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Long interspersed nuclear element-1 (LINE-1) retrotransposition is a major hallmark of
cancer accompanied by global chromosomal instability, genomic instability, and genetic
heterogeneity and has become one indicator for the occurrence, development, and
poor prognosis of many diseases. LINE-1 also modulates the immune system and
affects the immune microenvironment in a variety of ways. Aberrant expression of LINE-
1 retrotransposon can provide strong stimuli for an innate immune response, activate
the immune system, and induce autoimmunity and inflammation. Therefore, inhibition
the activity of LINE-1 has become a potential treatment strategy for various diseases.
In this review, we discussed the components and regulatory mechanisms involved with
LINE-1, its correlations with disease and immunity, and multiple inhibitors of LINE-1,
providing a new understanding of LINE-1.
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INTRODUCTION

Long interspersed nuclear elements (LINEs) are the only autonomous and active retrotransposons,
which include LINE-1, LINE-2, and LINE-3 (Cordaux and Batzer, 2009; de Koning et al., 2011).
Also, 5–6% of LINE-2 and LINE-3 sequences in the human genome are as a truncated molecular
fossil (Doxiadis et al., 2012; Ardeljan et al., 2017). LINE-1 retrotransposons are one of the most
abundant and effective classes of mobile DNAs that account for 17% of the human genome
(Lander et al., 2001; Hancks and Kazazian, 2016). Full-length LINE-1 is 6.0–7.0 kb and contains
a 5′-untranslated region (5′-UTR) (Swergold, 1990), two open reading frames (ORF1 and ORF2),
and a 3′-UTR punctuated with a poly-A tract (Babushok and Kazazian, 2007; Beck et al., 2011).
Denli et al. (2015) revealed a new open reading frame, ORF0. It is located in the 5′-UTR of the
LINE-1 transcript and on the strand opposite of the ORF1 and ORF2 structural genes. Antisense
promotor (ASP) can initiate fusion transcripts and regulate ORF0 to enhance LINE-1 mobility
(Roman-Gomez et al., 2005; Weber et al., 2010; Criscione et al., 2016).

Both ORFs are required for LINE-1 retrotransposition process. ORF1 encodes an RNA-binding
protein named ORF1P that has nucleic acid chaperone activity, and ORF2 encodes a protein
named ORF2P that has endonuclease and reverse-transcriptase activities (Mathias et al., 1991;
Feng et al., 1996). The first step occurs when RNA polymerase II binds to the 5′-UTR promoter
region of LINE-1 and mediates the transcription of full-length mRNA of LINE-1 (Lavie et al.,
2004). The LINE-1 mRNA is exported to the cytoplasm where ORF1 and ORF2 are translated
and combined to form a ribonucleoprotein (RNP) particle. The RNP is then incorporated into
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the nucleus, and the ORF2P endonuclease in the RNP identifies
and cuts specific sequences on the bottom DNA strand at
the consensus site 3′−AA/TTTT−5′. Subsequently, the free 3′
hydroxyl generated at the fracture is utilized by the ORF2P and
LINE-1 mRNA in the RNP is used as the template for reverse
transcription to produce the complementary DNA of the LINE-
1 gene (Wei et al., 2001; Hancks and Kazazian, 2016; Wang and
Jordan, 2018). The distribution of LINE-1 in the human genome
is selective. LINE-1 endonuclease activity and DNA replication
determine LINE-1 insertion preference (Flasch et al., 2019). For
example, LINE-1 preferentially inserts into nucleosome-depleted
DNA primarily as a result of its AT-rich sequences (Sultana et al.,
2019). The direction of the DNA replication fork affects LINE-
1 insertion preference because the cleaved strand is usually the
lagging strand template.

