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Abstract
The assurance of a future clinical trial is a key quantitative tool for decision-
making in drug development. It is derived from prior knowledge (Bayesian
approach) about the clinical endpoint of interest, typically from previous clin-
ical trials. In this paper, we examine assurance in the specific context of vaccine
development, where early development (Phase 2) is often based on immunolog-
ical endpoints (e.g., antibody levels), while the confirmatory trial (Phase 3) is
based on the clinical endpoint (very large sample sizes and long follow-up). Our
proposal is to use the Phase 2 vaccine efficacy predicted by the immunological
endpoint (using a model estimated from epidemiological studies) as prior infor-
mation for the calculation of the assurance.
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1 INTRODUCTION

Decision-making is a key problem in drug development, and it has been shown that statistical power is not sufficient to
guarantee the success of any clinical trial as it does not take into account the uncertainty of the prespecified (vaccine)
effect.
Spiegelhalter and Freedman (1986) proposed to take into account this uncertainty using a hybrid “classical-Bayesian”

approach called “Bayesian predictive power” (Spiegelhalter et al., 2004, Section 6.5). Their proposed approach can be
thought of as aweighted average of power across the range of possible values of effect sizes. For this reason, this probability
has also been referred to as the “expected power” or “average power” (Gillett, 1994). It is called as well “Probability of
Success” or “Predictive Probability of Success.” More recent work on this topic can be found in Carroll (2013) and Ibrahim
et al. (2015). In this paper, we will refer to this concept as assurance (O’Hagan et al., 2005).
The prior distribution of an unknown effect can be estimated from a Phase 2 study (O’Hagan et al., 2005). However,

in vaccine development, this is not always possible as early-phase clinical trials (dose selection, dose ranging, coadminis-
tration with other vaccines, etc.) are often based on the response observed by an immunological assay, while the clinical
endpoint (in this paper, we will consider as an example the infection rate) is not known before the later phases of the
development (large Phase 3 trials). In such cases, Phase 2 trials do not provide a direct estimation of the Vaccine Efficacy
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(VE) on the clinical endpoint

𝑉𝐸 = 1 −
Pr(𝑌 = 1|𝑉)
Pr(𝑌 = 1|𝐶) ,

where 𝑃(𝑌 = 1|𝑉) and 𝑃(𝑌 = 1|𝐶) are the probabilities of infection among vaccinated and unvaccinated individuals,
respectively. It is therefore not possible to use standard formulas (such as O’Hagan et al., 2005) to compute the assurance
of the Phase 3 trial.
Ideally, the immunological endpoint used for early development is a “surrogate endpoint” (which is called “correlate of

protection” in vaccines, WHO, 2013). Qin et al. (2007) proposed the following definitions: (a correlate of risk (CoR) is an
“immunological measurement that correlates with the rate or level of a study end point used to measure VE in a defined
population,” and a surrogate endpoint is a “CoR that reliably predicts a vaccine’s level of protective efficacy on the basis of
contrasts in the vaccinated and unvaccinated groups’ immunological measurements.”Many statistical methods have been
published for the validation of surrogate endpoints: methods based on a single VE trial (such as Prentice criteria, Prentice,
1989; and the principal stratification, Follmann, 2006; Gilbert et al., 2008) and methods based on multiple VE trials (such
as meta-analysis, Buyse et al., 2000). The meta-analytical approach is considered the most appropriate approach because
a relationship between endpoints estimated from a single trial may be insufficient to support predictions across trials
(Baker & Kramer, 2003; Burzykowski et al., 2005; Buyse et al., 2000). There is an intense recent discussion of the use
and validation of surrogate endpoints in clinical literature (more than 4000 PubMed citations of “surrogate endpoint”).
As a recent example in vaccines, Callegaro and Tibaldi (2019) considered the validation of surrogate endpoints in case of
large VE.
If the relationship between endpoints is available (even if the surrogate endpoint is not validated for regulatory purpose),

then it is possible to compute the assurance using the surrogate endpoint predicted VE as prior. For example, Saint–Hilary
et al. (2019) proposed to compute the assurance using the meta-analytical models.
Unfortunately, for vaccine development (as we said previously), the data necessary to estimate the relationship between

the two endpoints (single or multiple VE trials) are usually not available.
In this manuscript, we propose to compute the assurance using as prior the VE predicted by a CoR model (Chan et al.,

