment of model performance for the same drug in species with

open pangenomes [25, 26], which may be more difficult to model given the increased genomic

diversity and potential resistance mechanism diversity and complexity [27].

Our results demonstrate that using ML to predict antibiotic resistance phenotypes from

WGS data yields variable results across drugs, datasets, resistance metrics, and species. While

more comprehensive assessment of different methods will be required to build the most accu-

rate and reliable models, we suggest that tailored modeling for individual drugs, species, and

clinical populations may be necessary to successfully leverage these ML-based approaches as

diagnostic tools. We further suggest that continuing surveillance, isolate collection, and report-

ing of WGS, MIC phenotypes, and treatment outcomes will be crucial to the sustainability of

any such molecular diagnostics.

Results

Accuracy of ML-based prediction of resistance phenotypes varies by

antibiotic

Given the distinct MIC distributions and distinct pathways to resistance for CIP and AZM in

gonococci, these two drugs enable evaluation of drug-specific performance of ML-based resis-

tance prediction models. CIP MICs in surveys of clinical gonococcal isolates are bimodally dis-

tributed, with the majority of isolates having MICs well above or below the non-susceptibility

(NS) breakpoints, while the majority of reported AZM MICs in gonococci are closer to the NS

breakpoints (https://mic.eucast.org/Eucast2). These trends were recapitulated in the gonococ-

cal isolates assessed here (Fig 1A and 1B). Further, the vast majority of CIP resistance in gono-

cocci observed to date is explained by mutations in gyrA and parC and has spread

predominantly through clonal expansion, generally resulting in MICs� 1 μg/mL [23, 28]. In

contrast, AZM resistance in gonococci has arisen many times de novo through multiple path-

ways, many of which remain under-characterized and are associated with lower-level resis-

tance [23, 28, 29]. As expected, the GyrA S91F mutation alone predicts NS to CIP by both

EUCAST and CLSI breakpoints in the aggregate gonococcal dataset assessed here with�98%

sensitivity and�99% specificity (S1 Table). AZM NS showed lower values for these metrics,

indicating it was not as well explained by known resistance variants, with extensive contribu-

tions from uncharacterized mechanisms and/or multifactorial interactions (S2 Table).
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Fig 1. Differential performance of machine learning-based prediction models for ciprofloxacin and azithromycin resistance in gonococci. Histograms showing the

distributions of (a) ciprofloxacin (CIP) and (b) azithromycin (AZM) minimum inhibitory concentrations (MICs) in the gonococcal isolates assessed here. Bar color

indicates the study or studies associated with the isolates. Dashed lines indicate the (a) EUCAST and CLSI breakpoints for non-susceptibility (NS,>0.03 μg/mL and

>0.06 μg/mL, respectively) for CIP and the (b) EUCAST and CLSI breakpoints for non-susceptibility (>0.25 μg/mL and>1 μg/mL, respectively) for AZM. Note that

there was some overlap in strains from the US between datasets 2 and 3 and in strains from Canada between datasets 3 and 4; such strains are indicated in (a) and (b) as

belonging to datasets 2 and 3 and 3 and 4, respectively. Mean balanced accuracy (bACC) with 95% confidence intervals of predictive models for (c) CIP NS and (d)

AZM NS trained and tested on the aggregate gonococcal dataset. Symbol colors in (a-b) indicate the datasets from which the training and testing sets were derived.

Symbol shapes in (c-d) indicate the NS breakpoint. SCM, set covering machine; RF-C, random forest classification; RF-mC, random forest multi-class classification;

RF-R, random forest regression.

https://doi.org/10.1371/journal.pcbi.1007349.g001
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We next trained and evaluated ML-based predictive models for CIP and AZM resistance in

gonococci (S3 Table). By all ML methods and breakpoints, CIP NS was predicted with signifi-

cantly higher balanced accuracy (bACC) than AZM NS in the aggregate gonococcal dataset

(P< 0.0001, Fig 1C and 1D, S4 and S5 Tables): CIP NS was predicted with mean bACC

�93% across all methods, breakpoints, and datasets, whereas mean bACC for AZM NS classi-

fication ranged from 57% to 94% (S4 and S5 Tables). Variation in model performance across

antibiotics has been attributed to different proportions of susceptible (S) and NS isolates [7,

14, 15]; however, by the EUCAST breakpoints, the aggregate gonococcal dataset as well as

some of the individual datasets had nearly identical proportions of CIP and AZM susceptible

and non-susceptible isolates, demonstrating that variable representation of S and NS isolates

alone cannot explain reduced performance of AZM models compared to CIP.

We tested whether the poorer performance for AZM may be attributable to the large frac-

tion of isolates with MICs around the breakpoint. Removing strains with AZM MICs that

were�2 doubling dilutions of the NS breakpoints from the aggregate gonococcal dataset (S6

Table) yielded AZM MIC distributions similar to those of CIP (S1A and S1B Fig). Analysis of

this restricted dataset resulted in higher performance of SCM and RF AZM NS classifiers com-

pared to those trained and tested on the full aggregate gonococcal dataset (S1C Fig). However,

bACC of AZM classifiers trained and tested on the restricted datasets was still significantly

lower than bACC of the CIP NS classifiers (P< 0.0001 and P< 0.003 for classifiers based on

the EUCAST and CLSI breakpoints, respectively), suggesting that both MIC distribution and

additional drug-specific factors can influence performance of resistance classifiers.