LINE-1 elements play a crucial role in the course of species
formation and evolution. On one hand, de-repressed LINE-1
functions as a driver of many diseases and even a diagnostic
marker for some diseases (Pedersen and Zisoulis, 2016). On the
other, it can affect the developmental processes and influence
the behavior by generating multiple gene products and causing
variable deleterious effects on the structure of the host genome
through new insertions, deletions, and recombinations (Garcia-
Perez et al., 2016). LINE-1 RNA and protein overexpression is
related to apoptosis, DNA damage and repair, cellular plasticity,
and stress responses and can even promote tumor progression
(Morrish et al., 2002, 2007; Belgnaoui et al., 2006; Sinibaldi-
Vallebona et al., 2006). DNA damage caused by genome-
wide or intersperse repetitive sequences hypomethylation can
induce inflammatory microenvironment (Lindqvist et al., 2017;
Teerawattanapong et al., 2019). Here, we reviewed the correlation
between LINE-1 and disease as well as immune system,
meanwhile, conducted a new exploration in LINE-1 inhibitors by
combining its regulation mechanisms.

Figure 1 shows the relative positions of the 5′ untranslated
region (5′-UTR); the open reading frames ORF0, ORF1, and
ORF2; the 3′ untranslated region (3′-UTR); and the Poly A tail.
ORF2 encodes endonuclease (EN), reverse transcriptase (RT),
and cysteine-rich domain (C). Full-length LINE-1 mRNA was
generated using the sense promoter at 5′-UTR. The LINE-1
mRNA is exported to the cytoplasm where ORF1 and ORF2
are translated and combined to form a ribonucleoprotein (RNP)
particle. The RNP is then incorporated into the nucleus, and
the ORF2P endonuclease in the RNP identifies and cuts specific
sequences on the bottom DNA strand at the consensus site
3′−AA/TTTT−5′. Subsequently, the free 3′ hydroxyl generated
at the fracture is utilized by the ORF2P and LINE-1 mRNA in the
RNP is used as the template for reverse transcription to produce
the complementary DNA of the LINE-1 gene (Richardson et al.,
2015; Kazazian and Moran, 2017).

LINE-1 AND DISEASE

LINE-1 and Cancer
When LINE-1 retrotransposition is out of control, it can lead to
diseases. More than 1,000 articles focusing on LINE-1 and cancer
are available in the PubMed archive (Rodic, 2018).

LINE-1 Hypomethylation and Cancer
The global hypomethylation of the genome promotes
chromosomal instability, genomic instability, and genetic
heterogeneity because specific changes in DNA methylation can
affect a variety of genome sequences, especially the intergenic
and intronic regions of the DNA, resulting in chromosome
instability and mutations (Wilson et al., 2007). LINE-1 promoter
hypomethylation is a biomarker for genome-wide DNA
hypomethylation, which is itself a major hallmark of cancer.
Thayer et al. (1993) first demonstrated the methylation status
of LINE-1 in cancer cells. Since then, LINE-1 hypomethylation
of tumors has attracted widespread attention (Thayer et al.,
1993). LINE-1 hypomethylation was reported to be associated
with poor survival in more than 200 cases of gastric cancer,
suggesting its potential as a prognostic biomarker (Shigaki
et al., 2013). This phenomenon was also subsequently found
in lung cancer, liver cancer, esophageal cancer, prostate cancer,
and endometrial cancer (Iwagami et al., 2013; Kawano et al.,
2014; Lavasanifar et al., 2019). Ogino et al. (2008) analyzed
643 colon cancer samples from two independent prospective
cohorts, demonstrating a linear correlation between LINE-
1 hypomethylation and aggressive tumor behavior. It has
been reported that global DNA hypomethylation promotes
aggressive tumor behavior by amplifying oncogenes or through
abnormal expression of microRNAs (Baba et al., 2014, 2018).
In esophageal cancer with high mortality and poor endoscopic
screening sensitivity, LINE-1 hypomethylation can serve as a
good diagnostic biomarker, thereby improving 5-year survival
(Shah et al., 2013). LINE-1 hypomethylation can also be seen
in some precancerous lesions. For example, in colorectal
cancer, LINE-1 hypomethylation had no significant difference
between adenomas and cancerous tissues, but it was significantly
lower in adenomas than in normal tissues (Dawwas, 2014).
Therefore, LINE-1 hypomethylation also can be used as an early
biomarker for cancer.

