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Purpose. Jiawei-Huang Lian-Gan Jiang decoction (JWHLGJD) was developed to treat and prevent the patients with colorectal
adenomas (CRA) in China. +is study is aimed to discover JWHLGJD’s active compounds and demonstrate mechanisms of
JWHLGJD against CRA through network pharmacology and molecular docking techniques. Methods. All the components of
JWHLGJD were retrieved from the pharmacology database of Traditional Chinese Medicine Systems Pharmacology (TCMSP).
+e GeneCards database, the Online Mendelian Inheritance in Man database (OMIM), the DrugBank database, and PharmGKB
were used to obtain the genes matching the targets. Cytoscape created the compound-target network. +e network of target
protein-protein interactions (PPI) was constructed using the STRING database. Gene Ontology (GO) functional and the Kyoto
Encyclopaedia of Genes and Genomes (KEGG) pathways involved in the targets were analyzed by using the DAVID database.
Cytoscape created the component-target-pathway (C-T-P) network. AutoDock Vina software was used to verify the molecular
docking of JWHLGJD components and key targets. Core genes linked with survival and tumor microenvironment were analyzed
through the Kaplan–Meier plotter and TIMER 2.0 databases, respectively. Results. Compound-target network mainly contained
38 compounds and 130 targets of the JWHLGJD associated with CRA. TP53, MAPK1, JUN, HSP90AA1, and AKT1 were
identified as core targets by the PPI network. KEGG pathway shows that the pathways in cancer, lipids, and atherosclerosis, PI3K-
Akt signaling pathway and MAPK signaling pathway, are the most relevant pathways to CRA. +e C-T-P network suggests that
the active component in JWHLGJD is capable of regulating target genes of these related pathways. +e results of molecular
docking showed that berberine and stigmasterol were the top two compounds of JWHLGJD, which had high affinity with TP53
and MAPK1, respectively. And, MAPK1 exerted a more significant effect on the prognosis of adenocarcinoma, for it was highly
associated with various immune cells. Conclusion. Findings in this study provided light on JWHLGJD’s active components,
prospective targets, and molecular mechanism. It also gave a potential way to uncovering the scientific underpinning and
therapeutic mechanism of traditional Chinese medicine (TCM) formulas.

1. Introduction

Colorectal cancer (CRC) is the world’s third most common
cancer and the second major cause of death from cancer [1].
Adenoma-carcinoma sequence, serrated pathway, and in-
flammatory pathway are three distinctive pathways of CRC
development [2]. Approximately 85–90% of sporadic CRC

evolve from colorectal adenomas (CRA) [3, 4]. Colonos-
copy-assisted early diagnosis and treatment of adenoma/
polyps is now the most effective strategy to minimize the
incidence and death from CRC. However, as this treatment
does not improve the intestinal microenvironment, intes-
tinal adenomas reoccur at a significant incidence [5, 6]. In
fact, researchers have been looking for a chemical agent to
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treat CRA for a long time. Due to the possibility of serious
adverse effects, some promising medications, such as aspirin
and COX-2 inhibitors, have been limited in their application
[7]. +erefore, developing new medications for CRA pre-
vention and treatment is greatly significant.

Complementary and alternative medicine (CAM) is
important in the treatment of complex and serious diseases
[8]. Traditional Chinese medicine (TCM), a major com-
ponent of CAM, can play a vital role throughout the entire
cancer development process, including the early phases of
cancer prevention and control [9, 10]. JWHLGJD consists of
Huang Lian, Gan Jiang, Wu Mei, Wubeizi, Danggui, and
Huangbo and is documented in Dan Xi’s Master of Medicine
as a remedy for dysentery. In our previous clinical study, we
found that Chinese herbs were able to lower the risk of CRA
recurrence at 6 months after surgery (funding:
JDZX2015087). However, the bioactive components and
potential mechanisms of JWHLGJD in CRA treatment have
not been elucidated, limiting its clinical application.