Sampling bias in training and testing data skews resistance model

performance

The diversity of resistance mechanisms for AZM in gonococci offers an opportunity to evalu-

ate the effects of sampling bias on model performance. The sampling frames for the seven gon-

ococcal datasets ranged geographically from citywide to international and temporally from a

single year to>20 years, and several datasets were enriched for AZM resistance [11, 30]

(Table 1). The distributions of both AZM MICs and known resistance mechanisms across

datasets (Fig 1B, S2 Table) and the variable performance of AZM resistance models across

datasets (S5 Table) suggest that AZM resistance mechanisms are differentially distributed

across the sampled clinical populations. Further, the higher performance of many SCM and

RF-based AZM classifiers on training data compared to test sets (S5 Table) suggests that

potentially due to a lack of signal, AZM models are incorporating substantial noise or con-

founding factors, which may be population-specific. To assess the impact of sampling on

model reliability, the performance of RF classifiers in prediction of AZM NS phenotypes were

compared across multiple training and testing sets. These include classifiers trained on sub-

samples of isolates from a single dataset, classifiers trained on the aggregate gonococcal dataset,

and classifiers trained on the aggregate gonococcal dataset excluding isolates from the same

dataset as the testing set (S6 Table). Given the low representation of AZM NS strains by the

CLSI breakpoint in many datasets, these analyses were only performed using the EUCAST

breakpoint.

While it may be assumed that increased availability of paired genomic and phenotypic resis-

tance data from a broader range of clinical populations will facilitate more accurate and reli-

able modeling [13], our results demonstrate that in predicting AZM resistance phenotypes for

isolates from most datasets (with the exception of datasets 2 and 5), performance of classifiers

trained on the aggregate dataset was not significantly better than performance of classifiers

trained only on isolates from the dataset from which the test isolates were derived (P< 0.0001
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and P = 0.002 for datasets 2 and 5, respectively, P = 0.008 for dataset 3, where the classifiers

trained on the aggregate dataset had lower bACC than classifiers trained only on isolates from

dataset 3, and P> 0.234 for all other datasets, Fig 2A). Further, there was substantial variation

in performance of models trained on the aggregate dataset across testing sets, with models

achieving significantly higher bACC for strains from datasets 3 and 4 than for strains from

dataset 2 (P< 0.0009, Fig 2A), perhaps reflecting enrichment for AZM NS in these former

datasets (Table 1). Additionally, with the exception of dataset 5, performance of AZM resis-

tance classifiers trained only on isolates from the dataset from which the test isolates were

derived was significantly higher than performance of classifiers trained on the aggregate data-

set excluding isolates from the test dataset (P = 0.537 for dataset 5, P< 0.0005 for all other

datasets, Fig 2A).

Performance of RF classifiers trained and tested on dataset 2 was limited by low specificity,

which was improved in models trained on the aggregate dataset (Fig 2B). The low specificity

achieved by RF classifiers trained and tested on this dataset is likely due to the low representa-

tion of S strains, most of which were within one doubling dilution of the NS breakpoint (Fig

2C), and thus the more comprehensive representation of negative (S) data in the aggregate

training set was associated with improved specificity. Conversely, performance of RF classifiers

trained and tested on dataset 5 was more limited by low sensitivity, which was improved in

models trained on the aggregate dataset (Fig 2B). This dataset had a low representation of

strains with high AZM MICs (Fig 2D), and thus the more comprehensive representation of

positive (NS) data in the aggregate training set was associated with improved sensitivity in pre-

dicting AZM NS for these strains. For both SCM and RF-C AZM resistance models across all

datasets, there was a significant positive correlation between the ratio of model sensitivity to

model specificity and the ratio of NS to S strains in the dataset (Pearson r > 0.98, P< 0.0001

[Pearson correlation] for both SCM and RF-C, S2A Fig).

Table 1. Summary of datasets.

Species Dataset SRA Study ID/Reference Nsamples Temporal

range

Geographic range Sampling approach

N.

gonorrhoeae
1 ERP011192 886 2011–2015 New York, NY (US) Survey from citywide clinics

2 ERP008891, ERP001405,

ERP000144

[23]

1102 2000–2013 National (US) Survey from nationwide clinics; male patients only; enriched for

ESC and AZM resistance

3 SRP065041,

ERP000144, ERP001405,

ERP008891, SRP072971

[30]

671 2004–2014 International (UK,

Canada, US)

Surveys from Brighton, UK [55] and nationwide sites in Canada

[56, 57] and the US [23, 58]; Canadian samples enriched for CRO

and AZM resistance; US samples enriched for ESC and AZM

resistance; US samples from male patients only

4 SRP050190,

SRP065041

[56, 57]

383 1989–2014 National (Canada) Surveys from nationwide sites in Canada; enriched for CRO and

AZM resistance

5 ERP010312

[28]

714 2013 International

(Europe)

Survey from clinics and hospitals across 21 European countries

6 DRP004052

[29]

204 2015 National (Japan) Survey from clinics in Kyoto and Osaka; male patients only