However, there was no significant difference in the
hypomethylation of LINE-1 between the blood samples
of patients with leukemia and those of normal subjects
(Barchitta et al., 2014).

LINE-1 Integrations and Cancer
Many tumor tissues have been found to present a high level
of LINE-1 activity that can rapidly increase their copy number
through the “copy-and-paste” mechanism (Dunaeva et al., 2018).
LINE-1 can be used as cis-regulatory elements to regulate
the expression of host genes (Wanichnopparat et al., 2013).
Pan-cancer Analysis of Whole Genomes analysis of 2,954
cancer genomes from 38 histological subtypes revealed that
aberrant LINE-1 integrations could lead to gene rearrangement
(Rodriguez-Martin et al., 2020). LINE-1-mediated rearrangement
can trigger oncogene amplification. In breast cancer, Morse and
colleagues first proposed that hypomethylation activates LINE-
1 which can utilize the target primed reverse transcription
pathway to insert into the oncogene MYC, causing tumor-specific
rearrangement and amplification (Morse et al., 1988). LINE-
1 was found to induce the amplification of CCND1 oncogene
in esophageal tumor by inducing the breakage–fusion–bridge
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FIGURE 1 | Structure of LINE-1 and LINE-1 retrotransposition cycle.

cycles (Rodriguez-Martin et al., 2020). LINE-1 can mediate
the deletion of tumor suppressor genes. It may be through X
inactivation mechanism that LINE-1 mRNA forms facultative
heterochromatin in the inactivated region or LINE-1 mRNA
and pre-mRNA form RISC complex to degrade complementary
mRNA (Allen et al., 2003; Aporntewan et al., 2011). In colon
cancer, Miki et al. reported that LINE-1 insertion disrupts the
tumor suppressor gene APC, which can lead to gene inactivation
(Miki et al., 1992). In lung squamous cell carcinoma, we
found that LINE-1 insertion into tumor suppressor gene FGGY
promotes cell proliferation and invasion in vitro, and facilitates
tumorigenesis in vivo (Zhang et al., 2019).

High Expression of ORF1 and ORF2 of
LINE-1 and Cancer
The activation of LINE-1 increases the translation of ORF1 and
ORF2, which are not expressed in normal somatic tissues. ORF1
encodes an RNA-binding protein, and high expression level of
ORF1 was proved to be more common in most of the cancers
and therefore as a diagnostic marker. In breast cancer, high
expression of nuclear ORF1 is associated with distant metastasis
and poor prognosis (Harris et al., 2010). In high-grade ovarian
carcinoma, the ORF1 level was high and correlated to the loss
of TP53 (Rodic et al., 2014). The expression of both the LINE-1
ORF1 and c-Met protein was significantly increased and peaked
in early stage in ovarian cancer, suggesting that LINE-1 ORF1
significantly activates c-Met (Ko et al., 2019). In tumor cell
experiments, increased mRNA and protein expression of LINE1-
ORF1 can result in significant enhancement in cell proliferation
and colony formation (Tang et al., 2018). It is worth noting that
the expression of ORF1 was heterogeneous and had histological
specificity. Cancers originating in the endometrium, such as
biliary tract, esophagus, bladder, head and neck, lung, and colon,
exhibit ORF1 overexpression, whereas other cancers, such as
renal, liver, and cervical cancer, show little expression of ORF1

(Ardeljan et al., 2017). Recent studies have shown that an ELISA
method to measure ORF1 in serum can be better in prostate
cancer detection (Hosseinnejad et al., 2018).