In silico techniques, such as virtual screening and net-
work analysis, have become increasingly popular in efforts to
understand the pharmacological foundation of traditional
medicinal plant actions [11]. In particular, network phar-
macology can create a relationship prediction model be-
tween drugs and disease targets, integrate an interaction
network to analyze drug interactions with specific nodes in
each network module, and investigate the interaction rela-
tionship between drugs and potential targets from a sys-
tematic perspective [12, 13]. Network pharmacology is
highly suited for evaluating the numerous components,
targets, and pathways of TCM due to its complex compo-
sition and multitarget therapeutic characteristics [14, 15].
Computer simulation technology is used in molecular
docking [16]. It uses chemometric methods to mimic the
geometric structure of molecules and the forces between
them, investigates molecule interactions, and discovers the
process of low-energy binding modes between ligands and
receptors [17, 18]. In this study, we sought to use network
pharmacology and molecular docking to understand the
active compounds of JWHLGJD and predict their potential
targets and signaling pathways. Molecular docking tech-
niques were used to validate the previously obtained targets.
In addition, structural docking of related proteins and
compounds provided a theoretical basis for the development
of new bioactive components of herbal medicines. +e re-
lated workflow is shown in Figure 1.

2. Materials and Methods

2.1. Database Establishment. +e Traditional Chinese
Medicine Systems Pharmacology database (TCMSP, https://
tcmspw.com/tcmsp.php) [19] was used to find the thera-
peutic molecule and target genes for six JWHLGJD com-
ponents. Gan Jiang, Danggui, Wumei, Huangbo, Huang
Lian, and Wubeizi are all search terms. Setting oral bio-
availability (OB) and drug-like characteristics (DL) as
screening parameters under the supervision of TCMSP, set
OB to 30 percent and DL to 0.18 to get active compounds
that fulfill the conditions. Using TCMSP, find the target sites

for each active component. TCMSP chemicals and target
genes were combined to create a medicinal compound and
target gene database. To confirm the target gene symbol from
TCMSP, we used the UniProt database (https://www.
UniProt.org/) [20], with the species “Homo sapiens (Hu-
man)” chosen.

2.2. Identification of Putative Target Genes for Colorectal
Adenomas. +e GeneCards database (https://www.
genecards.org/) [21], Online Mendelian Inheritance in
Man (OMIM, https://www.omim.org/) [22], the DrugBank
database (https://www.drugbank.ca/) [23], and PharmGKB
(https://www.pharmgkb.org) [24] were used to find the
possible target genes of colorectal adenomas. +e species
“Homo sapiens” was chosen, and CRA-related target gene
information was gathered and incorporated.

2.3. JWHLGJD and CRA Target Screening and Network
Construction. +e target prediction findings of the
JWHLGJD’s active ingredients are compared to the search
results of CRA-related targets, and the overlapping target is
chosen as the JWHLGJD’s core target for CRA therapy. +e
active ingredient target of the JWHLGJD and CRA target
was mapped using “Venn package” in R software. +e Venn
diagram was drawn. Cytoscape (version 3.7.2) [25] was used
to create a shared target network.

2.4. Construction of Protein-Protein Interaction Network.
+e potential target genes of JWHLGJD and CRA were
compared in this work to determine the common target
genes for JWHLGJD to treat CRA. To create the protein-
protein interaction (PPI) network, these common putative
target genes were entered into the Search Tool for the re-
trieval of interacting genes (STRING) 11.0 database (https://
string-db.org/) [26]. +e screening criterion in the STRING
database was set at interaction score 0.9 to ensure the ro-
bustness of the results. +e PPI networks were then dis-
played and analyzed in Cytoscape (version 3.7.2) [25]. +e
topological parameters were estimated using NetworkA-
nalyzer in order to identify the primary nodes and important
proteins in the PPI network. Degree, betweenness, and
closeness were three significant indicators used by the re-
searchers to define a protein’s topological relevance in the
network, as determined by the CytoNCA [17].

2.5. BioinformaticsAnnotations. +e common gene target of
JWHLGJD and CRA acquired by the aforesaid screening was
imported into the DAVID6.8 database (https://david.ncifcrf.
gov/) [27].+e gene type was set to be “official gene symbol,”
and the species was set to be “Homo Sapiens.”+e P value for
the screening criterion was set at 0.05. +e results were
visualized using the “ggplot2 package” in R software to
obtain a bubble map of the results of the GO and KEGG
enrichment analyses. Biological process (BP), cellular
component (CC), and molecular function (MF) are all in-
cluded in the GO functional analysis.