7 SRP111927

[59]

398 2014–2015 National (New

Zealand)

Survey from nationwide diagnostic labs

K.

pneumoniae
8 SRP102664

[14]

1560 2011–2017 Houston, TX (US) Survey from citywide hospital system; enriched for β-lactam

resistance

A.

baumannii
9 SRP065910

[60]

702 2000–2012 National (US) Survey from clinics and hospitals within the US military

healthcare system

ESC, extended spectrum cephalosporin; AZM, azithromycin; CRO, ceftriaxone

https://doi.org/10.1371/journal.pcbi.1007349.t001
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On the other hand, while representation of strains with higher AZM MICs was also

observed in other datasets (i.e., datasets 1, 6, and 7) and was similarly reflected in the sensitiv-

ity-limited performance of RF classifiers trained and tested on these datasets (S5 Table), AZM

NS prediction accuracy for strains from these datasets was not improved by training classifiers

on the aggregate dataset. Further, even after down-sampling two of the datasets with the most

disparate MIC distributions, sample sizes, and model performance (datasets 2 and 4) such that

the number of strains and AZM MIC distributions were identical between the two datasets

(S2B Fig), there was still a significant difference in AZM NS prediction accuracy of models

trained and tested on these different datasets (S2C Fig, P< 0.004). Together, these results

demonstrate that resistance model performance may be strongly associated with the distribu-

tions of both resistance phenotypes and genetic features and thus can be highly population-

specific.

ML prediction models of antibiotic susceptibility / non-susceptibility

outperform MIC models

Gonococcal CIP and AZM MICs were dichotomized by both EUCAST and CLSI breakpoints

to assess the impact of variation in MIC breakpoints on model performance. As the EUCAST

and CLSI breakpoints for CIP in gonococci are within a single doubling dilution and the vast

majority of isolates have much lower or higher CIP MICs (Fig 1A), >99% of isolates in the

aggregate dataset were consistently S or NS by both breakpoints. Of the 23 isolates with MICs

between the two breakpoints, 18 had MICs derived from Etests of 0.032 μg/mL or 0.047 μg/

Fig 2. Differential performance of random forest classifiers across different datasets. (a) Mean balanced accuracy (bACC) with 95% confidence intervals of RF-C

predictive models for gonococci (GC) azithromycin (AZM) non-susceptibility based on the EUCAST breakpoint. (b) Mean sensitivity and specificity with 95%

confidence intervals of RF-C predictive models for GC AZM non-susceptibility in datasets 2 and 5. Histograms showing the distributions of AZM minimum inhibitory

concentrations (MICs) in (c) dataset 2 and (d) dataset 5. Symbol colors in (a) and (b) indicate the dataset from which the testing set was derived, while symbol shape in

(a) and (b) indicates the dataset from which the training set was derived. Hatching in (c) and (d) indicates MICs within one doubling dilution of the EUCAST

breakpoint (designated by dashed lines).

https://doi.org/10.1371/journal.pcbi.1007349.g002
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mL, making their classification relative to the EUCAST breakpoint of 0.03 μg/mL ambiguous.

In contrast, the EUCAST and CLSI breakpoints for AZM in gonococci are separated by two

doubling dilutions, and for many isolates, the AZM MIC was within this range (Fig 1B). As

such, only 67% of isolates in the aggregate dataset were consistently S or NS by both break-

points. CIP NS classifier performance was either identical or nearly identical for both break-

points in the aggregate and most individual gonococcal datasets (Fig 3A). In contrast, the

bACC of AZM NS prediction by both SCM and RF classifiers based on the CLSI breakpoint

was significantly higher than for those based on the EUCAST breakpoint across all gonococcal

datasets assessed by both breakpoints (P< 0.0001, Fig 3B).

To assess the performance of MIC prediction models relative to binary S/NS resistance phe-

notype classifiers, RF-mC and RF-R models were trained and evaluated for CIP and AZM

MIC prediction in gonococci. Average exact match rates between predicted and phenotypic

MICs ranged from 64–86% and 54–78% by RF-mC and RF-R, respectively, for CIP, and from

24–60% and 45–65%, respectively, for AZM (S4 and S5 Tables). Average 1-tier accuracies (the

percentage of isolates with predicted MICs within one doubling dilution of phenotypic MICs)

were substantially higher but also varied widely across datasets and between the two MIC pre-

diction methods (ranging from 82%-96% and 76–87% by RF-mC and RF-R, respectively, for

CIP, and from 73–94% and 73–83%, respectively, for AZM; S4 and S5 Tables). There was no

consistent or significant relationship across the different datasets between MIC prediction

accuracy (exact match or 1-tier accuracy) and bACC for either drug by either MIC prediction

method (Fig 3C–3F). Further, for both drugs by both breakpoints in the aggregate gonococcal

dataset, binary RF-C models had equivalent or significantly higher bACC than RF-mC and

RF-R MIC prediction models (P> 0.175 for AZM NS by the CLSI breakpoint by RF-C com-

pared to RF-mC or RF-R, P< 0.017 for all others, S4 and S5 Tables).