ORF2 encodes a protein with reverse transcriptase and
endonuclease activities. High expression of endonuclease induces
double-strand DNA breakage that can aggravate DNA damage
repair and increase genomic instability (Kines et al., 2014).
Reverse transcriptase activation can promote cell proliferation
and differentiation and also alter the non-coding RNA
transcription spectrum and other epigenetic phenotypes,
resulting in alterations in cell regulatory networks, tumor
development, and other important pathological processes (Rodic
and Burns, 2013; Burns, 2017; Christian et al., 2017). ORF2 can
express early in the tumorigenesis process, as it can be detected
by a highly specific monoclonal antibody (mAb chA1-L1) in both
transitional colon mucosa and prostate intraepithelial neoplasias
(De Luca et al., 2016). However, studies have shown that chA1-
L1 recognizes both ORF2p and the transcriptional regulator
BCLAF1, so it is not specific (Briggs et al., 2019). But recently,
tumor proteome profiling studies based on mass spectrometry
have shown that ORF2p was difficult to be detected, and after
affinity capture of ORF1p, ORF2p has not been detected in stem
cell LINE-1 proteome analysis (Vuong et al., 2019; Ardeljan
et al., 2020). Therefore, the detection and application of ORF2 in
tumors are still worth exploring.

LINE-1 and Metabolic Disorders
New research has shown that LINE-1 is also associated with blood
sugar and lipid levels (Turcot et al., 2012). LINE-1 methylation is
associated with type 2 diabetes mellitus (T2DM). Studies showed
that, compared with hypermethylation, LINE-1 hypomethylation
was associated with a higher risk of worsening metabolic status,
independent of other classic risk factors (Martin-Nunez et al.,
2014). This discovery highlights the potential role for LINE-1
DNA methylation as a predictor of the risk of T2DM or
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other related metabolic disorders. LINE-1 DNA methylation is
associated with increased LDL cholesterol and decreased HDL
cholesterol levels, and these metabolic changes increase the risk
of cardiovascular disease (Pearce et al., 2012). LINE-1 DNA
methylation is also associated with many blood-based metabolic
biomarkers. In fetal neural tissue with neural tube defects, it was
found that the low methylation level of LINE-1 was associated
with the significant reduction of vitamin B12 in maternal plasma,
as well as lower folate levels and increased concentrations of
homocysteine (Wang et al., 2010). Folic acid and other B vitamins
play an important role in the biosynthesis of new purines and
pyrimidines. Therefore, the methylation status of LINE-1 can be a
predictor of some metabolic diseases. Current studies have shown
that LINE-1 can also regulate metabolism by inserting metabolic
genes. It was reported that LINE-1 insertions in the FGGY gene
can upregulate cytochrome P450, arachidonic acid metabolism,
and glycerolipid metabolism. These metabolic disorders can lead
to the occurrence of a variety of diseases and poor prognosis
(Zhang et al., 2019).

LINE-1 and Neurological Disorders
LINE-1 can affect the developing brain at different stages of
health and disease (Suarez et al., 2018). Ataxia telangiectasia
(AT) is a progressive neurodegenerative disease caused by
ataxia telangiectasia mutated (ATM) gene mutation. In 2011,
researchers found that in nasopharyngeal carcinomas with ATM
deficiency, LINE-1 retrotransposition increased, and ORF2 copy
number increased in AT neurons, thus verifying the correlation
between LINE-1 retrotransposition and ATM deficiency (Coufal
et al., 2011). High expression of LINE-1 was found in Rett
syndrome caused by mutation of methyl CpG binding protein
2 (MeCP2) in the X-linked gene, which was caused by the
inclusion of LINE-1 5′-UTR sequence in the MeCP2 target,
leading to methylation-dependent repression (Muotri et al.,
2010). LINE-1 is involved in the aging process. In patients
with frontotemporal lobe degeneration, LINE-1 transcripts were
found to be elevated (Li et al., 2012). LINE-1 hypomethylation
has been observed in most psychiatric studies. Increased copy
numbers of LINE-1 as a result of LINE-1 hypomethylation were
also found in patients with schizophrenia, bipolar disorder, and
major depressive disorder (Liu et al., 2016; Li et al., 2018). The
link between LINE-1 methylation levels and Alzheimer’s disease
is still being studied.