2 Evidence-Based Complementary and Alternative Medicine

https://tcmspw.com/tcmsp.php
https://tcmspw.com/tcmsp.php
https://www.UniProt.org/
https://www.UniProt.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.omim.org/
https://www.drugbank.ca/
https://www.pharmgkb.org
https://string-db.org/
https://string-db.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/


2.6. Construction and Analysis of the Component-Target-
Pathway Network. In order to analyze the association
among JWHLGJD, the candidate targets and CRA-related
pathways, the component-target-pathway (C-T-P) network,

was constructed and visualized via Cytoscape [25]. +e
interaction among the active components, targets, and
pathways was established using nodes to represent the active
ingredients, targets, and pathways.

CRAJWHLGJD

295454 130

Drug Disease

JWHLGJD associated targets From TCMSP
database

CRA associated targets From multiple database
(OMIM, DrugBank, PharmGkb, and GeneCard databases)

67 chemical components

184 possible targets
3084 potential targets

Potential targets of JWHLGJD against CRA

Molecular Docking Analysis

Immune infiltration and prognosis

Network Pharmacology

Figure 1: Workflow diagram of the network pharmacology-based analysis of JWHLGJD in the treatment of CRA.
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2.7. Molecular Docking Analysis. +e 2D structures of the
top 8 compounds in terms of degrees of the active com-
ponents of JWHLGJD were obtained from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/) and saved in
“SDF” format. Chem 3D was used to convert “SDF” format
into mol2 structures, which were then used to create small
molecule ligands. +e receptor protein coded by the selected
gene was searched in the UniProt database. We downloaded
the 3D structure of the protein in RCSB PDB database
(https://www.rcsb.org/) [28] and saved them in “PDB”
format. We used PyMOL program (version 2.3.6) [29] to
perform dehydration and ligand removal on the binding
sites.+e hydrogenation of the processed protein targets was
performed using the AutoDock program (version 4.2.0)
[30], with the total charge computed and the atomic type
specified. We used the “grid option” tool to set the grid point
spacing to 1, adjusted the volume of binding pocket so that
the predocked molecules can rotate within the box in their
most extended state, and set the center of pocket as the
center of binding site. +e Grid Box parameters obtained by
AutoDock program were as follows: AKT (PDB ID5WBL),
target center x� −27.253, center y� −21.535, center
z� 19.46, size x� 60, size y� 126, size z� 74; TP53 (PDB
ID6WQX), target center x� 11.896, center y� −0.498, center
z� −16.077, size x� 74, size y� 46, size z� 94; MAPK1 (PDB
ID7NR9), target center x� −0.724, center y� −3.547, center
z� 37.875, size x� 42, size y� 38, size z� 46; JUN (PDB
ID1A02), target center x� 28.223, center y� 28.762, center
z� 60.016, size x� 56, size y� 38, size z� 68; and HSP90AA1
(PDB ID7LT0), target center x� −32.969, center y� −14.726,
center z� −20.5, size x� 40, size y� 40, size z� 40. +e
PDBQT format is used to save both ligands and protein
receptors. Molecular docking was executed out using the
software AutoDock Vina 1.1.2 [31]. +e docking effects were
evaluated by the affinity value. +e affinity values <−5 kcal/
mol represent good binding interaction between the com-
pound and target [32]. +e visualization of intermolecular
forces between the candidate compound and their potential
target was performed on Discovery Studio.

2.8. Analysis of Gene Expression and Tumor-Infiltrating Im-
muneCells. Use the online tool Tumor Immune Estimation
Resource (TIMER) (https://cistrome.shinyapps.io/timer/)
[33], which is a comprehensive resource for systematic
analysis of immune infiltrates across diverse cancer types.
+e webserver (https://cistrome.shinyapps.io/timer/) pro-
vides immune infiltrates’ abundances estimated by multiple
immune deconvolution methods, to explore tumor im-
munological, clinical, and genomic features comprehen-
sively. We investigated the correlation between the
expression of core targets and tumor-infiltrating immune
cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells) in adenocarcinoma
(COAD).