Species with high genomic diversity pose challenges to ML-based antibiotic

resistance prediction

Increasing genomic diversity, or an increasing ratio of genomic features (e.g., k-mers) to obser-

vations (e.g., genomes), may present an additional challenge for ML-based prediction of antibi-

otic resistance [12]. To investigate ML-based antibiotic resistance prediction across species

with different levels of genomic diversity, SCM and RF-C were used to model CIP NS in K.

pneumoniae and A. baumannii, two species with genomic diversity (i.e., ratio of unique

31-mers to number of genomes) several times that of gonococci (Fig 4A and 4B). SCM classifi-

ers trained on and used to predict CIP NS for K. pneumoniae achieved significantly lower

accuracy than all of the gonococcal datasets (P< 0.0001, Fig 4C), while SCM classifiers trained

on and used to predict CIP NS for A. baumannii achieved significantly lower accuracy than

gonococcal datasets 3–5 and 7 (P< 0.033) and roughly equivalent accuracy to gonococcal

datasets 1–2 and 6, as well as the aggregate gonococcal dataset (P> 0.059, Fig 4C). The perfor-

mance of RF-C models was significantly lower for both K. pneumoniae and A. baumannii
compared to all gonococcal datasets (P< 0.0001, Fig 4D).

While the SCM classifiers for CIP NS in K. pneumoniae performed significantly better on

the training sets than the testing sets (S4 Table, P< 0.0001), indicating that these models may

be overfitted, there was no significant difference between RF-C model performance on train-

ing and testing sets for either K. pneumoniae or A. baumannii (P> 0.194), suggesting that

overfitting alone cannot explain the variable classifier performance across different species.

Down-sampling K. pneumoniae and A. baumannii to match the CIP MIC distributions of the

gonococcal datasets was infeasible due to the narrow range of MICs tested for the former two

species (S7 Table). However, even after down-sampling to equalize the number of S and NS
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Fig 3. Differential performance of machine learning-based prediction models based on different resistance

metrics in gonococci. Mean balanced accuracy (bACC) with 95% confidence intervals of predictive models for (a)
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strains within each dataset (S6 Table, S3A and S3B Fig), performance of K. pneumoniae and

A. baumannii CIP NS classifiers was still significantly lower than that of gonococcal CIP NS

classifiers, with the exception of SCM classifiers based on the down-sampled K. pneumoniae
dataset, which performed roughly equivalently to SCM classifiers based on gonococcal datasets

2 and 6 (P > 0.07 for the SCM classifiers based on the down-sampled K. pneumoniae dataset

compared to SCM classifiers based on gonococcal datasets 2 and 6; P< 0.0004 for all other

comparisons, S3C Fig).

Direct association based on GyrA codon 83 mutations (equivalent to codon 91 in gono-

cocci) alone predicted CIP NS in K. pneumoniae with 86% sensitivity and 99% specificity, and

thus had a marginally higher bACC (92.5%) than for the SCM classifiers and a substantially

higher bACC than the RF classifiers. Similarly, for A. baumannii, GyrA codon 81 mutations

(equivalent to codon 91 in gonococci) alone predicted CIP NS in with 97% sensitivity and 98%

specificity, and thus with a roughly equivalent bACC (97.5%) to the SCM classifiers and a sub-

stantially higher bACC than the RF classifiers.

Discussion

ML offers an opportunity to leverage WGS data to aid in development of rapid molecular diag-

nostics. While more comprehensive sampling of methods and parameters will be necessary to

optimize model performance, we demonstrate that multiple factors beyond ML methods and

parameters can affect model performance, reliability, and interpretability. Our results affirmed

that drugs associated with complex and/or diverse resistance mechanisms present challenges

to ML-based prediction of resistance phenotypes and that sampling frame (i.e., temporal

range, geographic range, and/or sampling approach) can substantially affect performance of

such predictive models. We demonstrated significant variability in performance and potential

clinical utility of predictive models based on different resistance metrics and further showed

that the capacity to model antibiotic resistance may be highly variable across different species.

Variable performance of ML-based resistance prediction models by

antibiotic

Genotype-based resistance diagnostics have largely focused more on evaluating the presence

of resistance determinants and less on predicting the susceptibility profile of a given isolate [8].

However, in clinical settings where the empirical presumption is of resistance, prediction that

an isolate is susceptible to an antibiotic may be more important in guiding treatment decisions.

As such, the clinical utility of a genotype-based resistance diagnostic may be determined by its

capacity to accurately predict susceptibility phenotype for multiple drugs.

While variable performance of ML-based predictive models has been observed across dif-

ferent drugs [7, 8, 10, 11, 14, 15], it has often been attributed to dataset size and/or imbalance

[7, 14, 15]. Further, while it is more difficult to predict resistance phenotypes from genotypes

for drugs that are associated with unknown, multifactorial, and/or diverse resistance mecha-

nisms than for drugs for which resistance can largely be attributed to a single variant [14, 30],

this caveat has been presented specifically as a limitation of models based on known resistance

ciprofloxacin non-susceptibility (CIP NS) across all datasets and (b) azithromycin (AZM) NS for all datasets for which

both NS breakpoints were evaluated. Scatter plots comparing the mean 1-tier accuracy to the mean bACC for each

gonococcal dataset derived from (c-d) CIP and (e-f) AZM minimum inhibitory concentration (MIC) prediction

models by (c,e) random forest multi-class classification and (d,f) random forest regression. Symbol colors in (a-f)

indicate the datasets from which the training and testing sets were derived. Symbol shapes in (a-f) indicate the NS

breakpoint. The line of best fit for each of the breakpoints is indicated in (c-f). SCM, set covering machine; RF-C,

random forest binary classification; RF-mC, random forest multi-class classification; RF-R, random forest regression.

