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Retrospective analysis of the accuracy of 
predicting the alert level of COVID-19 in 202 
countries using Google Trends and machine 
learning

Background Internet search engine data, such as Google Trends, was shown 
to be correlated with the incidence of COVID-19, but only in several coun-
tries. We aim to develop a model from a small number of countries to predict 
the epidemic alert level in all the countries worldwide.

Methods The “interest over time” and “interest by region” Google Trends data 
of Coronavirus, pneumonia, and six COVID symptom-related terms were 
searched. The daily incidence of COVID-19 from 10 January to 23 April 2020 
of 202 countries was retrieved from the World Health Organization. Three alert 
levels were defined. Ten weeks’ data from 20 countries were used for training 
with machine learning algorithms. The features were selected according to the 
correlation and importance. The model was then tested on 2830 samples of 
202 countries.

Results Our model performed well in 154 (76.2%) countries, of which each 
had no more than four misclassified samples. In these 154 countries, the ac-
curacy was 0.8133, and the kappa coefficient was 0.6828. While in all 202 
countries, the accuracy was 0.7527, and the kappa coefficient was 0.5841. The 
proposed algorithm based on Random Forest Classification and nine features 
performed better compared to other machine learning methods and the mod-
els with different numbers of features.

Conclusions Our result suggested that the model developed from 20 countries 
with Google Trends data and Random Forest Classification can be applied to 
predict the epidemic alert levels of most countries worldwide.

Electronic supplementary material: 
The online version of this article contains supplementary material.

© 2020 The Author(s)
JoGH © 2020 ISGH

In December 2019, several cases with pneumonia of unknown cause were reported 
in Wuhan city, Hubei province, China [1]. It quickly spread in China and globally. 
Later, a novel coronavirus was identified as the cause of pneumonia by the Chinese 
Center for Disease Control and Prevention [2]. The disease was named as Corona-
virus Disease 2019 (COVID-19) by the World Health Organization (WHO) [2]. On 
30 January 2020, WHO declared COVID-19 outbreak as a Public Health Emergen-
cy of International Concern [3]. On 11 March 2020, COVID-19 was defined as a 
worldwide pandemic by WHO. As of 30 April 2020, this disease has been reported 
in more than 200 countries, with 3 090 445 confirmed cases and 217 769 deaths.

As COVID-19 is a rapidly spreading infectious disease, it is crucial to predict the 
outbreak in a specific country or region as early as possible, for taking sooner ac-
tion to prevent its spread. Traditional surveillance systems rely on both clinical and 
virological data, which may lead to days or weeks reporting lag. Internet data, such 
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as web-search engine and social media, have been applied to monitor the outbreak of infectious diseases 
such as influenza [4], Dengue [5], H1N1 [6], Zika [7], measles [8], Middle East respiratory syndrome [9]. 
Recently, it is reported that Google Trends data using search terms relative to COVID-19, such as “coro-
navirus”, “pneumonia”, “handwashing”, “face masks” were correlated with the officially reported number 
of confirmed COVID-19 cases in China [10], South Korea, Italy, Iran [11], USA [12], and other coun-
tries. Besides the correlation analysis, data mining and deep learning technique were also used to model 
Google Trends data and predict the incidence of COVID-19 in Iran [13].

However, the published articles only investigated the data on one or several countries. Some articles stud-
ied worldwide Google Trends data but taking the world as a whole [14]. The deep learning algorithm de-
veloped from the data of Iran was used to predict the incidence of COVID-19 in the same country only 
[13]. In this study, we aimed to evaluate the accuracy of our machine learning algorithm developed from 
the Google Trends data of 20 countries in predicting the weekly alert level of COVID-19 pandemic in all 
the individual countries worldwide.