2.9. Prognostic Values of Hub Genes. +e Kaplan–Meier
plotter (KM-Plotter) (https://kmplot.com/analysis/) [34],
a tool for examining the activities of 54,675 genes and

10,188 tumor tissue samples, was used to examine the
relationship between MAPK1 and TP53 expression and
COAD survival.

3. Results

3.1. <e Main Active Ingredients of JWHLGJD. JWHLGJD
obtained a total of 67 chemical components after searching
the TCMSP database, with 5 compounds from Gan Jiang, 2
compounds from Danggui, 8 compounds from Wumei, 37
compounds from Huangbo, 14 compounds from Huang
Lian, and 1 compound from Wubeizi (Supplementary Ta-
ble 1). TCMSP was used to gather the targets for the
aforementioned six Chinese herbal remedies, which were
then merged with the medicinal compounds to create a
compound target gene database. After deleting duplicates
from the target prediction, a total of 184 possible targets
were assessed.

3.2. Identification of Putative Target Genes for Colorectal
Adenoma. +e term “Colorectal Adenoma” was used to
search the human genome database. +e number of targets
in the OMIM, DrugBank, PharmGKB, and GeneCard da-
tabases is 51, 42, 17, and 3066, respectively (Figure 2).

3.3. JWHLGJD and CRA Target Screening and Network
Construction. JWHLGJD’s possible targets in treating CRA
were determined by the presence of overlapping gene
symbols between candidate drugs and disease. +e result is
shown in Figure 3, and 130 gene symbols that overlap were
identified as possible targets. Cytoscape was used to create a
network diagram called a “component-intersection target”
with 168 nodes and 420 edges, including 38 active com-
ponents and 130 targets, as shown in Figure 4. According to
the degree analysis, the top 8 compounds were MOL000098
(quercetin), MOL000422 (kaempferol), MOL000358 (beta-
sitosterol), MOL000449 (stigmasterol), MOL000785 (pal-
matine), MOL000790 (isocorypalmine), MOL002904 (ber-
lambine), and MOL001454 (berberine), with 108°, 42°, 19°,
16°, 15°, 14°, 14°, and 13°, respectively. More details of these
top 8 compounds are shown in Table 1.

3.4. Construction of the Protein-Protein Interaction Network.
To further understand the pharmacological mechanism of
JWHLGJD in CRA, we created a PPI network by importing
130 target genes into the STRING database. Cytoscape
software was used to visualize the PPI network. After ap-
plying a score value of 0.9 to provide a high level of con-
fidence for protein interactions and concealing unconnected
nodes in the network, the PPI network had 110 nodes and
477 edges, as seen in Figure 5. Topological analysis was done
using the CytoNCA plug-in. To identify core genes, “be-
tweenness centrality (BC), closeness centrality (CC), and
degree centrality (DC) greater than the median” were uti-
lized as screening criteria. +e process is shown in Figure 6.
+e specific information of the 13 core targets is listed in
Table 2.
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3.5. GO and KEGG Enrichment Analysis. We put 130
common targets into the DAVID database with a P value
cut-off of 0.05 for GO and KEGG enrichment analysis.

+e enrichment of GO was investigated at three levels:
biological process (BP), molecular function (MF), and cel-
lular component (CC). +e top 10 BP, MF, and CC en-
richment findings are shown in Figure 7. +e most relevant
BP, CC, and MF of JWHLGJD against CRA were positive
regulation of transcription from RNA polymerase II pro-
moter, nucleus, and protein binding. +e top 5 BP of
JWHLGJD against CRA were positive regulation of tran-
scription from RNA polymerase II promoter, positive reg-
ulation of transcription, DNA-templated, positive regulation
of gene expression, negative regulation of apoptotic process,
and apoptotic process.

+e KEGG pathway enrichment analysis yielded a total
of 166 findings, and the top 30 pathways were identified as
core pathways, as seen in Figure 8. +e findings suggested
that JWHLGJD is effective against CRA through a variety of
pathways, including pathways in cancer, lipid and athero-
sclerosis, PI3K-Akt signaling pathway, MAPK signaling
pathway and microRNAs in cancer.