https://doi.org/10.1371/journal.pcbi.1007349.g003
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loci in comparison to unbiased machine learning-based MIC prediction using genome-wide

feature sets [14]. However, by comparing performance of predictive models based on genome-

wide feature sets between CIP and AZM across multiple gonococcal datasets, we showed that

even with relatively large and phenotypically balanced datasets, ML algorithms cannot

Fig 4. K. pneumoniae and A. baumannii datasets are associated with higher genetic diversity and lower performance of resistance prediction models. Number of

(a) strains and (b) unique 31-mers present in the genomes of at least two strains in each dataset. Mean balanced accuracy (bACC) with 95% confidence intervals

achieved by (c) set covering machine and (d) random forest classification models for ciprofloxacin (CIP) NS by the CLSI breakpoints across gonococcal, K.

pneumoniae, and A. baumannii datasets.

https://doi.org/10.1371/journal.pcbi.1007349.g004
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necessarily be expected to successfully model complex and/or diverse resistance mechanisms,

particularly given that the representation of these resistance mechanisms in training datasets is

a priori unknown.

As a high proportion of reported AZM MICs in gonococci are within 1–2 doubling dilu-

tions of the NS breakpoints, it is possible that the inferior performance of AZM classifiers is

partly attributable to errors and/or variations in MIC testing. However, given the noise of phe-

notypic MIC testing even with standardized protocols [31], this may be an inherent limitation

of NS classifiers when low-level resistance is common. Further, while we show that removing

strains with MICs�2 doubling dilutions from the breakpoints improved AZM classifier per-

formance compared to AZM models trained and tested on the full dataset, performance of

AZM classifiers trained and tested on this restricted dataset was still significantly lower than

that of CIP classifiers, suggesting that additional drug-specific factors, such resistance mecha-

nism diversity and/or complexity, can constrain classifier performance.

Impact of demographic, geographic, and timeframe sampling bias on ML

model predictions of antibiotic resistance

Sampling bias presents a substantial challenge in any predictive modeling, and sampling from

limited patient demographics or during limited time periods may have considerable effects on

the distributions of resistance phenotypes and resistance mechanisms [32, 33]. For example, in

TB, the RpoB I491F mutation that has been associated with failure of commercial RIF resis-

tance diagnostic assays, including the GeneXpert MTB/RIF assay, reportedly accounted for

<5% of TB RIF resistance in most countries, but, in Swaziland was found to be present in up

to 30% of MDR-TB [34]. Further, as the focus with statistical classifiers is building models

from feature sets that can accurately predict an outcome, rather than understanding the associ-

ation between each of the features and the outcome, potential confounding effects from factors

such as population structure [35–37] or correlations among resistance profiles of different

drugs [13] are rarely considered.

By comparing performance of AZM NS classifiers across multiple training and testing sets,

we showed significant variation in performance of classifiers trained on a large and diverse

global collection across testing sets from different sampling frames. In some cases of imbal-

anced datasets, models trained on datasets with a more comprehensive representation of resis-

tance phenotypes improve prediction accuracy. Our results further demonstrate that the

direction of dataset imbalance (i.e., the ratio of NS to S strains) is significantly correlated with

the direction of model performance (i.e., the ratio of sensitivity to specificity), suggesting that,

for example, optimizing sensitivity of predictive models for drugs with low prevalence of NS

strains may require substantial enrichment of NS strains and/or down-sampling of S strains.

However, while differential classifier performance among different datasets may be partially

attributable to differential MIC distributions, our results also show variable classifier perfor-

mance between datasets even in the case of identical MIC distributions (and sample size) and

further suggest that heavier sampling across more geographic regions cannot necessarily be

expected to significantly improve model performance, as models trained on the aggregate

global gonococcal dataset did not improve prediction accuracy for most datasets.

This, together with decreased performance when excluding isolates from the dataset from

which the isolates being tested were derived, suggests that factors such as population-specific

resistance mechanisms, genetic divergence at resistance loci, and/or confounding effects may

constrain model reliability across populations, particularly in the case of drugs like AZM with

complex and/or diverse resistance mechanisms, where a substantial portion of the model may

be overfit, or based on confounding factors or noise, rather than biologically-meaningful
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resistance variants. Further, it should be noted that MIC testing methods varied between some

datasets (and between strains within dataset 5), and such variations may represent an addi-

tional confounding factor influencing classifier performance. Thus, both incorporation of

methods to correct for potentially confounding factors, such as population structure, as have

been introduced for genome-wide associate studies [35–37], and increased availability of

paired WGS and antibiotic susceptibility data produced by consistent standardized protocols

may improve reliability of machine learning-based prediction of antibiotic resistance across

different populations.

