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The effect of decongestion on nasal 
airway patency and airflow
Qiwei Xiao1,2, Alister J. Bates1,2,3, Raul Cetto4 & Denis J. Doorly4*

Nasal decongestant reduces blood flow to the nasal turbinates, reducing tissue volume and increasing 
nasal airway patency. This study maps the changes in nasal anatomy and measures how these changes 
affect nasal resistance, flow partitioning between superior and inferior cavity, flow patterns and wall 
shear stress. High-resolution MRI was applied to capture nasal anatomy in 10 healthy subjects before 
and after application of a topical decongestant. Computational fluid dynamics simulated nasal airflow 
at steady inspiratory flow rates of 15 L.min−1 and 30 L.min−1 . The results show decongestion mainly 
increases the cross-sectional area in the turbinate region and SAVR is reduced (median approximately 
40% reduction) in middle and lower parts of the cavity. Decongestion reduces nasal resistance by 
50% on average, while in the posterior cavity, nasal resistance decreases by a median factor of 
approximately 3 after decongestion. We also find decongestant regularises nasal airflow and alters 
the partitioning of flow, significantly decreasing flow through the superior portions of the nasal cavity. 
By comparing nasal anatomies and airflow in their normal state with that when pharmacologically 
decongested, this study provides data for a broad range of anatomy and airflow conditions, which 
may help characterize the extent of nasal variability.

The human nose acts as the initial conduit for inhaled air, while simultaneously conditioning, filtering, and 
sensing the inhaled volume. Many pathologies, such as allergic rhinitis, rhinosinusitis, nonallergic rhinitis, nasal 
polyps, and the common cold can cause nasal obstruction1, restricting airflow and affecting the secondary func-
tions of the nose. Therefore, there is a significant interest in characterizing nasal airflow in healthy subjects and 
those with disease. The goal of these studies is to aid clinical decision making aimed at treating nasal pathologies. 
Nasal airflow is difficult to measure in vivo, so many studies have used computational fluid dynamics (CFD)2–4 
or experimental methods such as particle-image velocimetry (PIV)5–8 to model respiratory airflow. It is observed 
that CFD under-predicts resistances determined by rhinomanometry9. Certainly the fact that nasal resistances 
are determined at higher transnasal pressure losses than common in restful breathing makes direct comparison 
difficult, since geometries would need to be acquired at a matching, sustained and relatively forceful inhalation. 
However previous studies have shown CFD and rhinomanometry are well-correlated, so although both methods 
have limitations, CFD can provide good insight9,10.

Nasal obstruction can be treated surgically11. Several studies have investigated the application of CFD to 
improve surgical success rates12–16. These studies focused on the effect of local modifications to nasal structure 
aimed at reducing nasal obstruction over a limited number of subjects. The findings from these studies dem-
onstrate how nasal cavity anatomical structures affect nasal resistance. In addition, Suhyla et al.17 evaluated the 
effect of turbinectomy on the secondary nasal function olfaction using CFD. Nasal airflow simulations have also 
been used to review the effectiveness of surgical interventions18. We are not however aware of previous studies 
which have sought to relate the differing changes in anterior vs posterior nasal cavity on their corresponding 
contributions to overall nasal resistance.

Temporary alleviation of nasal obstruction is also commonly effected via the application of nasal 
decongestant19, especially for treatment of acute rhinosinusitis20. Nasal decongestant reduces bloodflow to the 
erectile tissue within the nose, reducing the volume of the nasal turbinates and increasing the patency of the 
nasal passages. Larissa et al. have shown decongestant can significantly reduce nasal airway resistance21 through 
in vivo measurements, however the effect of decongestion on nasal anatomy and nasal airflow, including both 
the overall anatomical and localised anatomical changes, have not been well quantified, especially over a sizeable 
cohort. Therefore, the first aim of this paper is to quantify the changes in nasal airflow due to the application of 
nasal decongestant to provide a reference for clinicians when comparing the reduction in nasal resistance that 
may be achieved via nasal decongestant.
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Nasal anatomy might also vary with time due to a process known as the nasal cycle: the periodic expansion 
and contraction of erectile tissue within one side of the nose, followed by the other side. Heetderks et al. found 
that 80% of 60 subjects exhibited this nasal cycle22 and similarly, Hasegawa et al. found 72% of 50 subjects had a 
clearly defined nasal cycle using rhinomanometry23. Each side of the cavity congests and decongests repeatedly 
over a period between 25 min to 8 h24, and the cycle has been observed to continue for at least 7 days25. Eccles 
et al. found that unilateral nasal cavity resistance changed almost fourfold due to the nasal cycle26. However, most 
of the subject specific CFD or experimental studies are based on nasal geometries obtained from medical imaging 
which captures the airway at a single time-point27–29. The second aim of this study is to use nasal decongestant 
to explore the range over which nasal anatomy and airflow parameters can vary in order to map the extremes 
of nasal geometry and nasal resistance. This information serves as an indication of the maximum range of nasal 
function that could occur throughout the day, rather than just at the instant that is captured by medical imaging 
and to provide data on the range of variation for nasal anatomical and aerodynamic parameters that may be 
applied to future studies based on single time-point imaging.