LINE-1 and Genetic Disorders
LINE-1 is reported to be related to chromosome disorders.
The first observation of LINE-1 insertion was in 1988, when
Kazazian et al. observed a new exon of F8 LINE-1 insertion in
the X-linked gene, which is a gene encoding coagulation factor
VIII in a patient with hemophilia A (Kazazian et al., 1988).
Then, a LINE-1 insertion was found in the CHM gene of a
patient diagnosed with choroideremia. The reverse integration
of a LINE-1 element into exon 6 resulted in aberrant splicing
of the CHM mRNA (van den Hurk et al., 2003). Furthermore,
LINE-1 can also promote mobilization of other RNAs in
trans, Alu, and SVA, which can be trans-mobilized, leading to
gene insertions (Kemp and Longworth, 2015). Retrotransposon

insertions were found to account for up to 0.4% of all NF1
mutations (Wimmer et al., 2011). Neurofibromatosis type I is
an autosomal dominant disorder caused by NF1 gene mutations
(Messiaen et al., 2011). Alu insertion is located 44 bp upstream
of NF1 exon 41, causing the exon 41 to skip and change the
open reading frame (Payer and Burns, 2019). Only two cases were
thought to be a result of independent SVA insertion in SUZ12P
accompanied by 867-kb and 1-Mb deletions that encompassed
the NF1 gene (Vogt et al., 2014). In autosomal recessive genetic
disease, such as Fanconi anemia caused by SLX4FANCP deficiency
and Aicardi–Goutieres syndrome (AGS) of three-prime repair
exonuclease 1 mutations, LINE-1 expression was upregulated and
pro-inflammatory cytokines were produced through the cGAS–
STING pathway (Brégnard et al., 2016; Suarez et al., 2018).

LINE-1 AND IMMUNE REGULATION OF
DISEASE

LINE-1 and Autoimmune Disease
Hypomethylated and highly expressed LINE-1 has been found
in autoimmune diseases such as systemic lupus erythematosus
(SLE), Sjögren’s syndrome (SS), and psoriasis (Schulz et al., 2006;
Yooyongsatit et al., 2015; Mavragani et al., 2016). LINE-1 RNA
is characterized by viral RNA and exists as RNP particles, which
can be recognized by RNA sensors and activate innate immune
responses (Mavragani et al., 2016). Cell studies demonstrated that
LINE-1 activates the production of IFNβ by RNA pathway (Zhao
et al., 2018). When LINE-1 retrotransposition was inhibited by
RT inhibitors, significant reductions were observed in IFNα,
IFNβ, and IFNγ mRNA levels (Brégnard et al., 2016). LINE-1
transcripts and p40 protein (a 40−kDa RNA binding protein)
that LINE-1 encodes have been detected in SLE and SS patients.
It has been demonstrated that LINE-1 can induce the production
of IFN-I in vitro by TLR-dependent and TLR-independent
pathways (Mavragani et al., 2016). In MRL autoimmune
lymphoproliferative syndrome, LINE-1 ORF2 encoding an RT
and its products are associated with an MHC class I molecule on
the cell membrane (Benihoud et al., 2002). In Fanconi anemia and
AGS, LINE-1 was found to be associated with the activation of the
autoimmune system. LINE-1 also regulates immunity by acting
as a cis-regulatory element through the mechanism of LINE-1
mRNA and pre-mRNA forming RISC complex to degrade the
complementary mRNA (Wanichnopparat et al., 2013).

LINE-1 and Tumor Immunity
In 112 TCGA cancer samples, the scientists measured the
transcriptional activity of 1789 pathways and found that 49 of
176 immune pathways were significantly negatively correlated
with LINE-1 (Jung et al., 2018). LINE-1 is inversely correlated
with the expression of immunologic response genes. Less LINE-
1 activity was found in tumors with high immune activity.
In esophageal cancer tissues, scientists found that the LINE-1
methylation level in tumors was significantly positively associated
with the peritumoral lymphocytic reaction (Kosumi et al., 2019).
The activities of regulatory T cells and PD1 signaling as reported
in cancer immune evasion and chronic inflammatory conditions
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also have negative correlations with LINE-1. It is reported that the
negative correlation between LINE-1 and immune activity may
be caused by the destruction of LINE-1 inhibition, but the specific
mechanism is still unclear. LINE-1 may also mediate immune
tolerance, which may change from immune stimulation mode to
immunosuppression mode through continuous IFN signaling or
directly affect lymphocyte signaling.