2000; Dunning, 2006; Dunning et al., 2015) on a Phase 2 immunological study. The CoR model, proposed by the seminal
work of Dunning, is a model relating the probability of infection with the value of the immunological assay and can be
estimated from epidemiological studies or known from the literature (see, for example, Storsaeter et al., 1998).
The CoRmodel (relationship between endpoints in the control group) can be used to predict the VE under the assump-

tion that the immunological endpoint is a “statistical surrogate” (Prentice, 1989; Qin et al., 2007). We provide as well two
extensions of the CoRmodel (where additional parameters come from prior elicitation of experts in the field; Dallow et al.,
2018) that can be used to compute the assurance when the surrogate is not fully mediating the vaccine efficacy.

2 STATISTICALMETHODS

2.1 Notations and definitions

In this section, we introduce the basic notations and definitions that will be used throughout the paper. For easy of nota-
tion, we are not using the hat operator to denote the estimated values.

2.1.1 Immunological Phase 2 trial

Let us consider a Phase 2 trial based on the immunological endpoint (denoted by 𝑆𝑖 the humoral or cellular immune
readout value in the log10 scale for 𝑖th subject). A classical measure of immunological vaccine effect is the geometric
mean ratio (GMR), which is defined as:

log10(𝐺𝑀𝑅) = 1∕𝑁𝑉,2

∑
𝑖∈𝑉

𝑆𝑖 − 1∕𝑁𝐶,2

∑
𝑖∈𝐶

𝑆𝑖 = �̄�𝑉 − �̄�𝐶,
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where 𝑁𝑉,2 and 𝑁𝐶,2 represent the sample sizes of the vaccine group (V) and the control group (C) group in the Phase 2
trial, respectively; �̄�𝑉 and �̄�𝑉 are the arithmetic means of the immunological readouts. We stress again that the infection
rate is not observed in immunological Phase 2 studies (small sample size and short follow-up).

2.1.2 Phase 3 VE trial

In a classical Phase 3 VE trial, the clinical endpoint of the study (𝑌𝑖 = 1 if the 𝑖th subject is infected; 𝑌𝑖 = 0 otherwise) is
compared between a vaccine group (V) and a control group (C). The VE is estimated by one minus the relative risk (RR)
as follows:

𝑉𝐸 = 1 − 𝑅𝑅 = 1 −
1∕𝑁𝑉,3

∑
𝑖∈𝑉

𝑌𝑖

1∕𝑁𝐶,3

∑
𝑖∈𝐶

𝑌𝑖

= 1 −
�̄�𝑉

�̄�𝐶
,

where 𝑁𝑉,3 and 𝑁𝐶,3 represent the sample sizes of the V and C groups of the Phase 3 study, respectively.
A classical null hypothesis of a Phase 3 VE trial is rejected when the lower limit of the (1 − 𝛼)% confidence interval

of the Vaccine Efficacy (VE) is above the superiority margin 𝑉𝐸∗. As a measure of vaccine effect, we use the log of the
relative risk: 𝛿 = log(1 − 𝑉𝐸)=log(𝑅𝑅) and assume asymptotic normality with variance 𝜏2 =

1

𝑛𝐶,3
+

1

𝑛𝑉,3∗
−

1

𝑁𝐶,3

−
1

𝑁𝑉,3

(Katz et al., 1978) where 𝑛𝐶,3 and 𝑛𝑉,3∗ represent the expected number of infections in the C and in the V group (under
the null hypothesis) in the Phase 3 trial, respectively.