ML resistance prediction model performance varies by NS breakpoints and

by categorical vs MIC-based resistance metrics

While measurement of MICs is vital for surveillance and investigation of resistance mecha-

nisms, resistance breakpoints that relate in vitro MIC measurements to expected treatment

outcomes inform clinical decision-making. However, standard breakpoints for NS to a given

drug in a given species are often informed less by treatment outcome data, but rather factors

such as pharmacokinetics and MIC distributions that can fail to account for a variety of intra-

host conditions that could influence drug efficacy [38–41]. Recent studies have shown that iso-

lates that are classified as susceptible by standard breakpoints but have higher MICs are associ-

ated with a greater risk of treatment failure than isolates with lower MICs [42]. Further,

resistance breakpoints and testing protocols can vary across different organizations, and thus

incongruence across phenotypic information included in the training data may introduce

additional sources of error in predictive modeling. By comparing performance of predictive

models of CIP and AZM NS based on EUCAST and CLSI breakpoints, we demonstrated

breakpoint-specific performance of models. For CIP, such breakpoint-specific performance is

likely largely attributable to variations in MIC testing protocols and thus ambiguous classifica-

tion of some strains by the EUCAST breakpoint. On the other hand, the substantially lower

performance of all AZM models based on the EUCAST breakpoint compared to those based

on the CLSI breakpoint suggests that many isolates with AZM MICs between the two break-

points lack genetic signatures that contribute to high model performance. While the clinical

relevance of AZM MICs between these two breakpoints in gonococci is unclear, these isolates

may be more likely to be associated with AZM treatment failure than isolates with lower MICs,

and thus evaluation of classifiers using only higher breakpoints may misrepresent their diag-

nostic value, particularly in the absence of sufficient treatment outcome data.

Models that predict MICs provide more refined output than a binary classifier but generally

achieve low rates of exact matches between phenotypic and predicted MICs and even fairly

variable 1-tier accuracies [14, 15, 30]. Given the noise in phenotypic MIC testing [31] and the

potential lack of discriminating genetic features between isolates with MICs separated by 1–2

doubling dilutions [14], MIC prediction models may be unlikely to provide much better reso-

lution than binary S/NS classifiers. Even if MIC predictions could provide additional resolu-

tion, the most important criterion of such a diagnostic would likely still be its ability to

correctly predict resistance phenotypes relative to a clinically relevant breakpoint. Thus, per-

formance of MIC prediction models with respect to breakpoints may be the biggest determi-

nant of their diagnostic utility. By building MIC prediction models for CIP and AZM in

gonococci, we observed low rates of exact matches between phenotypic and predicted MICs

and variable 1-tier accuracies, with no relationship between 1-tier accuracy and categorical

agreement (i.e., prediction accuracy relative to NS breakpoints). Further, binary classifiers per-

formed equivalently or better than MIC prediction models.
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ML antibiotic resistance prediction model success varies across species

Bacterial species with high genomic diversity (e.g., open pangenomes) present additional

challenges to ML-based prediction of antibiotic resistance. Increased resistance mechanism

complexity and greater inter-isolate variation in resistance mechanisms require more inten-

sive sampling to capture a significant portion of the resistome [27]. On the technical side,

even for heavily sampled species, when using whole genome feature sets, the number of

genetic features (e.g., k-mers or SNPs) will always be much larger than the number of obser-

vations (isolates), increasing the risk of overfitting (a situation that arises with so-called ‘fat

data’, [12]). This raises concern in species with open pangenomes, as the ratio of genetic fea-

tures to the number of genomes is larger and the number of unique genetic features per

number of genomes does not plateau. By comparing classifier performance in predicting

CIP NS across gonococci, K. pneumoniae, and A. baumannii, we show that classifiers gener-

ally did not perform as well for species with open genomes (K. pneumoniae or A. bauman-
nii) as for gonococci. Further, while a single GyrA mutation could explain the majority of

CIP NS across all species evaluated here, unlike in gonococci and A. baumannii where this

mutation explained �97% of CIP NS, 14% of CIP NS in K. pneumoniae could not be

explained by this mutation, suggesting increased CIP resistance mechanism diversity and/

or complexity in this species. Increased sampling, different methods, and/or finer tuning of

hyperparameters may yield increased prediction accuracy for drug resistance in species

with open genomes. For example, Nguyen et al., 2018 reported a mean bACC of 98.5%

(average VME and ME rates of 0.5% and 2.5%, respectively) using a decision tree-based

extreme gradient boosting regression model to predict CIP MICs for the K. pneumoniae
strains assessed here [14], and adjusting for confounding factors such as population struc-

ture or variation in MIC testing method may yield more consistent prediction accuracies

across species. However, our results demonstrate clear variation in potential limitations of

genotype-to-resistance-phenotype models across different species.

Given the biological and epidemiological disparities associated with resistance to different

drugs in different clinical populations and bacterial species, and their evident impact on per-

formance of predictive models, successful implementation of genotype-based resistance diag-

nostics will likely require sustained comprehensive sampling to ensure representation of

complex, diverse, and/or novel resistance mechanisms, customized modeling, and incorpo-

ration of feedback mechanisms based on treatment outcome data. Further evaluation of addi-

tional ML methods and datasets may reveal more quantitative requirements and limitations

associated with the application of genotype-to-resistance-phenotype predictive modeling in

the clinical setting.