LINE-1 and Metabolism-Induced
Immunity
LINE-1 is also associated with blood sugar and lipid levels.
Abnormal glucose and lipid metabolism can lead to metabolic
reprogramming in tumor cells. The most classic metabolism
of tumor is Warburg effect, where a large amount of
glucose is absorbed to fulfill the need for proliferation
and produce lactic acid (Lunt and Vander Heiden, 2011).
The acidic microenvironment caused by lactic acid leads to
impaired T-cell activation and proliferation, prevents NK cell
activation, stabilizes HIF1α to stimulate the polarization of anti-
inflammatory M2 macrophages, and inhibits the production of
IFN-γ in tumor-infiltrating T cells (Husain et al., 2013; Colegio
et al., 2014; Brand et al., 2016). Abnormal lipid metabolism in
tumor cells also can lead to local immunosuppression in the
microenvironment (Hao et al., 2019). LINE-1 can affect local
immune homeostasis by inserting elements into metabolism-
related genes. FGGY is known to encode a protein that
phosphorylates carbohydrates and is associated with obesity and
sporadic amyotrophic lateral sclerosis (Zhang et al., 2011). LINE-
1 retrotransposons suppress FGGY, leading to lipid metabolism
disturbance and diet-induced obesity in mice (Taylor et al.,
2018). Lung squamous cell carcinoma patients with L1-FGGY+
tissue have a poor prognosis, have low levels of CD3+ T
cells, and have high levels of CD68+ macrophages and CD33+
myeloid-derived cells (Zhang et al., 2019). L1-FGGY+ also
regulates the abnormal transcription of cytokines related to the
immunosuppressive micromilieu.

LINE-1 INHIBITION

The correlation between LINE-1 and disease as well as immunity
was analyzed (Figure 2). The life cycle of LINE-1 provides
a plethora of ways to target and inhibit LINE-1 expression

(Banuelos-Sanchez et al., 2019). The inhibition of LINE-1 has
become a treatment strategy for some diseases.

Targeting LINE-1 Methylation
Full-length LINE-1 transcription is driven by a CpG
dinucleotide-rich internal promoter. Hypomethylation of LINE-
1 causes the activation of LINE-1, which causes retroelement
transposition and chromosomal alteration (Saito et al., 2010).
The hypomethylation of LINE-1 has become an important factor
in the occurrence and development of diseases, so maintaining
the state of LINE-1 methylation has become a key method
for the treatment of diseases. Soy isoflavone supplementation
can regulate the level of LINE-1 methylation in head and neck
squamous cell carcinoma (HNSCC). In a clinical trial of 39
patients with HNSCC who took a soy isoflavone supplement
(300 mg/day) orally for 3 weeks before surgery, a positive
correlation was found between LINE-1 methylation level and
daily isoflavone intake (Rozek et al., 2019). Some cell-based
studies and clinical data have shown that LINE-1 dysregulation
is associated with tumor drug resistance (Zhu et al., 2015;
Lavasanifar et al., 2019). It was found in breast cancer cells
treated with paclitaxel that DNMT3a, a member of the DNA
methyltransferase family, could enhance the methylation level in
the gene by binding to the inner region of the LINE-1 gene, and
then upregulate the expression level of LINE-1. Downregulating
the expression of DNMT3a can effectively inhibit the expression
of LINE-1 (Wang et al., 2020). LINE-1 retrotransposon silenced
also through histone modifications. Histone demethylase
KDM4B may enhance the LINE-1 retrotransposition efficacy,
whereas depletion of KDM4B reduced it in breast cancer
(Xiang et al., 2019). Elevated LINE-1 expression was found in
PC9 drug-tolerant persister (DTP) cancer cells treated with
the EGFR inhibitor erlotinib. HDAC inhibitors can suppress
LINE-1 in DTP cancer cells (Guler et al., 2017). Currently, DNA
methyltransferase inhibitors and histone deacetylase inhibitors
have entered clinical trials (Gaillard et al., 2019).