2.1.3 Correlate of risk model

We denote by CoRmodel a statistical model relating the probability of infection with the value of the immunological assay
𝑆𝑖 (Dunning, 2006; Dunning et al., 2015). For simplicity, we consider the CoR logistic model

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌𝑖|𝑆𝑖)) = 𝛽0 + 𝛽𝑠𝑆𝑖. (1)

We assume that the joint distribution of the parameters of the CoRmodel 𝛽 = (𝛽0, 𝛽𝑠) is known. As previously mentioned,
these can be estimated from epidemiological studies measuring the clinical and the immunological endpoint, or can be
retrieved from the literature (see, for example, Storsaeter et al., 1998).

2.1.4 Predicted VE

If the immunological endpoint is a “statistical surrogate” (Prentice, 1989; Qin et al., 2007), then the CoRmodel is expected
to predict (without bias) the VE. The predicted VE (Chan et al., 2000; Dunning, 2006) is then given by

𝑉𝐸𝑝𝑟𝑒𝑑 = 1 −
1∕𝑁𝑉

∑
𝑖∈𝑉

𝑃𝑟(𝑌𝑖|𝑆𝑖)
1∕𝑁𝐶

∑
𝑖∈𝐶

𝑃𝑟(𝑌𝑖|𝑆𝑖) ,
where 𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌𝑖|𝑆𝑖)) = 𝛽0 + 𝛽𝑠𝑆𝑖 is the logit of the predicted probability of infection for the 𝑖th subject with immunolog-
ical endpoint 𝑆𝑖 . The variance of the predicted VE can be estimated by bootstrap (Chan et al., 2000).We derived the asymp-
totic formula as well, which can be used for the logistic and the scaled logit model (Dunning, 2006) (see the Appendix).
This formula can be applied when the parameters (and their covariance matrix) are retrieved from the literature, and the
individual data used to estimate the CoR model are not available.

2.1.5 Assurance

Statistical power is defined as the probability of rejecting the null hypothesis conditioned to the true prespecified treatment
effect. In practice, however, this true effect is not known with certainty, but it has been estimated from previous trials. To
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incorporate the uncertainties of this observed treatment effect (prior distribution), Bayesian insurance has been proposed
as an alternative to conventional statistical power. Following the notations from O’Hagan et al. (2005), we denote 𝑅 as the
event of rejecting the null hypothesis in the Phase 3 trial. The conventional definition of power is Pr(𝑅|𝛿), where 𝛿 is the
vaccine effect. The assurance is the expected power as follows

𝛾 = ∫ Pr(𝑅|𝛿)𝑃𝑟(𝛿)𝑑𝛿,
where Pr(𝛿) is the prior distribution of the vaccine effect. We assume that the prior is normally distributed 𝛿 ∼ 𝑁(𝑚, 𝜈),
which can be derived from a Phase 2 trial (Pr(𝛿|𝑑𝑎𝑡𝑎)).
For Phase 3 VE trials (as described above), the assurance (O’Hagan et al., 2005) is given by

𝛾 = 1 − Φ

(
−𝜏𝑧𝛼∕2 + 𝑚 − 𝛿∗√

𝜏2 + 𝜈

)
, (2)

where 𝜏2 is the “known” variance of the Phase 3 trial, 𝑧𝛼∕2 is 𝛼∕2 quantile of the normal distribution, and 𝛿∗ = log(1 −
𝑉𝐸∗) represents the superiority margin.