3.6. Component-Target-Pathway Network. A “C-T-P” net-
work was constructed based on the 30 most relevant

signaling pathways obtained in Section 2.5 (Figure 9). +ere
were 198 nodes and 1149 edges in the network. In this
network, the active components with more targets were
quercetin, kaempferol, beta-sitosterol, stigmasterol, palma-
tine, isocorypalmine, berlambine, and berberine, suggesting
that these ingredients may be the material basis through
which JWHLGJD treats CRA. AKT1, MAPK1, HSP090AA1,
and TP53 were the targets that connected with more active
components and pathways, suggesting that these targets
might be the key targets for the treatment of CRA with
JWHLGJD. +erefore, active components such as quercetin,
kaempferol, beta-sitosterol, stigmasterol, and palmatine act
through targets such as AKT1, MAPK1, HSP090AA1, and
TP53 to jointly regulate signaling pathways such as pathways
in cancer, lipid and atherosclerosis, PI3K-Akt signaling
pathway, MAPK signaling pathway, and microRNAs in
cancer to achieve CRA treatment efficacy.

3.7. Molecular Docking Analysis. To further analyze and
verify the target-compound interactions, the top five core
targets of TP53, MAPK1, JUN, HSP90AA1, and AKT1,
which had higher degrees, were selected for molecular
docking with the 8 major active compounds of JWHLGJD.
+e binding energy between drug component ligands and
target receptors is an important indicator to evaluate the
binding capacity. It is generally considered that the docking
affinity is stronger when the binding energy is less than
−5.0 kcal/mol [27]. In this study, the molecular docking
results of 8 core components and 5 core targets are shown in
Figure 10. +e binding energy between them is far less than
−5.0 kJ/mol, suggesting that the core components of
JWHLGJD not only can bind to core targets but also has
good binding power. Specific results for the top 11 molecular
dockings are shown in Table 3.

TP53 with berberine and MAPK1 with stigmasterol have
the greatest binding affinity. +e lowest binding free energy
of berberine and TP53 was −10 kcal/mol. It can be seen from
Figure 11(a) that the binding of TP53 to berberine is mainly
through hydrogen bond interaction with SER119 and
ILE116, carbon-hydrogen bond interaction with GLY42 and
ILE116; Pi-cation hydrophobic interaction with LEU169 and
VAL47; Pi-sigma hydrophobic force interaction with
MG302; alkyl/Pi-alkyl hydrophobic interaction with ILE182,
VAL58, LYS40, and VAL47; and van der Waals force in-
teraction with Asp183, LYS60, ALA45, and GLU115. +e
lowest binding free energy of stigmasterol and MAPK1 was
−10 kcal/mol. Stigmasterol binds to MAPK1 (Figure 11(b))
mainly through Pi-Pi/Pi-alkyl hydrophobic interactions
with CYS166, ILE31, LEU107, MET108, LEU156, ALA52,
LYS54, and VAL39; pi-sigma hydrophobic interactions with
TYR36; and Waals forces with ASP111, ARG67, ASP167,
ILE56, GLY169, GLU71, GLN105, and ASP106.

3.8. Association of Core Targets’ Expressionwith COADPurity
and Immune Infiltration. +e tumor microenvironment
includes cancer cells, matrix cells, and infiltrating immune
cells. Infiltrating immune cells are an independent predictor
of sentinel lymph node status and survival of cancer patients.
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Figure 2: Target genes for colorectal adenoma.
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Tumor purity plays a role in analyzing immune infiltration
in clinical tumor samples by genomics methods. +e ex-
pressions of MAPK1 were significantly negatively correlated
with tumor purity via TIMER platform, while TP53 were not
associated with tumor purity and infiltrating immune cells.
Interestingly, we found the expression of MAPK1 was
positively correlated with the infiltration level of B cells,
CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and
dendritic cells. (Figures 12(a) and 12(b))

3.9. Prognostic Values of Hub Genes. KM-Plotter analysis
revealed that increased MAPK1 expression levels resulted in
a higher overall survival rate. TP53, on the other hand,

exhibited a worse overall survival rate in individuals with
COAD (Figures 13(a) and 13(b)). As a result, we hypoth-
esized that MAPK1 had a greater impact on the prognosis of
COAD, given its substantial association with diverse im-
mune cells in COAD.