Materials and methods

Isolate selection and dataset preparation

See Table 1 for details of the datasets assessed and S7 Table for per-strain information. All

gonococcal datasets contained a minimum of 200 isolates with WGS (Illumina MiSeq, HiSeq,

or NextSeq) and MICs available for both CIP and AZM (by agar dilution and/or Etest). Isolates

lacking CIP and AZM MIC data were excluded. MIC testing methods are indicated in S7

Table.

K. pneumoniae and A. baumannii datasets were selected based on the availability of isolates

collected during a single survey that were tested for CIP susceptibility and whole genome

sequenced using consistent platforms (in both cases, the BD-Phoenix system and either Illu-

mina MiSeq or NextSeq).
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MIC data were obtained from the associated publications, except in the cases of dataset 1

(NCBI Bioproject PRJEB10016; see S7 Table) and dataset 9, which were obtained from the

NCBI BioSample database (https://www.ncbi.nlm.nih.gov/biosample). Raw sequence data

were downloaded from the NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra).

Genomes were assembled using SPAdes [43] with default parameters, and assembly quality

was assessed using QUAST [44]. Contigs <200 bp in length and/or with <10x coverage were

removed. Isolates with assembly N50s below two standard deviations of the dataset mean were

removed.

Evaluation of known resistance variants

Previously identified genetic loci associated with reduced susceptibility to CIP or AZM in gon-

ococci are indicated in S1 and S2 Tables, respectively. The sequences of these loci were

extracted from the gonococcus genome assemblies using BLAST [45] followed by MUSCLE

alignment [46] to assess the presence or absence of known resistance variants. The presence or

absence of quinolone resistance determining mutations in gyrA was similarly assessed in K.

pneumoniae and A. baumannii assemblies. Presence or absence of gonococcal AZM resistance

mutations in the multi-copy 23S rRNA gene was assessed using BWA-MEM [47] to map raw

reads to a single 23S rRNA allele from the NCCP11945 reference isolate (NGK_rrna23s4), the

Picard toolkit (http://broadinstitute.github.io/picard) to identify duplicate reads, and Pilon

[48] to determine the mapping quality-weighted percentage of each nucleotide at the sites of

interest.

ML-based prediction of resistance phenotypes

Predictive modeling was carried out using SCM and RF algorithms, implemented in the Kover

[11, 12] and ranger [49] packages, respectively. K-mer profiles (abundance profiles of all

unique words of length k in each genome) were generated from the assembled contigs using

the DSK k-mer counting software [50] with k = 31, a length commonly used in bacterial geno-

mic analysis [11, 12, 35, 51]. For each dataset, 31-mer profiles for all strains were combined

using the combinekmers tool implemented in SEER [35], removing 31-mers that were not

present in more than one genome in the dataset. Final matrices used for model training and

prediction were generated by converting the combined 31-mer counts for each dataset into

presence/absence matrices. For each SCM binary classification analysis (using S/NS pheno-

types based on the two different breakpoints for each drug), the best conjunctive and/or dis-

junctive model using a maximum of five rules was selected using five-fold cross-validation,

testing the suggested broad range of values for the trade-off hyperparameter of 0.1, 0.178,

0.316, 0.562, 1.0, 1.778, 3.162, 5.623, 10.0, and 999999.0 to determine the optimal rule scoring

function (http://aldro61.github.io/kover/doc_learning.html). In order to assess binary classifi-

cation across multiple methods, RF was also used to build binary classifiers (RF-C) using S/NS

phenotypes. Further, to compare performance of binary classifiers to MIC prediction models,

RF was used to build multi-class classification (RF-mC) and regression (RF-R) models based

on log2(MIC) data. For all RF analyses, forests were grown to 1000 trees using node impurity

to assess variable importance and five-fold cross-validation to determine the most appropriate

hyperparameters (yielding the highest bACC or 1-tier accuracy for NS- or MIC-based models,

respectively), testing maximum tree depths of 5, 10, 100, and unlimited and mtry (number of

features to split at each node) values of 1000, 10000, and either
p
p or p/3, for classification and

regression models, respectively, where p is the total number of features (31-mers) in the data-

set. While a grid search would enable assessment of more combinations of different hyperpara-

meter values and thus finer tuning of hyperparameters, such an approach is computationally
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prohibitive on datasets of this size. To standardize reported MIC ranges across datasets, CIP

MICs�0.008 μg/mL or�32 μg/mL were coded as 0.008 μg/mL or 32 μg/mL, respectively, and

AZM MICs�0.008 μg/mL or�32 μg/mL were coded as 0.03 μg/mL or 32 μg/mL, respectively.