Materials and methods
Subjects.  There is a large degree of inter-subject variability in nasal anatomy30, which Zhao et al.31 demon-
strated across 22 healthy subjects. However most CFD studies are limited in the number of subjects they con-
sider by the computational expense of performing CFD simulations32.

This study used 10 volunteers aged between 21 and 38. All subjects had no nasal complaints and no rhino-
scopic abnormalities on anterior rhinoscopy and fibreoptic nasoendoscopy and subjects with a score less than 
7 of sino-nasal outcome test (SNOT-22) were chosen. The SNOT-22 is a validated 22-item CRS-specific QoL 
instrument which is scored using a Likert scale and has been widely used to assess symptom severity and qual-
ity of life for chronic rhinosinusitis33,34. Furthermore, subjects with nasal disease or other clinically significant 
diseases were also excluded.

Ethical approval was granted by the National Health Service (NHS) Health Research Authority NRES Com-
mittee South East Coast-Surrey with reference number 06/Q0602/18. Informed consent was obtained from each 
of the subjects included in this study. All methods were carried out in accordance with relevant guidelines and 
regulations.

Imaging and procedures.  Anatomical MRI scans were obtained on a 3T GE Healthcare Discovery MR750. 
Images were acquired in the coronal plane with a spatial resolution of [0.35, 0.35, 1.2] mm. Images were acquired 
at two conditions: before and 10 min after the application of topical decongestant.

Subjects remained immobilized between scans with their heads placed in a coil and 3 drops of topical alpha 
adrenergic agent xylometazoline HCL 0.1% drops were administered by an experienced Ear, Nose and Throat 
(ENT) surgeon. Topical nasal decongestants are fast-acting, potent drugs which are especially effective for the 
reduction of nasal congestion. They can be classified into two major groups: (1) sympathomimetic amines 
(cocaine, amphethamine, adrenaline, ephedrine) and (2) imidazolines (oxymetazoline and xylometazoline). 
Of the imidazolines, oxymetazoline, a selective − 1 and partial − 2 agonist, and xylometazoline, an − 2 agonist, 
are the most popular and clinically used derivatives. Both achieve their decongestive effect via activation of-
adrenergic receptors, resulting in vasoconstriction of the blood vessels and, consequently, resumption of nasal 
airflow. Onset of action occurs within 5–10 min for a duration of action of 5–6 h35.

Creation of virtual nasal model.  The MR images were segmented, and a 3D surface mesh was created by 
an experienced ENT surgeon using software package Mimics 15.0 (Materialise, Leuven, Belgium, https://​www.​
mater​ialise.​com).

Figure 1 shows a 3D nasal geometry in grey. In order to provide an anatomical framework to compare similar 
locations in different subjects, the geometry is labelled with anatomical landmarks (black and blue lines). These 
landmarks represent features such as the nostril, nasal valve, septum and nasopharynx. Vertical planes 1V, 2V, 
and 3V equally divide the nasal airway between anterior and posterior septum. Horizontal planes 1H and 2H 
divide the nasal cavity into inferior, middle and superior sections. These lines equally divide the nose between 
the hard palate bone and a line extending from posterior wall of the sphenoid sinus to the nasal bony septum. 
The red line indicates the geometric centerline of the nasal airway; measuring from anterior to posterior, the 
centerline length is normalized to a value of 0 at the nostril and 1 at the nasopharynx, which is defined above the 
tip of the epiglottis. This facilitates the comparison of nasal anatomies among different subjects.