2.2 Assurance based on immunological predicted VE

Using the CoR model, it is possible to predict the log(𝑅𝑅) in a Phase 2 immunological study:

𝛿pred,2 = log

(
1∕𝑁𝑉,2

∑
𝑖∈𝑉

Pr(𝑌𝑖|𝑆𝑖)
1∕𝑁𝐶,2

∑
𝑖∈𝐶

Pr(𝑌𝑖|𝑆𝑖)
)
,

where 𝑙𝑜𝑔𝑖𝑡(Pr(𝑌𝑖|𝑆𝑖)) = 𝛽0 + 𝛽𝑠𝑆𝑖 is the logit of the predicted probability of infection given the immunological endpoint
𝑆𝑖 of the 𝑖th subject of the study.
The predicted log(𝑅𝑅) in the Phase 2 trial can be used as a prior of the log(𝑅𝑅)

𝛿|𝑑𝑎𝑡𝑎 ∼ 𝑁(𝛿𝑝𝑟𝑒𝑑,2,Var(𝛿𝑝𝑟𝑒𝑑,2)),

and the assurance can be computed using Equation (2) with𝑚 = 𝛿𝑝𝑟𝑒𝑑,2 and 𝜈 = Var(𝛿𝑝𝑟𝑒𝑑,2).

2.2.1 Assurance based on simulations

It is possible to compute the assurance by simulating Phase 3 trials using the CoR model and the distribution of the
immunological data estimated in Phase 2. The simulation is performed by repeating 𝐵 times the following four steps:
(1) simulation of the individual Phase 3 immunological endpoint (𝑆𝑖) by treatment group from the normal distribution
estimated in the Phase 2 trial (𝑆𝐶 ∼ 𝑁(𝜇𝐶, 𝜎

2
𝐶
) and 𝑆𝐶 ∼ 𝑁(𝜇𝑉, 𝜎

2
𝑉
)); (2) simulation of the CoR parameters 𝛽 = (𝛽0, 𝛽𝑠)

from the multivariate normal distribution 𝐵𝑁(𝜇𝛽, Σ); (3) simulation of the individual Phase 3 clinical endpoint (𝑌𝑖) using
the CoRmodelwith parameters 𝛽 and immunological data (𝑆𝑖) simulated in steps (1) and (2), respectively; (4) computation
of the VE (VE𝑏, 𝑏 = 1,… , 𝐵) and the corresponding confidence interval.
The assurance is the proportion of simulated VE with the lower bound of the confidence interval being above the

superiority margin 𝑉𝐸∗.

2.2.2 Extended CoR model

In the previous sections, we assumed that the immunological variable 𝑆 is a “statistical surrogate.” According to the
Prentice framework (Prentice, 1989), the model estimated in epidemiological studies (or in the control group) should
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allow both the prediction of the risk in the C group and in the V group. However, since we do not know if 𝑆 is a statistical
surrogate, it is possible (for different biological reasons) that themodel is not capable predicting the risk in the V group. As
the model generating the vaccinated clinical data is unknown, we consider an extension of the CoR model including two
additional unknown parameters 𝜂 = (𝛽𝐺, 𝛽𝐺𝑆)where 𝛽𝐺 is the vaccine effect not explained by 𝑆 and 𝛽𝐺𝑆 is the interaction
between the vaccine effect and 𝑆.

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌𝑖|𝑆𝑖, 𝑉)) = (𝛽0 + 𝛽𝑆𝑆𝑖) + (𝛽𝐺 + 𝛽𝐺𝑆𝑆𝑖). (3)

The covariance matrix is given by

Σ(𝜂) =

|||||||||
𝜎0,0 𝜎0,𝑆 𝜎0,𝐺 𝜎0,𝐺𝑆
𝜎𝑆,0 𝜎𝑆,𝑆 𝜎𝑆,𝐺 𝜎𝑆,𝐺𝑆
𝜎𝐺,0 𝜎𝐺,𝑆 𝜎𝐺,𝐺 𝜎𝐺,𝐺𝑆
𝜎𝐺𝑆,0 𝜎𝐺𝑆,𝑆 𝜎𝐺𝑆,𝐺 𝜎𝐺𝑆,𝐺𝑆