4. Discussion

CRC progresses in a multistep process from normal epi-
thelium to a premalignant lesion (adenoma), then to a
malignant lesion (carcinoma) that invades adjacent tissues
and can finally spread systemically (metastasis) [35].
+erefore, the treatment of CRA is an effective measure to
prevent CRC. TCM has shown potential in the prevention
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Figure 4: JWHLGJD’s compound-target network. +is network depicts the specific link between TCM’s active ingredients and the
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Cortex, Galla Chinensis, Zingiberis Rhizoma, Mume Fructus, coptidis rhizome, and Angelicae Sinensis Radix.

Table 1: Basic information of the top 8 compounds in JWHLGJD.

MOL ID Compounds Degree
MOL000098 Quercetin 108
MOL000422 Kaempferol 42
MOL000358 Beta-sitosterol 19
MOL000449 Stigmasterol 16
MOL000785 Palmatine 15
MOL000790 Isocorypalmine 14
MOL002904 Berlambine 14
MOL001454 Berberine 13
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Figure 5: PPI of JWHLGJD in treating CRA.
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Figure 6: Network topology analysis of PPI.
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and treatment of CRA, but the mechanisms of its efficacy
need further in-depth exploration [36].

In this study, we found that active components of
JWHLGJD could act on 130 targets related to CRA. Further
analysis showed that JWHLGJD could act on many bio-
logical processes of CRA and had an influence on the
outcome of CRA through pathways in cancer, lipid and

atherosclerosis, PI3K-Akt signaling pathway, and MAPK
signaling pathway. It further confirmed that active com-
ponents of JWHLGJD can treat CRA through multitarget
and multipathway.

Active components with the highest degree in com-
pound-target network were considered to be responsible for
anti-CRA effect, including quercetin, kaempferol, beta-

Table 2: +e specific information of the 13 core targets.

Targets Betweenness Closeness Degree LAC Subgraph
TP53 89.6667867 0.75 22 8.09090909 51441.4766
MAPK1 101.871339 0.75 22 7.63636364 48761.4531
JUN 32.621285 0.6875 18 8.44444444 42779.4922
HSP90AA1 52.6467343 0.67346939 17 6.23529412 31012.9512
AKT1 53.4960797 0.66 16 5.5 26370.418
ESR1 35.1714343 0.66 16 7.5 34261.1328
MYC 29.8944761 0.66 16 7.75 34942.6953
RELA 44.755027 0.66 16 6.875 29680.4766
FOS 31.2536582 0.64705882 15 6.4 26888.6699
RB1 26.4605 0.63461539 14 6.14285714 22657.2402
CCND1 21.5313239 0.63461539 14 6.85714286 25275.6543
HIF1A 18.0380331 0.63461539 14 7.57142857 29918.4785
CDKN1A 19.3057521 0.62264151 14 6.42857143 23521.082
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sitosterol, stigmasterol, palmatine, isocorypalmine, ber-
lambine, and berberine.

Quercetin can inhibit intestinal epithelial-mesenchymal
transition by affecting Akt phosphorylation and down-
regulating Akt kinase, which in turn can regulate the
PI3K-Akt pathway to inhibit intestinal adenoma cancer
progression [37]. In human colon adenocarcinoma cells,
quercetin significantly enhanced the expression of the
endocannabinoid receptor (CB1-R) and further suppressed
PI3K/Akt/mTOR. It also induced JNK/JUN pathways and
modified the metabolism of β-catenin [38]. Kaempferol
exhibits strong cytotoxic, antioxidant, antiproliferative,
and antiapoptotic effects against CRC cells [39, 40]. Stig-
masterol has been proven to have anticancer properties
against a variety of malignancies [41]. Palmatine signifi-
cantly inhibited tumor growth in ApcMin/+mice [42, 43].