The anatomical geometry created from MRI extends from the anterior nose to nasopharynx, as shown in 
Fig. 1. However, the domain of the CFD simulation was extended at the inlet and outlet. A hemisphere of 
diameter 0.5 m was attached to the exterior face to act as a flow inlet. Doorly et al.36 showed the velocity of 
air approaching the nose during inhalation reduces rapidly. An extension of this size is more than sufficient 
to ensure a natural flow profile develops at the entrance to the nose; we have not investigated the minimum 
diameter needed. Previous study have shown that a smaller extension of order of 50 mm diameter is sufficient 
for modelling inhalation36. At the outlet in the nasopharynx, an extruded tube was generated to prevent reverse 
flow at the outlet.

CFD simulation methodology and boundary conditions.  The commercial software STAR-CCM+ 
(https://​www.​plm.​autom​ation.​sieme​ns.​com) was used to solve for the flow. This CFD package solves the govern-
ing Navier–Stokes equations using the finite volume method. In this formulation, transport equation of a general 
property of flow termed as φ can written in discretized form as follows:

https://www.materialise.com
https://www.materialise.com
https://www.plm.automation.siemens.com
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where t (s) is time, f represents the face of each element surface; V ( m3 ) is the volume; D ( m2/s) is the diffusion 
coefficient; �a represents a surface cell and ρ ( kg/m3 ) is flow density.

Each simulation consisted of approximately 4 million polyhedral elements with 7 prism layers at the near-wall 
region. Quasi-steady transient simulations were performed (i.e. transient simulations with constant boundary 
conditions) with a time step of 1 ms. For each subject, two mass flow rates were simulated: 15 L.min−1 represents 
the mean flow rate during the inspiratory phase of restful breathing of an adult, while 30 L.min−1 represents the 
peak flow rate during the inspiratory phase37–39. A zero velocity gradient was applied at the outlet (also known 
as pressure outlet). All other surfaces were treated as a rigid wall with the non-slip condition (zero velocity 
at the surface). Nasal airflow was assumed to be incompressible and laminar due to the low velocity of nasal 
airflow15,36,40,41. Li et al.37 showed that laminar studies achieve suitable results for the 15 L.min−1 flowrate. Zhao 
et al.42 showed for flowrates up to 55 L.min−1 there was no obvious difference in flow results between laminar 
model and k-ω turbulent models. In addition, we also conducted k-ω and large eddy simulations, and the total 
pressure loss between those simulations showed minor differences (of order 0.4% ) as tabulated in Appendix E. 
The effects of gravity and buoyancy were neglected.

Both spatial and temporal convergence studies were conducted. The mesh independence study was conducted, 
ranging from 2.5 million to 6.3 million (for both normal and decongested states in a representative geometry) 
and for time steps ranging from 5 ms to 0.1 ms. The difference in trans-nasal total pressure loss was at most 1.2% 
between that obtained for a mesh containing approximately 4 million elements, run with a 1 ms time step, versus 
the corresponding loss measured using 6.3 million mesh elements run with a time step of 0.1 ms. The unsteady 
simulations revealed a small amplitude flapping motion occurs in the nasopharynx, which is typically where 
transitional disturbances are most amplified. This results in an oscillation of the total pressure loss of order 1 % , 
which would account for the failure of steady laminar flow solvers to converge, but this is not significant for flow 
distribution within the cavity or for pressure loss. Appendix A shows the mesh view on multiple pre-defined 
cross-sectional planes within the nasal cavity.

Geometric analysis of the nasal cavity.  The cavity cross-sectional area (CSA) and the perimeter of each 
cross-sectional plane were calculated before and after decongestion to analyze the changes in local geometry. 
The cavity volume (CV) and surface area (SA) of each nasal cavity was measured bounded by the planes at the 
nostril and nasopharynx and the ratio between them was calculated to produce the surface area to volume ratio 
(SAVR). All the geometrical measures are presented in a bilateral manner which is a summation of the left and 
right side of the cavity.