|||||||||
,

which can be rewritten as

Σ(𝜂) =
|||||Σ Σ,𝜂

Σ𝜂, Σ𝜂,𝜂

|||||,
where the 2 × 2 matrices Σ,𝜂 and Σ𝜂,𝜂 are unknown. The additional parameters 𝜂 are useful for considering different
scenarios. For example, 𝜂 = (0, 0) means that 𝑆 is a statistical surrogate endpoint (Prentice criteria met). 𝛽𝐺 < 0 means
that the surrogate endpoint explains only a proportion of the vaccine efficacy (Freedman et al., 1992), while the interac-
tion term 𝛽𝐺𝑆 ≠ 0 means that the vaccine induced immunological endpoint is more (or less) protective than the natural
immunological endpoint.
The predicted VE is given by

𝑉𝐸𝑝𝑟𝑒𝑑(𝜂) = 1 −
1∕𝑁𝑉

∑
𝑖∈𝑉

Pr(𝑌𝑖|𝑆𝑖, 𝑉)
1∕𝑁𝐶

∑
𝑖∈𝐶

Pr(𝑌𝑖|𝑆𝑖, 𝐶) .
The choice of 𝜂 (and the corresponding matrices Σ,𝜂, Σ𝜂,𝜂) can be derived from a prior elicitation of experts in the field
(see, for example, Dallow et al., 2018).

2.2.3 Simplified extended CoR model

The extended model described above is flexible, but it can be challenging to elicitate all the additional parameters. For
this reason, we consider a simplified version of the model

Pr(𝑌𝑖|𝑆𝑖, 𝑉) = exp(𝜅)𝑃𝑟(𝑌𝑖|𝑆𝑖, 𝐶). (4)

𝜅 = 0 means that 𝑆 is a statistical surrogate endpoint (Prentice criteria met), while 𝜅 < 0 (𝜅 > 0) means
that the vaccine-induced surrogate endpoint is more (less) protective than the naturally acquired surrogate
endpoint.
If we make the assumption that 𝜅 ∼ 𝑁(𝑚𝜅, 𝜈𝜅), then the assurance is given by

𝛾(𝜅) = 1 − Φ

(
−𝜏𝑧𝛼∕2 + 𝑚 +𝑚𝜅 − 𝛿∗√

𝜏2 + 𝜈 + 𝜈𝜅

)
, (5)

where𝑚 = 𝛿𝑝𝑟𝑒𝑑,2 and 𝜈 = Var(𝛿𝑝𝑟𝑒𝑑,2) are the prior parameters estimated from the Phase 2 under the assumption that 𝑆
is a statistical surrogate.
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TABLE 1 Extended CoR model: predicted VE (VE𝑝𝑟𝑒𝑑,3) and assurance (𝛾) as a function of the unknown parameters (𝜂, Σ𝜂,𝜂)

Scenario 𝝁𝜼 𝚺𝜼,𝜼 VE𝒑𝒓𝒆𝒅,𝟐(𝜼) 𝜸(𝜼)

A1 (0,0) I2*0.001 0.45 0.75
A2 (0,0) Σ/3 0.38 0.66
B (−0.5,0) Σ/3 0.63 0.89
C (0,0.035) I2*0.001 0.37 0.62

3 RESULTS

For illustration purposes, we consider a hypothetical case study where the CoR model is estimated from a large epidemi-
ological study and data from a small immunological Phase 2 study are available.
We assumed that the parameters of the CoR model were (𝛽0, 𝛽𝑠) ∼ 𝐵𝑁(𝜇𝛽, Σ), with 𝜇𝛽 = (−2.55, −0.7) and Σ with ele-

ments var(𝛽0) = 0.7, var(𝛽𝑠) = 0.1, and cov(𝛽0, 𝛽𝑠) = −0.2.
Regarding the immunological Phase 2 study, we assume that 𝑁𝑉,2 = 𝑁𝐶,2 = 100; the estimated mean and vari-