Berberine has been found to inhibit a variety of tumor-
related activities, such as tumor growth, tumor invasion,
angiogenesis, and metastasis [44]. A meta-analysis revealed
that berberine may lower the incidence of recurring CRA
and polypoid lesions after polypectomy [45]. +ese im-
portant active ingredients are all sourced from JWHLGJD,
and multiple active ingredients work together to exert their
effects in the treatment of CRA.

We obtained 130 intersection targets between
JWHLGJD and CRA and further screened out 13 core targets
of JWHLGJD in the treatment of CRA. +e targets are
mainly associated with gene expression, cell proliferation,
apoptosis, metabolism, and cell cycle. +e top 5 targets of
JWHLGJD against CRA including TP53, MAPK1, JUN,
HSP90AA1, and AKT1 are the five main molecular targets
associated with cancer [46]. TP53 is a tumor suppressor

TNF signaling pathway
Breast cancer

Apoptosis
Cellular senescence

Hepatocellular carcinoma
Coronavirus disease – COVID–19

Human papillomavirus infection
Pathways of neurodegeneration – multiple diseases

Small cell lung cancer
Endocrine resistance

Measles
Influenza A

Human immunodeficiency virus 1 infection
Chemical carcinogenesis – reactive oxygen species

Epstein–Barr virus infection
Proteoglycans in cancer

MicroRNAs in cancer
Prostate cancer

AGE–RAGE signaling pathway in diabetic complications
Human T–cell leukemia virus 1 infection

Hepatitis C
MAPK signaling pathway

Kaposi sarcoma–associated herpesvirus infection
Human cytomegalovirus infection

PI3K–Akt signaling pathway
Fluid shear stress and atherosclerosis

Hepatitis B
Chemical carcinogenesis – receptor activation

Lipid and atherosclerosis
Pathways in cancer

0.2 0.3 0.4
GeneRatio

pa
th

w
ay

2e–05

4e–05

6e–05
Pvalue

Count
20

30

40

50

Figure 8: Enrichment analysis of the KEGG signaling pathway (top 30).

Evidence-Based Complementary and Alternative Medicine 9



protein that has been shown to induce cell cycle arrest and
apoptosis in several cancers [47]. It has been shown that p53
mutations are crucial in the progression of adenoma to
carcinoma [48]. MAPK1 is the core target of the MAPK
signaling pathway. MAPK signaling pathway is involved in
the regulation of cell proliferation, differentiation, migra-
tion, and survival processes by transmitting extracellular
signals to intracellular responses [49]. Alterations affecting
these pathways, therefore, confer proliferative advantages on
tumor cells [50]. JUN is involved in a wide range of cell
processes including proliferation, apoptosis, survival, can-
cer, and tissue morphogenesis [51]. HSP90AA1 is a key heat
shock protein involved in promoting tumor transformation
and cancer development. Studies have shown that the

expression of HSP90AA1 in colorectal cancer precancerous
lesions depends on the malignant potential of the polyps
[52]. Akt is a serine/threonine kinase that is activated by
phosphorylation and lipid binding and is a component of the
PI3K signaling pathway [53]. +e activation of AKT can
regulate cell proliferation, growth, and intermediate meta-
bolism [54]. Its dysregulation plays a crucial role in the
pathogenesis and tumorigenesis of many cancers [53, 55].
+e molecular docking research showed good affinity of
JWHLGJD to these five targets; among them, TP53 and
MAPK1 have the greatest affinity with berberine and stig-
masterol. In addition, we also found that the MAPK1 ex-
pression was negatively correlated with tumor purity but
positively correlated with the level of various immune
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infiltrations in COAD. It is suggested that the activity of core
targets is related to the immune regulation of the tumor
microenvironment and has prognostic implications.