METHODS

Data sources

We use two sets of data to train and evaluate models. The first data set is the search volume data obtained 
from the Google Trends service. We collected Google search volume of 16 candidate features relating to 
COVID-19 for 15 weeks from 3 January 2020 to 16 April 2020 in 202 countries. Eight terms were used 
for search as topics on Google Trends, including “Coronavirus”, “Pneumonia”, and six symptom-related 
terms [15], “Cough”, “Diarrhea”, “Fatigue”, “Fever”, “Nasal congestion” and “Rhinorrhea”. We selected 
the term “Coronavirus” instead of “Covid-19”. The reason is that at the early stage of epidemic, the pub-
lic didn’t know about this novel disease very clearly in most countries, but only recognize that this dis-
ease was caused by a novel coronavirus. Meanwhile, the correlation coefficient between “Coronavirus” 
and daily confirmed cases was slightly higher than “COVID-19” on the whole (Table S1 in the Online 
Supplementary Document). Two types of data were retrieved. In the first one, the data of “interest over 
time” was defined as the search interest relative to the highest point for the specific term, region, and time 
interval. Values are calculated on a scale from 0 to 100, where 100 is the peak popularity for the term. 
The second one, the data of “interest by region” was retrieved by setting the region to “worldwide” for the 
given term and time. The values were calculated on a scale from 0 to 100, where 100 is the location with 
the most popularity as a fraction of total searches in that location. It’s worth noting that we included low 
search volume regions for obtaining more regions’ data. The features of “interest by region” was named 
as “Coronavirus_RE”, “Pneumonia_RE”, “Cough_RE”, “Diarrhea_RE”, “Fatigue_RE”, “Fever_RE”, “Nasal 
congestion_RE” and “Rhinorrhea_RE”.

The second data set is the daily number of COVID-19 new cases each day from 10 January to 23 April 
2020 in 202 countries from WHO website [16]. In this study, we defined the weekly epidemic alter of 
COVID-19 in a specific country into three levels. The higher the alert level, the higher the risk of an out-
break in this week. Suppose m

d
 denotes the number of newly confirmed cases on day d within the seven 

days of the week. Let x
t
 denotes the alert levels of the week t. The epidemic alert level of week t can be 

obtained according to the following formula:

1) If all m
d
 = 0 (d = 1, 2, 3, 4, 5, 6, 7), x

t
 = 1, else

2) If 0< m
d
 <10 at least one day, x

t
 = 2, else

3) x
t
 = 3

Based on the correlation analysis between Google search volume data and the daily new confirmed cas-
es, we randomly selected 20 countries from the countries with strong correlation as the training set. Ten 
samples, which are the Google search volume data from 10 January 2020 to 19 March 2020, from each 
of the 20 countries were used in the training stage. Totally 200 samples, including 87 samples with alert 
level 1, 43 samples with alert level 2, and 70 samples with alert 3, were used for training. The remain-
ing 2830 samples from 202 countries are used for model testing, including 2730 data for 1 to 15 weeks 
in the other 182 countries and the remaining 100 data in the 20 training set countries. Examples of the 
search volume of the term “Coronavirus” and the daily incidence of COVID-19 in Italy and US Virgin Is-
land were shown in Figure 1.
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Feature engineering

Feature engineering of data are to extract the features that have a great or small influence on output results 
from various parameters and use these features as the basis of the training model. In the beginning, we 
included 16 features. Two kinds of correlation analyses were conducted in each country to select the best 
terms from the candidate set. The first one is the correlation between Google search volume data of each 
feature and daily new confirmed cases at one week behind, in which “Daily_AVG” and “Daily_MAX” were 
used to represent the average and maximum Spearman correlation coefficients for the 202 countries. The 
other one is the correlation between the average weekly Google search volume data of each feature and 
the weekly epidemic alert level one week behind, in which “Label_AVG” and “Label_MAX” were used to 
represent the average and maximum Spearman correlation coefficients in the 202 countries. The results 
were shown in Table 1, which showed that the top-related term was the interest over time of “Coronavi-
rus”, while the correlation between the features of “Diarrhea”, “Fatigue”, “Nasal congestion_RE” and “Fa-
tigue_RE” and target value was negative or weak. Therefore, we first removed the four features that are not 
related to the target value.

Since there is a certain correlation between the features [17-20], we used Spearman correlation coefficients 
to analyze the daily and weekly search volume of the 12 input features in 202 countries. We found strong 
correlations between “Coronavirus_RE”, “Pneumonia_RE” and “Rhinorrhea_RE” features and other fea-

Figure 1. The predicted alert level (red), normalized Google Trends search volume of the topic “Coronavirus” (green),  
normalized daily new confirmed cases. Panel A. Italy. Panel B. United States Virgin Islands.