Nasal airflow measurements.  Bilateral results for a flow-related quantity φ were calculated as a massflow 
weighted summation between left and right cavity. The massflow weighted summation is defined by the equa-
tion below:

(1)
d

dt
(ρφV)+

∑
[ρφ(�u · �a)]f =

∑
(D∇φ · �a)f

Figure 1.   Left side of the figure shows 3D surface view of one normal nasal cavity (Subject-D). Blue lines 
represent planes defined according to nasal cavity anatomical landmarks. The red dashed line represents the 
nasal cavity centerline labeled with normalized distance from 0 to 1. Grey lines represent coronal cross-sectional 
planes normal to the centerline. 1H and 2H black lines divide nasal cavity into three partitions vertically. Right 
side is the view of the boundary setup in CFD solver, and the half sphere attached with nasal surface ensures a 
natural inflow profile.
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where φ represents a general quantity.

Reynolds number.  Reynolds number is defined as

where ρ (kg/m3 ) is the fluid density, U (m/s) is mean flow velocity, d (m) is the length scale, and µ (Pa.s) is fluid 
dynamic viscosity.

The nasal cavity cross-sectional plane is not a circle, so the hydraulic diameter ( dh ), defined in Eq. (4) is used 
as a representative length scale in the calculation of Reynolds number.

In Eq. (4), A ( m2 ) and P (m) denote respectively area and perimeter of the airway cross section, respectively. The 
mean velocity in Eq. (3) is equal to the pipe flow rate divided by the cross-sectional area, U = Q

A . Substituting 
this relation and the hydraulic diameter (Eq. 4) into the Reynolds number equation (Eq. 3), and cancelling the 
area terms gives

where Q ( m3/s ) is flow rate. Since air can be considered incompressible with constant viscosity in respira-
tion, Reynolds number at a given flow rate is therefore inversely proportional to the perimeter of the cavity 
cross-section.

Pressure and resistance.  Resistance is defined as the ratio between pressure and flowrate through the cross-sec-
tional planes. In this study, the mean total pressure on each cross-sectional plane was used to calculate resistance.

On each one of the series of cross-sectional planes, the surface-averaged total pressure is calculated then 
divided by the flow through the plane. The incremental difference in mean pressure between planes divided 
by the volumetric flow rate gives the contribution of the intraplane portion to the total resistance; cumulative 
resistance is simply the addition of resistance up to the point of interest.

Data analysis.  Boxplots are used to illustrate the results, where upper and lower edges of the box indicate the 
first and third quartile points respectively, outliers are marked with a red cross and a horizontal red line indicates 
the median. The maximum and minimum value are represented by top and bottom bars. To test the significance 
of changes observed, the Wilcoxon signed-rank test was used43. The null hypothesis for the paired data set is that 
the median differences have a distribution centred about zero. Following convention, a 95% confidence level is 
chosen as the threshold to distinguish significant from non-significant results44,45, to indicate whether random 
variation produced the observed results with the caveat that p-value are not by themselves enough to gauge 
actual significance46.

Results
Normalised nasal anatomy.  Table 1 shows the mean location and corresponding standard deviation of 
each anatomical landmark as a fraction of distance along cavity centerline. The bottom row shows the mean 
distance of each landmark from the nostril plane in millimeters. A full table of results for each subject is in 
Appendix B.

Effect of decongestant on nasal anatomy.  Cross‑sectional area.  Figure 2 shows the intranasal CSA 
for both normal (red) and decongested (blue) cavities. The horizontal axis starts from the location of nostril 

(2)φbilateral =
ṁleft · φleft + ṁright · φright

ṁleft + ṁright

(3)Re =
ρUd

µ

(4)dh =
4A

P

(5)Re =
4ρQ

µP

Table 1.   Mean location of anatomical landmark (defined by planes) of all the subjects in both normalised 
units and millimeters. The third row lists the normalised standard deviation of each plane location. Nos 
Nostril plane, NV Nasal valve plane, AS Anterior septum, PS Posterior septum, Naso Nasopharynx plane. The 
anatomical landmarks of each subject are in similar locations with respect to the normalized cavity length, with 
the maximum standard deviation less than 5 %.

Plane Nos NV AS 1V 2V 3V PS Naso

Mean 0 0.12 0.18 0.32 0.45 0.58 0.72 1

STD 0 0.03 0.04 0.04 0.03 0.04 0.04 0

Mean(mm) 0 13.5 20.3 36.0 50.6 65.3 81.0 113
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plane and ends at the nasopharynx plane (as described in Fig. 1). The landmarks defined previously (Table 1) are 
also indicated as vertical dashed lines labelled along the horizontal axis.