GO enrichment analysis showed that the BP involved in
JWHLGJD is mainly focused on the transcription, gene
expression, and apoptotic process. Studies have found that
adenomas occur when there is an imbalance in DNA repair
and dysregulation of cell proliferation [2]. Dysregulation of
epithelial proliferation and apoptosis is typical for a neo-
plastic process. Kohoutova et al. demonstrated that mitosis
and apoptosis are dysregulated in intestinal adenomas, and
that this dysregulation is triggered by genetic alterations

[56]. Among the top 30 results of KEGG pathway enrich-
ment analysis, the pathways in cancer, lipid and athero-
sclerosis, PI3K-Akt signaling pathway, and MAPK signaling
pathway are the most relevant to CRA. Such pathways are
closely linked to cell proliferation, apoptosis, and metabolic
dysregulation. Previous studies have demonstrated an as-
sociation between serum lipids and the risk of colorectal
adenomas, indicating a possible role of serum lipids in
cancers of the gastrointestinal (GI) tract [57]. PI3Ks are
intracellular lipid kinases that are implicated in the regu-
lation of cellular proliferation, differentiation, and survival
[58, 59]. It is indicated that the PI3K signaling pathway is
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Table 3: +e binding energy of compound and core targets.

Targets Targets (PDB ID) Compound Affinity (kcal/mol) Dist from rmsd l.b. Best mode rmsd u.b.
TP53 6WQX Berberine −10 0.000 0.000
MAPK1 7NR9 Stigmasterol −10 0.000 0.000
MAPK1 7NR9 Berberine −9.5 0.000 0.000
MAPK1 7NR9 Berlambine −9.5 0.000 0.000
TP53 6WQX Berlambine −9.5 0.000 0.000
HSP90AA1 7LT0 Kaempferol −9.4 0.000 0.000
HSP90AA1 7LT0 Quercetin −9.4 0.000 0.000
TP53 6WQX Stigmasterol −9.3 0.000 0.000
HSP90AA1 7LT0 Berlambine −9.2 0.000 0.000
AKT1 5WBL Berberine −9 0.000 0.000
AKT1 5WBL Quercetin −9 0.000 0.000
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responsible for the initiation and progression of CRC [60].
AKT is a key downstream mediator of PI3K signaling.
Normal colonic mucosa and hyperplastic polyps do not
overexpress AKT, in contrast to colorectal adenomas and
carcinomas that frequently demonstrate strong expression
of this molecule [61]. +e MAPK pathway is central for cell
proliferation, differentiation, and senescence [62]. +ere is
growing evidence that activation of the MAPK signaling
pathway is important in the differentiation of the intestinal
epithelium and is involved in the pathogenesis, progression,
and oncogenic behaviour of human colorectal tumor [63].

Besides, the targets of the main compounds of JWHLGJD
are also enriched in pathways related to inflammation, in-
cluding TNF signaling pathway and coronavirus disease
(COVID-19), suggesting that JWHLGJD may act on a va-
riety of cytokines anti-inflammatory and have an effect on
CRA. +e C-T-P network suggesting that the active com-
ponent in JWHLGJD is capable of regulating target genes of
these related pathways. It was worth our attention that
JWHLGJD interacted with different targets and pathways
which coincided with the concept of multiple targets and
multiple pathways cooperative treatment of diseases in TCM.
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Figure 12: Association of MAPK1 (a) and TP53 (b) with immune cell infiltration in COAD.
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5. Conclusion

+is study elaborated the mechanisms of JWHLGJD
against CRA using network pharmacology and molecular
docking by constructing a “C-T-P” network. In compound-
target network, a total of 38 bioactive compounds were
found, with quercetin, kaempferol, beta-sitosterol, stig-
masterol, palmatine, isocorypalmine, berlambine, and
berberine as main active compounds. 130 key target genes
were identified, with TP53, MAPK1, JUN, HSP90AA1, and
AKT1 recognized as core targets. +e main molecular
mechanisms of JWHLGJD for CRA consisted of 30 sig-
naling pathways, and the key pathways that were closely
related to CRA were found to be related to cell prolifer-
ation, apoptosis, and metabolic dysregulation through the
pathways in cancer, lipid and atherosclerosis, PI3K-Akt
signaling pathway, and MAPK signaling pathway. In ad-
dition, we discovered important genes that are critical in
influencing prognosis through immunomodulation during
the cancer stage. In a nutshell, this study provided an
insight on the cellular and pathway mechanism of
JWHLGJD in the treatment of CRA, as well as a new vision
for the exploration of the mechanisms of TCM for pre-
cancerous lesions. However, there was no corresponding
experimental validation of this study, which is something
we need to do in the future.
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