ance of the immunological endpoint by treatment group were given by (�̄�𝑉, �̄�𝐶) = (4.01, 2.96) and (Var(�̄�𝑉),Var(�̄�𝐶)) =
(0.27, 0.29), respectively.
The sample size of Phase 3 vaccine trial was approximately 12,000 (𝑁𝑉,3 = 𝑁𝐶,3 = 6000 with randomization ratio 1:1)

for a disease with 𝑝𝐶 = 1%, 90% power (assuming VE of 50%) and two sided 𝛼 of 5% (the null hypothesis is rejected if the
lower limit of the (1 − 𝛼)% confidence interval of the VE is above VE∗ = 0).

3.1 CoRmodel (𝑺 is a “statistical surrogate”)

Using the CoRmodel, we estimated the Phase 2 predicted log(𝑅𝑅) 𝛿𝑝𝑟𝑒𝑑,2 = −0.67 and its variance Var(𝛿𝑝𝑟𝑒𝑑,2) = 0.09 (see
the Appendix for the calculation in “Variance of the Predicted VE (Delta Method)”).
The assurancewas then calculated using Equation (2).With the assumption that 𝜏2 ≈ 0.04 and the Phase 2 prediction as

prior (𝑚 = 𝛿𝑝𝑟𝑒𝑑,2, 𝜈 = Var(𝛿𝑝𝑟𝑒𝑑,2)), an assurance value of 𝛾 = .76 (based on Equation (2)) was obtained. A similar result
(𝛾 = .75) was obtained by computing the assurance by simulations.

3.2 Extended CoRmodel

The assurance value of 𝛾 = .76 was obtained by making the strong assumption that Prentice criteria are met. In the fol-
lowing, we relax this assumption by using the unknown parameter 𝜂 = (𝛽𝐺, 𝛽𝐺,𝑆) of Equation (3). These parameters are
unknown and can be derived from prior elicitation. For simplicity, we assume that 𝜂 ∼ 𝐵𝑁(𝜇𝜂, Σ𝜂,𝜂) and that Σ,𝜂 = 0. For
illustration, we considered three different scenarios.
In scenarioA,we assume that𝜇𝜂 = (0, 0), andwe consider two different covariancematrices:Σ𝜂,𝜂 = 𝐼2 ∗ 0.001 (scenario

A1—no uncertainty about the fact that 𝑆 is a “statistical surrogate”) and Σ𝜂,𝜂 = Σ∕3 (scenario A2-–uncertainty about the
fact that 𝑆 is a “statistical surrogate”).
In scenario B, we assume that 𝑆 explains only a portion of the vaccine effect (𝜇𝜂 = (−0.5, 0)). Note that this scenario

corresponds to a surrogate endpoint explaining about 50% of the vaccine efficacy.
In scenario C, 𝑆 explains 100% of the vaccine effect (𝛽𝐺 = 0), but the vaccine induced immunological endpoint is less

protective than the natural immunological endpoint (𝛽𝐺,𝑆 = .035).
Table 1 shows how the predicted VE and the assurance values changes as a function of the unknown parameters

(𝜇𝜂, Σ𝜂,𝜂).
We can see from Table 1 that the unknown parameters play a major role on the computation of the assurance. The first

row corresponds to the case where 𝑆 is a statistical surrogate, and we can see that the assurance value is close to the value
obtained using the CoR model. The second row corresponds to the case where we have some uncertainty about the fact
that 𝑆 is a statistical surrogate. As the uncertainty increases the value of the assurance decreases. The third row shows the
situationwhere 𝑆 explains only a portion of the VE. In this case, since 𝛽𝐺 is equal to−0.5, the vaccine is effective, whatever
the value on the surrogate endpoint. Therefore, the predictive probability of success in Phase 3 is high, independently of
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F IGURE 1 Case study: assurance as a function of𝑚𝜅 and 𝜈𝑘 (simplified extended CoR model)

the value on the surrogate endpoint. The last row shows how the assurance value decreases when the vaccine-induced
immunological endpoint is less protective than the naturally acquired immunological endpoint.