For normal state nasal cavities, CSA is approximately constant between plane AS and 1V. In contrast, for 
decongested cavities the CSA area rapidly expands between these planes, from 2.2 cm2 at plane AS to 3.3 cm2 at 
plane 1V. From plane 1V to PS, CSA is relatively constant along each nasal cavity but is significantly larger in the 
decongested cases (mean 3.8 cm2 vs 2.8 cm2 ). This represents an increase in CSA of 34.8% due to decongestant 
before the posterior septum.

Changes in the anterior nose can highly affect how inhaled air is directed in the nasal cavity. Figure 2 suggests 
the CSA of the anterior nose in the region of the nasal valve reduces slightly, but this is likely not significant, see 
below. The CSA clearly increased predominantly in the posterior aspect of the nasal cavity as that is the region 
surrounded by the most erectile tissue.

Figure 2a also shows the mean CSA measured along the nasal cavity measured by Zhao et al. from a cohort 
of 22 healthy adults. Zhao et al’s study measured CSA normal to the anterior-posterior axis rather than normal 
to a centerline. Their results show good agreement to these nasal cavity measurements throughout the turbinate 
region. However their results deviate in the region of the nostril, since the airway centerline used here as refer-
ence direction rotates approximately 90 degrees from the anterior-posterior reference axis used in that study. 
Regarding the apparent reduction in nasal valve CSA along the centerline, patient movement by flaring the 
nostrils or slight changes in segmentation threshold may account for the change with respect to this orientation. 
As a separate check 47, direct measurement of nasal valve area on a cross-sectional plane at a 90 degree tangent 
to the palate using anatomical landmarks showed in contrast an increase in nasal valve area in accordance with 
previous results.

Surface area, cavity volume, surface area volume ratio.  To quantify overall changes in geometry, cavity SA, CV, 
and the SAVR are compared before and after decongestion (Fig. 3).

Decongestion is found to significantly increase nasal cavity volume, but not cavity surface area. Consequently 
decongestion significantly reduces SAVR (median SAVR reducing from 11 to 8.1 cm−1).

The effect of decongestion was less marked in the superior parts of the nasal cavity compared with changes 
observed in middle and inferior regions. This is illustrated in the data ploted in Fig. 4, which compares SAVR in 
three vertical sections of the nasal cavities (defined in Fig. 1). SAVR in the superior cavity (S) reduces from 13 
to 11 cm−1 after decongestion, but the difference is not statistically significant. However, SAVR for the middle 
(M) and inferior (I) sections shows significant reduction with decongestion, with p = 0.004 for the middle and 
p = 0.002 for the inferior cavity. Figure 4 also shows that the superior section of the cavity has a larger median 
SAVR than the other two sections, in both normal and decongested conditions.

Effect of decongestion on nasal airflow.  Reynolds number.  Figure 5 shows the mean Reynolds num-
ber variation through the nasal passage from anterior to posterior. The Reynolds number is much higher in the 
anterior cavity (before 1V plane), and posterior cavity (after PS plane) compared to the middle section of the 
nasal cavity (between 1V and PS plane). The mean Reynolds number in the region of the cavity between AS and 
PS planes is below 1000 and less than 500 around plane 2V.

According to formula 5, for a specific flowrate, the Reynolds number only depends on the perimeter. Con-
sequently the Reynolds number stays nearly unchanged which is mainly because the perimeter of the cavity 
remains largerly unaltered before and after decongestion (appendix D).

Figure 2.   Comparison of mean cross-sectional area between normal (pre-decongested) and decongested 
cavities, e.g (a,b). The horizontal axis is the normalised centerline distance, labelled with anatomical markers 
defined in Fig. 1. The shaded area indicates the variations within the range of one standard deviation. The 
magenta line (in sub-figure (a)) is the same measurement from Zhao et al.31 which shows good agreement with 
the current data. Decongestion increases the cavity cross-sectional area in most parts of the nasal cavity, with the 
exception around nasal valve area (plane NV).
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Figure 3.   This figure shows effect of decongestion on nasal anatomy using Wilcoxon-signed rank test over the 
10 subjects. On this and all similar data plots, the red line indicates the median value and the asterisk mark next 
to p value indicates statistical significance at the level of 5 % on this and subsequent plots. (a) bilateral cavity 
surface area, (b) bilateral cavity volume, and (c) bilateral cavity surface area to cavity volume ratio (SAVR). 
Decongestant increases the cavity volume significantly, while the cavity surface area does not, leading to a 
significant SAVR change.