The set of SCM and RF analyses performed are indicated in S3 and S6 Tables. For each of

the seven individual gonococcal datasets, as well as the aggregate gonococcal dataset (all gono-

coccal datasets combined, removing duplicate strains) and the K. pneumoniae and A. bauman-
nii datasets, training sets consisted of random sub-samples of two-thirds of isolates from the

dataset indicated (maintaining proportions of each resistance phenotype from the original

dataset), while the remaining isolates were used to test performance of the model. Each set of

analyses (for each combination of dataset/drug/resistance metric/ML algorithm) was per-

formed on 10 replicates, each with a unique randomly partitioned training and testing set. For

all gonococcal datasets, separate models were trained and tested using the EUCAST [52] and

CLSI [53] breakpoints for NS to CIP. Four of the N. gonorrhoeae datasets had insufficient

(<15) NS isolates by the CLSI breakpoint for AZM non-susceptibility and thus were only

assessed at the EUCAST AZM breakpoint. CIP MICs for the K. pneumoniae isolates were not

available in the range of the EUCAST breakpoint (0.25 μg/mL), and thus only the CLSI break-

point for NS (>1 μg/mL) was assessed. For A. baumannii, the EUCAST and CLSI breakpoints

for ciprofloxacin NS are the same (>1 μg/mL). Due to the very limited range of MICs within

the BD-Phoenix testing thresholds and thus the CIP MICs available for K. pneumoniae and A.

baumannii, predictive models based on MICs were not generated for these species. For analy-

ses in S6 Table where datasets were down-sampled to equalize MIC distributions between

datasets or the number of S and NS strains within datasets, the required number of strains

from the over-represented class(es) were selected at random for removal.

Model performance was assessed by sensitivity (1 –VME rate), specificity (1 –ME rate), and

aggregate bACC (the average of the sensitivity and specificity [54]). bACC was used as an aggre-

gate measure of model performance as, unlike metrics such as raw accuracy, error rate, and F1

score, it provides a balanced representation of false positive and false negative rates, even in the

case of dataset imbalance. For MIC prediction models, the percentage of isolates with predicted

MICs exactly matching the phenotypic MICs (rounding to the nearest doubling dilution, in the

case of regression models), as well as the percentage of isolates with predicted MICs within one

doubling dilution of phenotypic MICs (1-tier accuracy), were also assessed. In order to account

for variations in MIC testing methods and thus in the dilutions assessed, criteria for exact

match rates and 1-tier accuracies were relaxed to include predictions within 0.5 doubling dilu-

tions or 1.5 doubling dilutions, respectively, of the phenotypic MIC. Mean and 95% confidence

intervals for all metrics were calculated across the 10 replicates for each analysis. Differential

model performance between datasets or methods was evaluated by comparing mean bACC

between sets of replicates by two-tailed unpaired t-tests with Welch’s correction for unequal

variance (α = 0.05). Unless otherwise noted, all P-values are derived from these unpaired t-tests.

Relationships between MIC prediction accuracy and bACC and between dataset imbalance and

model performance were assessed by Pearson correlation (α = 0.05).
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S4 Table. Performance (mean with 95% confidence intervals) of predictive models for cip-

rofloxacin resistance from the primary set covering machine and random forest analyses.
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S5 Table. Performance (mean with 95% confidence intervals) of predictive models for azi-

thromycin resistance from the primary set covering machine and random forest analyses.
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S6 Table. Summary of approach for the additional classification analyses.
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S7 Table. Study ID, machine learning dataset(s), antibiotic susceptibility testing (AST)

methods, azithromycin (AZM) and ciprofloxacin (CIP) minimum inhibitory concentra-

tions (MICs) for all strains assessed.
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S1 Fig. MIC distribution influences classifier results but cannot explain all drug-specific

classifier performance. Histograms showing azithromycin (AZM) minimum inhibitory con-

centration (MIC) distributions for the aggregate gonococcal dataset after down-sampling to

remove all strains with MICs�2 doubling dilutions of the (a) EUCAST or (b) CLSI break-

point. (c) Mean balanced accuracy (bACC) with 95% confidence intervals of SCM RF-C pre-

dictive models trained and tested on down-sampled aggregate gonococcal datasets.

(TIFF)

S2 Fig. Dataset imbalance influences classifier results but cannot explain all dataset-spe-

cific classifier performance. (a) Scatter plot showing the relationship between the ratio of azi-

thromycin (AZM) non-susceptible (NS) strains to susceptible (S) strains (by the EUCAST

breakpoint) in each dataset and the ratio of sensitivity to specificity achieved by set covering

machine (SCM) and random forest binary classification (RF-C) methods. (b) Histogram

showing the AZM minimum inhibitory concentration (MIC) distribution for both datasets 2

and 4 after down-sampling to equalize number of strains and MIC distributions between data-

sets. (c) Mean balanced accuracy (bACC) with 95% confidence intervals of RF-C predictive

AZM NS models trained and tested on down-sampled datasets 2 and 4. Symbol colors in (a)

indicated the machine learning (ML) method. Symbol colors (b) indicate the down-sampled

dataset from which the training and testing sets were derived.

(TIFF)

S3 Fig. Down-sampling to balance resistance phenotypes does not ameliorate cross-species

variation in classifier performance. Number of (a) strains and (b) unique 31-mers present in

the genomes of at least two strains in each dataset, after down-sampling the K. pneumoniae
and A. baumannii datasets to equalize the number of S and NS strains within each dataset.

Mean balanced accuracy (bACC) with 95% confidence intervals achieved by (c) set covering

machine and (d) random forest classification models for ciprofloxacin (CIP) NS by the CLSI

breakpoints across gonococcal, down-sampled K. pneumoniae, and down-sampled A. bau-
mannii datasets.

(TIFF)
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