Table 1. Spearman correlation coefficients of 16 features with the incidence of COVID-19 at one-week lag in 202 
countries*

Features Daily_aVG Daily_MaX label_aVG label_MaX
Coronavirus 0.59 0.88 0.78 0.93

Pneumonia 0.15 0.80 0.31 0.91

Cough 0.09 0.72 0.23 0.91

Fever 0.16 0.80 0.31 0.92

Nasal congestion 0.09 0.69 0.22 0.88

Rhinorrhea 0.16 0.76 0.35 0.92

Diarrhea 0.01 0.70 0.02 0.82

Fatigue -0.03 0.52 -0.01 0.89

Coronavirus_RE 0.38 0.75 0.60 0.90

Pneumonia_RE 0.13 0.75 -0.16 0.77

Cough_RE 0.09 0.68 0.20 0.87

Fever_RE 0.04 0.47 0.27 0.59

Nasal congestion_RE -0.06 0.43 -0.07 0.85

Rhinorrhea_RE 0.01 0.45 0.01 0.78

Diarrhea_RE -0.04 0.29 0.23 0.88

Fatigue_RE -0.12 0.27 -0.03 0.75

*Daily_AVG and Daily_MAX: the average and maximum Spearman correlation coefficient of Google search volume data of each 
feature and daily new confirmed cases at one week behind in 202 countries; Label_AVG and Label_MAX: the average and maxi-
mum Spearman correlation coefficient of the average weekly Google search volume data of each feature and the weekly epidemic 
alert level one week behind in 202 countries.
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tures in most countries. Therefore, we further removed these three features, and finally take the remaining 
nine features as the input features of this study, which are “Coronavirus”, “Pneumonia”, “Cough”, “Fever”, 
“Nasal congestion”, “Rhinorrhea”, “Cough_RE”, “Fever_RE”, and “Diarrhea_RE”.

Modeling and evaluation

Random Forest Classification algorithm was utilized to predict the next week’s alert level based on Google 
search volume data for the current week related to COVID-19. Python 3.7.6 (Python Software Foundation, 
Beaverton, OR, USA) was used for modeling and evaluation. After training, we can use the Google search 
volume data of week t to predict the alert level of week t +1. To quantitatively evaluate the performance of 
our model, we calculated the following five evaluation metrics: accuracy (ACC), macro precision (Macro_P), 
macro recall (Macro_R), macro F1-score (Macro_F) and kappa-coefficient (K_Score). They are defined as:

Accuracy =
Number of correctly predicted samples

All samples
 (1)

Macro P
n

Pi
i

n

_ =
=
∑1

1
  (2)

Macro R
n

Ri
i

n

_ 1=
=
∑

1
 (3)

Macro F Macro P Macro R
Macro P Macro R

_ =
+

2 * _ * _
_ _  (4)

K Score
p p

p
o e

e

− =
−
−1

 (5)

Where P
i
 and R

i
 represent precision and recall for the category i, p

o
 equivalents to accuracy, and p

e
 is the 

hypothetical probability of chance agreement, using the observed data to calculate the probabilities of 
each observer randomly seeing each category.

RESULTS

We tested 2830 test sets in 202 countries and found that our model performed well in 154 (76.2%) coun-
tries, of which each country has no more than four misclassified samples. Specifically, the predictive ac-
curacy of our model is 100% in five countries, one mistake in each of 18 countries, two mistakes in each 
of 43 countries, three mistakes in each of 39 countries, and four mistakes in each of 29 countries, five 
mistakes in each of 19 countries, six mistakes in each of 12 countries, seven mistakes in each of 6 coun-
tries, eight mistakes in each of 8 countries, 10, 11 and 12 mistakes in one country respectively. The list 

of the name the countries with different accuracy was shown in 
Table 2. Besides, our model predicted only two mistakes on 100 
test samples of the 20 training set countries. The performance of 
the algorithm in different sets of data was shown in Table 3. Two 
examples were shown in Figure 1.

To evaluate the role of each input feature in classification, we cal-
culated the importance score of each input feature. The higher 
the score, the more important the feature. As shown in Figure 2, 
the most important feature was the term “Coronavirus”, which 
was consistent with the results of correlation analysis.

For the real-time prediction of weekly alert level, the proposed 
Random Forest Classification algorithm was compared with oth-
er common machine learning classification methods: Linear Re-
gression Classification (LRC) [21], Support Vector Machine (SVM) 
[22], k-Nearest Neighbor (K-NN) [23], Decision Tree Classifica-
tion (DTC) [24]. Table 4 showed the quantitative results of dif-
ferent methods on the test data set. As can be observed, the Ran-
dom Forest Classification algorithm achieved much better results 
in terms of all quantitative metrics compared to other methods.Figure 2. The importance of included features.
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Table 2. The list of countries/regions with different results

CateGory No. list oF CouNtries/reGioNs

Training 20
Argentina, Australia, Austria, Belgium, Brazil, Finland, France, Germany, India, Indonesia, Iran (Islamic Republic of), Ireland, Italy, 
Peru, Poland, Puerto Rico, South Africa, Spain, Switzerland, United States of America