Figure 4.   Nasal cavity surface area to volume ratio (SAVR) after decongestion in superior (S), middle (M) and 
inferior (I) parts of the cavity as defined in Fig.1 across the 10 subjects. The nasal cavity surface area volume 
ratio of the superior cavity does not change significantly after decongestion. However significant changes 
occurred in the middle and inferior regions.
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Nasal resistance.  Figure 6 shows the cumulative CSA-averaged intranasal resistance distribution for the normal 
and decongested cases at both 15 and 30 L.min−1.

The increase in cumulative resistance (slope of the curve) is steeper in the anterior part (around the nasal 
valve, NV) of the cavity, excluding the nostril region for all the cases. This distribution of nasal resistance is also 
reflected by looking at the pressure scalar on one sagittal plane both before and after decongestion (as shown in 
Appendix C). Posterior to the AS plane, resistance increases at a nearly constant rate along the centerline until 
the PS plane, but at a lower rate than in the NV region. There is nearly no increase in resistance between PS and 
Naso planes of the cavity for both normal and decongested cavities. Furthermore, by comparing the total resist-
ance before and after decongestion, the mean total resistance of decongested cavities is approximately half of 
that of the congested cavities. Lastly, comparing the respective standard deviations, there is higher inter-subject 
variability in nasal resistance of normal cavities than for the decongested cavities. After increasing the flowrate 
from 15 to 30 L.min−1 , the resistance distribution pattern remains nearly identical except the total resistance is 
approximately 1.4 times larger.

Overall the results show there is a significant decrease of resistance at both 15 and 30 L.min−1 after deconges-
tion, p=0.006 and 0.02, respectively. The reduction in overall resistance with decongestion can be ascribed purely 
to the drop in the posterior resistance, as shown in Fig. 7 at both flowrate.

Nasal resistance partitioning: inferior to superior.  Changes in the partitioning of flow between superior, middle 
and inferior regions of the nasal cavity are shown in Fig. 8.

The results show little dependence on flowrate. After decongestion, in the superior portion of the cavity, there 
is a marked reduction of the flow; flow through the middle cavity increases, while the proportion of mass flow 
through the inferior region remains nearly unchanged.

In the normal state, the ratio of mass flow into the middle of the nasal cavity starts to increase around the 
location of the head of middle turbinate (after 1V and before 2V plane). However, in the decongested cavity, 
the larger CSA after the nasal valve directs flow into the middle and inferior regions of the cavity immediately 
redirecting flow away from the superior cavity.

Comparing wall shear stress (WSS), Fig. 9 shows the proportional WSS loading to be higher in the inferior 
and middle regions of the nasal cavity than in the superior region, except around plane 2V, where the WSS load-
ing of the superior region is similar or even higher than the inferior cavity. This pattern stays nearly unchanged 
after the application of decongestant.

From plane AS to PS, the WSS loading in the middle cavity exhibits a slight increase. However, the WSS 
loading in the inferior part of the cavity decreases then increases. The minimum point is located posterior to 
plane 2V. After decongestion, the WSS loading from plane AS to PS shows similar trends to those observed in 
the normal state, but with a larger variation in mean WSS loading between superior, middle and inferior parts. 
Decongested cavities show an abrupt increase of WSS loading in the middle cavity, after plane AS whereas only 
a slight increase of WSS loading is observed in the same part of the cavity in the normal states. Similar patterns 
can also be found near plane PS of normal and decongested cavities.

Discussion
This study investigates the effect of decongestion on inspiratory airflow distribution in 10 healthy volunteers. 
Decongestion increases the average nasal CSA in the main turbinated region by approximately 1.4 times (Fig. 2). 
However, this change is minimized in the anterior nose (before AS plane). The anterior nose (around nasal valve) 
is made of various structures that have varying degrees of mobility: septal cartilage (rigid), inferior portion of the 