3.3 Simplified extended CoRmodel

Figure 1 shows the assurance calculated using the simplified extended CoR model (Equation (4)) under the assumption
that 𝜅 ∼ 𝑁(𝑚𝜅, 𝜈𝜅) as a function of𝑚𝜅 and 𝜈𝑘.We can see thatwhen the surrogate is a statistical surrogate (𝑚𝜅 = 0 and 𝜈𝑘 ≈

0), the assurance value is about 0.75. This value is closer to 50% (maximum uncertainty) when there is more uncertainty
about the unknown parameter (larger values of 𝜈𝑘). Furthermore, we can see how the assurance depends on 𝑚𝑘. As
expected, the assurance increases (decreases) when the vaccine-induced surrogate endpoint is more (less) protective than
the naturally acquired surrogate endpoint.

4 CONCLUSIONS

The assurance is the expectation of the power, averaged over the prior distribution for the unknown true vaccine effect.
The prior distribution of the parameter of interest could be considered as the vaccine effect estimated in an existing Phase
2 trial (O’Hagan et al., 2005). Our work is dedicated to describing how to compute the assurance for vaccines, where early
development (Phase 2) is often based on immunological endpoints (e.g., antibody levels) and the confirmatory trial (Phase
3) is based on the clinical endpoint (e.g., infections). Our proposal is to use the Phase 2 vaccine efficacy predicted by the
immunological endpoint as prior information. The prediction is done by using the CoR model that links the clinical and
the immunological endpoint (Chan et al., 2000; Dunning, 2006; Dunning et al., 2015). Parameters of this model can be
estimated using data from epidemiological studies (often conducted in early development) or retrieved from the literature
(see, for example, Storsaeter et al., 1998).
The prior distribution of the VE is derived by making the assumption that the immunological endpoint is a “statistical

surrogate” (Prentice, 1989; Qin et al., 2007). We provided as well two different extensions of the CoR model that can be
used to derive the prior of the VE when the surrogate is not fully mediating the vaccine effect.
We derived a closed formula to compute the variance of the predicted VEwhen the CoRmodel is logistic or scaled logis-

tic.
The proposed approach is similar in spirit to the work of Saint-Hilary and colleagues (Saint–Hilary et al., 2019), where

they compute the probability of success (assurance) using a surrogate endpoint. Themain difference is that their prediction
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is based on meta-analytical models (trial-level), while our proposal is based on a particular individual-level model (CoR
model) that is estimated from epidemiological studies (where there are no vaccinated subjects). This choice was due to
the fact that VE data are rarely available for early vaccine development. The limitation of this choice is that prediction
based on individual data (single trial setting) may not be valid at the trial level (Baker & Kramer, 2003; Burzykowski et al.,
2005; Buyse et al., 2000). Furthermore, the information elicited from experts to extend the CoR model may be wrong.
For simplicity, in this paper, we ignored the between-trial variability. This additional variability (known or elicitated

from experts) can be included in the CoR model. If multiple epidemiological studies are available, a random study effect
should be included in the CoR model of Equation (1).
We assumed that the population of the epidemiological study is the same as the population in the control group of the

randomized (small immunological Phase 2 and large efficacy Phase 3) studies. Even if the populations are the same, it is
possible that there are some discrepancies between the epidemiological and the randomized immunological data. This
problem could be mitigated by including covariates (such as age, sex, etc.) in the CoR model.
In conclusion, in this paper, we described some solutions to compute the assurance for vaccines where early phase

clinical trials are often based on immunological data.
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APPENDIX: VARIANCE OF THE PREDICTED VE

Variance of the predicted VE (Delta method)
Dunning (2006) proposed an extension of the logistic model where the probability to be exposed 𝑝𝑒 is estimated. The
likelihood of the model can be expressed as:

𝐿 =
∏
𝑖

(𝑝𝑒𝑝𝑖)
𝑦𝑖 (1 − 𝑝𝑒𝑝𝑖)

1−𝑦𝑖 ,

where the probability to be infected can be modeled using a classical logit formula:

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛽0 + 𝛽𝑆𝑖.