Targeting RT Activity
LINE-1 elements harbor ORF1 and ORF2, which has reverse
transcriptase (RT) activity, and RT inhibition may be a
novel, non-cytotoxic anticancer therapy strategy (Sciamanna
et al., 2018). RT is a key player in retrotransposition and
functions by transcribing LINE-1 mRNA or other RNAs to

FIGURE 2 | The relationship between LINE-1 and diseases and their regulatory mechanisms.
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cDNA at the integration sites (Khalid et al., 2018). Specific
reverse transcription inhibitors, including nevirapine (NVR)
and efavirenz (EFV), which target the HIV-1-encoded RT and
are currently used in AIDS therapy, reduce cell proliferation
and promotes differentiation of a variety of cancer cell lines
of unrelated histological origin (Mangiacasale et al., 2003;
Landriscina et al., 2005; Sciamanna et al., 2005). In vivo
assays using murine models inoculated with various human
cancer cell lines revealed that daily treatment of animals with
EFV significantly delayed the progression of tumors (Oricchio
et al., 2007). NVR and EFV dramatically countered L1-FGGY
abundance, inhibited tumor growth, attenuated metabolism
dysfunction, and improved the local immune evasion in lung
squamous cell carcinomas (Zhang et al., 2019). EFV has
recently undergone a phase II clinical trial in patients with
metastatic prostate cancer (Houédé et al., 2014). Another RT
inhibitor, F2-DABOs, has shown anti-proliferative activity in
nude mice, helping to promote cell differentiation and inhibit
tumor growth (Sbardella et al., 2011). Later, the nucleoside
reverse transcription inhibitor abacavir was also shown to inhibit
cell growth, migration, and invasion (Carlini et al., 2010).
Capsaicin is the main chemical component of Asiasari radix
and Capsicum annuum, as well as the major component of a
Chinese traditional herbal medicine, Sho-seiryu-to (Friedman
et al., 2018). Capsaicin suppresses LINE-1 by inhibiting the
RT activity of LINE-1 ORF2P, which is the LINE-1-encoded
RT responsible for LINE-1 activity (Nishikawa et al., 2018).
A recent study revealed that azidothymidine (AZT) inhibits
the RT activity of ORF2P in a fetal oocyte attrition model.
Experiments showed that AZT-treated oocytes have a reduction
of LINE-1 ORF1 ssDNA compared with untreated oocytes
(Tharp et al., 2020). It is important to note that RT inhibitors
do not eliminate the tumor but only control its progression.
Therefore, in addition to the anti-AIDS drugs approved by the
FDA, the combination of Chinese and western medicine can be
regarded as an emerging treatment.

Combined Immunotherapy
Recent studies suggest that LINE-1 hypomethylation may be a
positive indicator of immunotherapy. DNA methyltransferase
(DNMT) is an important epigenetic molecule that catalyzed
DNA methylation and can induce the development of various
tumors. Downregulating the expression of DNMT can effectively
inhibit the expression of LINE-1 (Wang et al., 2020). So
DNA methyltransferase inhibitors (DNMTis) play an important
role in the anti-tumor process. DNMTI can improve tumor
immunogenicity, promote NK cells and CD8+ T cells to
play a cell-mediated cytotoxic role, and promote immune
response to participate in antigen commission by regulating
immunosuppressive cells (Chiappinelli et al., 2015). DNMTi
can enhance the expression of cancer-testis (CT) antigen,
making the tumor more susceptible to CT antigen vaccine. The
combination of decitabine, a DNA methyltransferase inhibitor,
and cancer-testis/cancer-germline antigen NY-ESO-1 vaccine
has a good therapeutic effect in the primary treatment of
human recurrent epithelial ovarian cancer (Odunsi et al.,
2014). A clinical trial has shown that combination therapy

with carboplatin and anti-programmed death-1 has a good
therapeutic effect in lung cancer because carboplatin can
induce LINE-1 expression (Langer et al., 2016). Therefore,
LINE-1 can be used as a target of combined immunotherapy
in tumor therapy.