Figure 5.   Comparison of the mean Reynolds number over 10 subjects throughout the nasal cavity before and 
after decongestion at flowrate of 30 L.min−1 . Left (a): the red curve represents the Reynolds number for normal 
state cavities. Right (b): blue curve represents the decongested cavities. The results show the mean Reynolds 
number remains relatively constant before and after decongestion. The shaded area represents the variations 
around mean value plus and minus one standard deviation.
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superior lateral cartilage (limited mobility), the erectile tissue of the nasal septum and inferior nasal turbinate 
head48. On the contrary, the turbinated region (between plane 1V and PS on Fig. 1) is surrounded by structures 
lined with erectile tissue which shrinks extensively due to the application of decongestant, leading to an increase 
of nasal cavity CSA. The reduction in the volume of the nasal turbinates due to decongestion causes a large 
increase in nasal cavity cross-sectional area posterior to the nasal valve (as shown in the Fig. 2 between AS and 
1V plane). Further posterior at both normal and decongested states, the maximum CSA is located around the 
posterior septum where the two sides of the nasal cavity join.

The mean CSA of the normal nasal cavity matches measurements made previously by Zhao et al.31. The large 
offset of the cross-sectional area at the anterior part (before NV plane) of the cavity is caused by a different ori-
entation of cross-sectional planes between this study and planes defined by Zhao et al.

Figure 6.   Figure (a–d) shows the cumulative resistance. (a,b) are the mean cavity resistance distribution of 
all 10 subjects along the cavity centerline before and after decongestion, respectively. (c,d) shows the same but 
for flowrate at 30 L.min−1 . The boxplots (e,f) show the effect of decongestant on the total nasal resistance at 15 
L.min−1 and 30 L.min−1 . The results show that decongestion can significantly reduce nasal resistance for both at 
15 L.min−1 and 30 L.min−1.
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SA of the nasal cavity is not changed significantly after decongestion, although the nasal CV increases (Fig. 3). 
As a result, the SAVR of the nasal cavity decreases significantly. In general, nasal cavities with higher SAVR are 
expected to exhibit larger resistance to airflow than cavities with lower SAVR, with the SAVR change effected by 
decongestion reducing median values from 0.032 to 0.02 Pa. s. ml−1 at flowrate 15 L.min−1 , as shown in Fig. 6. 
On average, decongestion decreased nasal resistance by approximately 50% at both 15 L.min−1 and 30 L.min−1 . 
In addition, increasing the flowrate was found only to change the magnitude of the airway resistance, but not 
the distribution of resistance along the cavity length.

Figure 7 showed that the majority of the change in nasal resistance due to decongestant occurs in the posterior 
nasal cavity (posterior to plane 1V defined in Fig. 1). In both normal and decongested geometries, resistance in 
the anterior cavity is dominated by the constriction around the nasal valve, which does not change significantly 
in CSA due to decongestant. However, CSA in the turbinates region (posterior to plane 1V) does expand due to 
decongestant, greatly reducing resistance in that region. For attached flow, WSS, which is determined by near 
wall velocity gradient, is the main source of resistance rather than high frequency eddies in the bulk flow. For 
a specific duct, mean flow velocity depends solely on flow rate so that zones of higher flow are expected to be 
associated with higher WSS. Consequently resistance in the superior, middle and inferior cavity is reflected by 
the ratio of WSS loading which in turn depends on the mass flow split ratio. The strength of this association is 
reflected by the similarity in the distributions for these quantities as shown in Figs. 8 and 9.

The Reynolds number of a flow is often used as a predictor of the presence of turbulence. However, in the 
nasal passages, the complex shape of the nasal cross-section means there is no obvious representative length. 
The hydraulic diameter (four times the cross-sectional area divided by its perimeter) of a cross-section is often 
used, although it may not always be the best choice, given that the perimeter of the nasal cavity includes nar-
row regions between the turbinates, while little airflow may pass through these regions. For a given flow rate, 
Reynolds number shows similar values before and after decongestion as explained above. This suggests the flow 
state should remain largely unaltered despite the change in geometry associated with decongestion, so that at 
comparable flow rates, similar flow models (laminar/turbulent) would be approporiate. Future studies could 
confirm this by measuring turbulent intensities in both cases.