0 error 5 Aruba, Central African Republic, French Polynesia, Ghana, Venezuela (Bolivarian Republic of)

1 error 18
Canada, Chad, Colombia, Costa Rica, Coted Ivoire, Greece, Guadeloupe, Iceland, Kuwait, Morocco, Netherlands, Panama,  
Republic of Moldova, Rwanda, The United Kingdom, United States Virgin Islands, Uruguay, Uzbekistan

2 errors 43

Albania, Anguilla, Antigua and Barbuda, Bahrain, Bolivia (Plurinational State of), Botswana, Bulgaria, Burundi, Cameroon, Chile, 
Croatia, Cuba, Cyprus, Dominican Republic, Eritrea, Eswatini, Falkland Islands (Malvinas), French Guiana, Gambia, Grenada, 
Honduras, Kazakhstan, Kenya, Kyrgyzstan, Lebanon, Luxembourg, Malta, Martinique, Mauritania, Montenegro, Nigeria, Norway, 
Oman, Portugal, Qatar, Reuntion, Saint Kitts and Nevis, Saint Martin, Serbia, Sierra Leone, Slovakia, Slovenia, Ukraine

3 errors 39

Algeria, Armenia, Azerbaijan, Barbados, Belarus, Burkina Faso, Cayman Islands, Curacao, Czechia, Denmark, Ecuador, Egypt, 
El Salvador, Equatorial Guinea, Estonia, Guatemala, Guinea, Guinea-Bissau, Hungary, Jordan, Kosovo, Latvia, Lithuania, Mala-
wi, Mali, Mauritius, Mexico, New Caledonia, Niger, Paraguay, Saint Barthelemy, Saint Vincent and the Grenadines, Senegal, Sint 
Maarten, Sweden, Togo, Tunisia, Turkey, Saudi Arabia

4 errors 29
Bahamas, Bangladesh, Benin, Bermuda, Bhutan, Djibouti, Gibraltar, Guernsey, Guyana, Haiti, Jersey, Liberia, Libya, Madagascar, 
Montserrat, Mozambique, North Macedonia, Philippines, Romania, Russian Federation, Seychelles, Somalia, South Sudan, Turks 
and Caicos Islands, Uganda, United Republic of Tanzania, Afghanistan, Pakistan, Sudan

5 errors 19
Bosnia and Herzegovina, Fiji, Georgia, Greenland, Guam, Isle of Man, Jamaica, Japan, Liechtenstein, Myanmar, Nepal, Papua New 
Guinea, San Marino, Singapore, Sri Lanka, Suriname, United Arab Emirates, Zambia, Zimbabwe

6 errors 12 Andorra, Belize, Ethiopia, Gabon, Malaysia, Mayotte, Mongolia, Nicaragua, Saint Lucia, Sao Tome and Principe, Timor-Leste, Yemen

7 errors 6 Angola, British Virgin Islands, Dominica, New Zealand, Thailand, Trinidad and Tobago

8 errors 8
Brunei Darussalam, Cambodia, Faroe Islands, Iraq, Israel, Maldives, Northern Mariana Islands (Commonwealth of the), Syrian 
Arab Republic

10 errors 1 China

11 errors 1 Viet Nam

12 errors 1 Laos

A series of ablation studies were conducted to validate the features included in this study. As you can 
see in Figure 2, the features of “Cough_RE” and “Diarrhea_RE” contribute little to classification. There-
fore, we removed these two features and selected the other seven features as the input. Also, we trained 
the model with all 16 features as input. The experimental results were shown in Table 5. The proposed 
method (9 features) outperformed other methods on all metrics, including 16 features and 7 features as 
input. In terms of accuracy, the performance of the proposed method was 0.26% and 0.79% higher than 
the other two methods respectively.

Table 3. Performance of the final model in different test data sets

test Data aCC M_P M_r M_F1 K-sCore

20 training +5 no error countries 0.9886 0.9781 0.9912 0.9844 0.9803

43 countries with ≤1 error 0.9528 0.9195 0.9306 0.9248 0.9209

86 countries with ≤2 errors 0.9009 0.8633 0.8458 0.8534 0.8324

125 countries with ≤3 errors 0.8663 0.8170 0.7995 0.8058 0.7729

154 countries with ≤4 errors 0.8133 0.7489 0.7377 0.7401 0.6828

All 202 countries 0.7527 0.6724 0.6754 0.6698 0.5841

ACC – accuracy, M_P – macro precision, M_R – macro recall, M_F1 – macro F1-score, K_Score – kappa-coefficient