Other Inhibitors
Recently, a number of other regulatory approaches have been
reported. In somatic cells, microRNAs (miRNAs or miRs) also
regulate the activity of LINE-1 (Idica et al., 2017). MiR-128
regulates LINE-1 activity in somatic cells by targeting the nuclear
import factor transportin-1 (TNPO1) 3′-UTR, which mediates
nuclear import and requires RanGTP for cargo delivery into the
nucleus (Twyffels et al., 2014). MiR-128 inhibits the expression of
TNPO1 mRNA and protein, and TNPO1 deficiency suppresses
LINE-1 mobilization by inhibiting nuclear import of LINE-
1–RNP (Idica et al., 2017). MiR-128 also guides the miRNA-
induced silencing complex to bind directly to a target site
residing in the ORF2 RNA of LINE-1 (Hamdorf et al., 2015).
At present, a novel target of miR-128 has been identified as
heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), which
is required for LINE-1 retrotransposition (Goodier et al., 2013;
Fung et al., 2019). MiR-128 represses hnRNPA1 mRNA and
protein by targeting the CDS of hnRNPA1, which interacts
with LINE-1 ORF1p via RNA bridge to promote LINE-1
mobilization (Goodier et al., 2013). This interaction results in
translational repression of the LINE-1 retrotransposition, thereby
reducing the risk of LINE-1-mediated mutagenesis (Pedersen
and Zisoulis, 2016). Therefore, microRNAs can be a target for
LINE-1 inhibition.

Aryl hydrocarbon receptor (AHR) is a ligand-activated
transcription factor that activates LINE-1 expression (Teneng
et al., 2007). AHR is overexpressed in breast and thyroid cancers,
suggesting that these tumors also overexpress LINE-1 (Powell
et al., 2013). Lai et al. found that biseugenol, a novel AHR
inhibitor, impeded cancer growth and inhibited EMT in gastric
cancer cells (Lai et al., 2014). These findings suggest that targeting
AHR with small molecule inhibitors may be a novel therapeutic
approach. ORF1P phosphorylation by protein kinase A is also
required for LINE-1. Kinase inhibitors specifically designed to
target LINE-1 ORF1P phosphorylation may be associated with
inhibition of LINE-1 (Bojang et al., 2013). Therefore, there is
room for drug development research focusing on targeting and
inhibiting LINE-1 ORF1P phosphorylation.

CONCLUSION

The activation of LINE-1 retrotransposon is associated with a
variety of human diseases and is involved in the occurrence
and progression of disease through retrotransposition-dependent
and retrotransposition-independent mechanisms. Currently, it
has even become a marker of tumorigenesis and prognosis and
is related to immune regulation. The effective inhibition of
LINE-1 activation has become a treatment for some diseases.
The inhibition of LINE-1 in animal experiments can inhibit

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 August 2020 | Volume 8 | Article 657

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00657 August 6, 2020 Time: 20:32 # 7

Zhang et al. LINE-1 Retrotransposition in Human Disease

the occurrence and development of tumors, so the clinical
application of LINE-1 inhibitors is imminent. In addition to
exploring some known inhibitors, other mechanisms of LINE-
1 inhibition should also be explored. We summarized the
relationship between LINE-1 and disease-related immunity, and
proposed that LINE-1 may affect the immune status of the
body by regulating metabolism, leading to poor prognosis.
Metabolic substances can affect the immune microenvironment,
for example, lactic acid can lead to immunosuppressive
microenvironment, leading to poor prognosis of tumors. The
dysregulation of LINE-1 can lead to the disorder of glucose
and lipid metabolism, and the inhibition of glucose and lipid
metabolism may reverse the disease progression caused by
LINE-1. Now the anti-tumor effect of regulating the body’s
metabolism has entered clinical trials, such as the significant
effect of metformin in the treatment of tumors. Therefore, the
metabolic status of diseases caused by LINE-1 can be checked.
Metabolic therapy combined with LINE-1 inhibitors may inhibit

the progression of LINE-1 and may improve the immune
microenvironment to achieve the optimal therapeutic effect.
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