The results indicate that at both flow rates, the superior cavity carries proportionally the lowest WSS both 
before and after decongestion, mainly due to the low mass flow to this region. More specifically, from anterior 
to posterior, the middle and inferior cavity carry approximately 40% of the total flow, while the superior cavity 

Figure 7.   The anterior is enclosed by plane at nostril and plane 1V, the posterior is represented by plane 1V and 
the posterior septum plane. The results shows decongestion significantly reduces the resistance in the posterior 
part of the cavity at both flowrates ( (c) for 15 L.min−1 and (d) 30 L.min−1 ) at the level of 5 % , while the anterior 
cavity shows no significant effect, as shown between (a,b).
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only accounts for roughly 20% before decongestion, whilst the middle cavity becomes both the dominant flow 
path and corresponding WSS load post decongestion. Similar results can be found at 15 and 30 L.min−1 . In addi-
tion, around 1V (after plane 1V for normal cavities while before plane 1V for decongested cavities), more flow 
goes into middle cavity (redirected by nasal turbinates), the proportion of WSS in the middle cavity gradually 
increases and eventually exceeds the inferior cavity. After decongestion, the proportion of WSS in the superior 
cavity reduces by nearly half on average, from approximately 20% to 10% . The middle and inferior cavity WSS 
distributions are similar but the difference between them more pronounced in decongested compared to normal 
cavities. The change of flow rate has little effect on the WSS distribution for all partitions. This agrees with previ-
ous findings by Bates et al.41 who showed that the pattern of flow within the nose establishes at low flow rates 
and then does not change significantly, even if the magnitude of the flow changes.

While the results show a reduction in SAVR due to decongestant reduces nasal resistance, further work is 
necessary to assess whether this is beneficial. The high SAVR of the nose in the normal state facilitates the other 
functions of the nose such as heating and humidifying inhaled air, and olfaction. Additionally, previous work 
from Zhao et al.49 has shown that the sensation of nasal airflow depends on the cooling of nasal mucosa by 
inhaled air rather than resistance. Therefore a reduction in nasal resistance due to decongestant may not correlate 
with improved perception of airflow.

This study focused on subjects without nasal obstruction, unlike the study of Cherobin et al.9. Future studies 
should apply the same regional analysis to subjects with nasal obstruction to compare with the findings reported 
here for normal subjects, to determine whether the region of nasal obstruction responds to decongestant in 
the same way as healthy nasal anatomy, and to determine whether nasal resistance reduces in those subjects, 
or is limited by the obstruction. This study has provided a methodology to address those questions. This study 
demonstrates changes in nasal anatomy and airflow due to nasal decongestant applied via droplets. However, 
clinically it is also common to apply decongestant via nasal sprays which may distribute decongestant to different 
parts of the nasal cavity. Future studies may focus on the effect of different application modalities on changes to 
nasal anatomy and airflow.

Figure 8.   The effect of decongestant on the mean mass flow distribution between the superior, middle, and 
inferior partitions of the 10 nasal cavities. Plots (a,b) are the results for 15 L.min−1 flowrate and plot (c,d) are the 
results for 30 L.min−1.
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The main limitation of this study was the small number of subjects (10) due to the time cost of segmentation 
and computational expense of CFD simulations. More sophisticated CFD models incorporating the temporal 
variations of respiration, and the effects of nasal heating and humidification as well as imaging at different times 
to capture the effects of the nasal cycle could be included in future studies.

Conclusions
Firstly, decongestion was found to increase nasal cavity cross-sectional area (by 1.4 times on average), and 
significantly decreases SAVR from a median 11 to 8.1. Although decongestion significantly increases CSA, the 
cross-sectional perimeter is marginally altered. As a result, the local Reynolds number based on hydraulic diam-
eter is hardly altered, suggesting similarity in local flow stability. Secondly, results indicate that decongestion not 
only reduced the nasal cavity resistance (approximately 50% ), but minimized the variability of nasal resistance 
across the cohort. This finding indicates that applying decongestant regularises nasal cavity flow. Thirdly, although 
decongestion exposes more of the superior nasal cavity, paradoxically less flow was found to reach this portion 
due to the concomitant reduction in airway resistance induced in the inferior part of the cavity.

Future studies of nasal airflow which are based on images of the nose at a single time point could use the 
results presented here to indicate the probable range over which factors like nasal resistance could vary. Moreover 
the anatomical variations presented here may indicate appropriate variations in model geometries to be applied 
in related studies such as those concerning upper airway aerosol transport.

Figure 9.   The effect of decongestion on the mean wall shear stress distribution over superior, middle, and 
inferior partitions of the 10 nasal cavities. Plot (a,b) are the results for 15 L.min−1 flow rate and plot (c,d) are the 
results for 30 L.min−1.



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14410  | https://doi.org/10.1038/s41598-021-93769-6

www.nature.com/scientificreports/

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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