Table 4. Performance of different machine learning methods in 202 countries

MethoDs aCC M_P M_r M_F1 K_sCore

Linear Regression Classification 0.6127 0.5138 0.5472 0.5048 0.3786

Support Vector Machine 0.5943 0.4963 0.5080 0.4998 0.3210

k-Nearest Neighbor 0.6799 0.5962 0.5516 0.5592 0.4156

Decision Tree Classification 0.6681 0.6027 0.6152 0.6064 0.4605

Random Forest Classification 0.7527 0.6724 0.6754 0.6698 0.5841

ACC – accuracy, M_P – macro precision, M_R – macro recall, M_F1 – macro F1-score, K_Score – kappa-coefficient
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Table 5. The result of ablation experiments in 202 countries

MoDel aCC M_P M_r M_F1 K_sCore

7 features 0.7501 0.6705 0.6732 0.6691 0.5821

9 features 0.7527 0.6724 0.6754 0.6698 0.5841

16 features 0.7448 0.6570 0.6592 0.6511 0.5686

ACC – accuracy, M_P – macro precision, M_R – macro recall, M_F1 – macro F1-score, K_Score – kappa-coefficient

DISCUSSION

In this research, the model based on the Random Forest Classification algorithm developed from 20 coun-
tries can predict the COVID-19 epidemic alert level of next week using Google search volume data. The 
model performed well in 154 out of 202 countries with an accuracy of 0.8133. While in a total of 202 
countries, the accuracy was 0.7527.

To the best of our knowledge, the current study is the first one to demonstrate that the Google Trends 
data can be used in predicting disease alert level in most countries worldwide, even the model was de-
veloped from the data of only 10% of countries. Before our study, there were some articles reported the 
correlation of Google Trends data with the incidence of COVID-19 in some individual countries [11-13] 
or taking the world as a region without the information of individual countries [14]. However, there are 
different terms related to COVID-19. Therefore, Machine learning was used to manage the big data and 
develop a model to predict the incidence of COVID-19, but again, only in individual countries [13]. Be-
fore COVID-19, the data of internet search engines were also be used to predict the epidemic of infectious 
diseases. Google Flu Trends provided estimates of influenza activity for using the data of Google Search 
queries. But it only offered the prediction for 29 countries [25]. Our model has high accuracy predicting 
the alert level of COVID-19 in most countries. There was no mistake in five countries, one mistake in 
each of 18 countries, two mistakes in each of 43 countries, three mistakes in each of 39 countries, and 
four mistakes in each of 29 countries. That is, in more than 75% of countries, our model made no more 
than four mistakes in 15 predictions.

We demonstrated the results of four countries (Venezuela, Canada, Yemen, and Italy) randomly selected 
from the countries with zero mistakes, no more than 4 mistakes, more than 4 mistakes, and the training 
data set in Figure 3. As can be seen from Figure 3, our model tends to mispredict a low alert level into a 
high level in Yemen. This phenomenon is also prevalent in the forecasts of many countries. The false-pos-
itive mistake may because that COVID-19 is a global epidemic, which has attracted full attention in the 
world. Therefore, the occurrence of COVID-19 in some countries will increase the awareness of other 
countries, especially the countries with a close relationship with the outbreak countries, and result in a 
large amount of Google search volume for terms related to COVID-19. On the other hand, our model also 
false-negatively predicted a high alert level into a low alert level in a few countries. The possible reason 
is that the Google search engine is not the mainstream search engine in these countries. Further studies 
were needed to correct the misprediction in these countries.

There are also some limitations in this study. Our model is based on data from the early stages of the ep-
idemic, when most countries were unprepared for the outbreak. As the pandemic progressing, the pub-

Figure 3. Classification confusion matrix.
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lic and governments have already known what to do with COVID-19. Therefore, our model may not be 
applicable at a later stage of the pandemic. Another point is that the COVID-19 outbreak has occurred in 
most countries, and it is not necessary to predict the outbreak. However, our model cannot only be used 
to predict the outbreak, but also to predict the recovery (Figure 1). Therefore, it still has merits even in 
the time of the global pandemic. Furthermore, our methods provide a new way of predicting global nov-
el infectious diseases outbreak and can be used in other epidemics.

CONCLUSIONS

We used a machine-learning algorithm to model the data of Google Trends data from 20 countries. The 
results achieved real-time epidemic alert level prediction of COVID-19 one week behind in 154 coun-
tries at the early stages of epidemic.
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