If we assume that 𝑝𝑒 = 1, then the model reduces to the logistic model. The VE predicted in a new study is then:

𝑉𝐸𝑝𝑟𝑒𝑑 = 1 −
1∕𝑁𝑉

∑
𝑖∈𝑉

𝑝𝑒𝑝𝑖

1∕𝑁𝐶

∑
𝑖∈𝐶

𝑝𝑒𝑝𝑖

= 1 −
1∕𝑁𝑉

∑
𝑖∈𝑉

𝑝𝑖

1∕𝑁𝐶

∑
𝑖∈𝐶

𝑝𝑖

= 1 −
�̄�𝑉

�̄�𝐶
.
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The standard formula cannot be used to derive the variance of the predicted VE as predicted probabilities are dependent.
The variance is therefore estimated by bootstrap. In the following, the asymptotic variance is derived.
The covariance between two logits is given by:

Cov(𝑙𝑜𝑔𝑖𝑡(𝑝𝑖), 𝑙𝑜𝑔𝑖𝑡(𝑝𝑗)) = Var(𝛽0) + 𝑆𝑖𝑆𝑗Var(𝛽𝑠) + 𝑆𝑖𝑆𝑗Cov(𝛽0, 𝛽𝑠).

Using delta method, the covariance can be derived in the scale of probabilities:

Cov(𝑝𝑖, 𝑝𝑗) = 𝑝𝑖(1 − 𝑝𝑖)𝑝𝑗(1 − 𝑝𝑗)Cov(𝑙𝑜𝑔𝑖𝑡(𝑝𝑖), 𝑙𝑜𝑔𝑖𝑡(𝑝𝑗)).

The variance and the covariances of the mean probabilities are

Var(�̄�𝑍) = 1∕𝑛2
𝑍

∑
𝑖∈𝑍

∑
𝑗∈𝑍

Cov(𝑝𝑖, 𝑝𝑗),

where 𝑍 = 𝑉,𝐶 and

Cov(�̄�𝑉, �̄�𝐶) = 1∕(𝑁𝑉𝑁𝑉)
∑
𝑖∈𝑉

∑
𝑗∈𝐶

Cov(𝑝𝑖, 𝑝𝑗).

The variance of the log relative risk (𝛿) is

Var(𝛿) = Var(log(�̄�𝑉∕�̄�𝐶)) = Var(�̄�𝑉)∕�̄�
2
𝑉
+ Var(�̄�𝐶)∕�̄�

2
𝐶
− 2Cov(�̄�𝑉, �̄�𝐶)∕(�̄�𝑉�̄�𝐶)

and the confidence intervals of the predicted VE are given by

𝐶𝐼 = 1 − exp(𝛿 + 1.96
√
Var(𝛿)); 1 − exp(𝛿 − 1.96

√
Var(𝛿)).

Variance of the predicted VE (simulations)
It is possible to compute the variance of the predicted VE by simulation if we make the assumption that the coefficients of
the CoRmodel are bivariate normally distributed 𝛽 ∼ 𝐵𝑁(𝛽, Σ). The simulation is done by repeating𝐵 times the following
two steps: (1) simulate the CoR parameters (𝛽𝑏

0
, 𝛽𝑏𝑠 ) from their multivariate normal distribution (𝑏 = 1,… , 𝐵); (2) compute

the predicted log(𝑅𝑅) (𝛿𝑏) using the coefficients simulated in step (i). The variance of the predicted log(𝑅𝑅) is given by

Var(𝛿) =
𝐵∑

𝑏=1

(𝛿𝑏 − �̄�)2∕(𝐵𝑣𝑐 − 1).
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