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Abstract
Age-related macular degeneration (AMD) is one of the most common causes of irreversible vision loss in the elderly. Its 
pathogenesis is likely multifactorial, involving a complex interaction of metabolic and environmental factors, and remains 
poorly understood. Previous studies have shown that mitochondrial dysfunction and oxidative stress play a crucial role in 
the development of AMD. Oxidative damage to the retinal pigment epithelium (RPE) has been identified as one of the major 
mediators in the pathogenesis of age-related macular degeneration (AMD). Therefore, this article combines transcriptome 
sequencing (RNA-seq) and single-cell sequencing (scRNA-seq) data to explore the role of mitochondria-related genes 
(MRGs) in AMD. Firstly, differential expression analysis was performed on the raw RNA-seq data. The intersection of dif-
ferentially expressed genes (DEGs) and MRGs was performed. This paper proposes a deep subspace nonnegative matrix 
factorization (DS-NMF) algorithm to perform a multi-layer nonlinear transformation on the intersection of gene expression 
profiles corresponding to AMD samples. The age of AMD patients is used as prior information at the network’s top level to 
change the data distribution. The classification is based on reconstructed data with altered distribution. The types obtained 
significantly differ in scores of multiple immune-related pathways and immune cell infiltration abundance. Secondly, an 
optimal AMD diagnosis model was constructed using multiple machine learning algorithms for external and qRT-PCR 
verification. Finally, ten potential therapeutic drugs for AMD were identified based on cMAP analysis. The AMD subtypes 
identified in this article and the diagnostic model constructed can provide a reference for treating AMD and discovering 
new drug targets.

Keywords Age-related macular degeneration · RNA-seq · scRNA-seq · Immune landscape · Mitochondria · The first two 
authors should be regarded as joint first authors

Introduction

Age-related macular degeneration (AMD) is a chorioreti-
nal disease closely related to age. Pathologically, the main 
manifestations are aging changes in the structure of the 
macular area and a decrease in the phagocytosis and diges-
tion function of the retinal pigment epithelial cells on the 
outer disc membrane of the visual cells. Further features 
that increase the number and diameter of extracellular ret-
inal deposits are called drusen (Lim et al. 2012). As the 
population ages, AMD is the leading cause of blindness in 
people over 50 years old worldwide (Newman et al. 2012). 

Genetic factors play an essential role in the pathogenesis of 
AMD, and multiple genetic variants have been associated 
with the risk of AMD. In a recent study, Qiao et al. identi-
fied multiple genetic susceptibility loci (including Lama5, 
Mtg2, Col9A3) through genome-wide association studies 
(GWAS) and whole-exome sequencing in older Asian people 
(Fan et al. 2023).

The RPE is particularly susceptible to oxidative damage 
because it is extremely metabolically active, highly oxida-
tive, and exposed to photosensitizers such as the age pig-
ment lipofuscin. This sensitivity leads to various age-related 
changes, ultimately leading to reduced RPE function and 
increased susceptibility to cell death. Oxidative stress is a 
recognized risk factor for AMD, in which changes in areas 
of focal loss of the RPE lead to photoreceptor degeneration 
and central vision loss (Jarrett and Boulton 2012). Increased 
mitochondrial damage and reactive oxygen species (ROS) 
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production are associated with AMD, suggesting that dam-
aged mitochondria and other oxidatively modified compo-
nents are not efficiently removed by aging RPE cells (Karun-
adharma et al. 2010).

As a vital organ within cells, mitochondria are responsi-
ble for the energy cells, which are required and participate 
in biological processes such as cell metabolism and redox 
reactions (Kaarniranta and Salminen 2009). Therefore, 
mitochondria-related genes (MRGs) may play a vital role 
in the occurrence and development of AMD. Firstly, oxi-
dative stress and mitochondrial dysfunction may accelerate 
the development of AMD (Beatty et al. 2000). Patients with 
AMD are often accompanied by increased oxidative stress, 
which may lead to oxidative damage to mitochondrial DNA, 
leading to mitochondrial dysfunction. Impaired mitochon-
drial function may further aggravate oxidative stress, form-
ing a vicious cycle. Secondly, inflammation and immune 
response also impact the pathological process of AMD 
(Ambati et al. 2003). Abnormal mitochondrial function and 
oxidative stress can trigger immune system responses, lead-
ing to chronic inflammation in AMD. Finally, mitochondrial 
dysfunction may lead to insufficient intracellular energy sup-
ply, triggering apoptosis or necrosis (Khandhadia and Lotery 
2010). These cell death processes can lead to cell loss in the 
macular area of AMD, further exacerbating chorioretinal 
damage.

Previous studies have utilized various machine learning 
methods to identify AMD diagnostic-related genes and 
construct AMD diagnostic models. Wang et al. constructed 
AMD diagnostic models based on DNA methylation and 
gene expression data using random forest models (Wang 
et al. 2021). Han et al. identified key modules and modu-
lar genes most relevant to AMD through weighted gene 
co-expression network analysis. They employed random 
forest, support vector machine, Xgboost, and GLM mod-
els to select predictive genes and build an AMD clinical 

prediction model (Han and He 2023). Additionally, Han 
et al. integrated weighted gene co-expression network 
analysis and differential expression to pinpoint genes 
intricately associated with Tfh cells. Using the MCODE 
function in Cytoscape software, they screened these genes 
and identified key diagnostic genes using the LASSO algo-
rithm (Yang, et al. 2023).

Figure 1 shows the technical roadmap of this article. 
This paper aims to deeply explore the role of MRGs in 
AMD through bioinformatics analysis and experimental 
verification. We obtained MRGs from previous literature 
(Pei et al. 2023), and their expression levels were extracted 
from transcriptome data for differential expression analy-
sis. AMD subtypes were then identified based on the deep 
subspace nonnegative matrix factorization algorithm (DS-
NMF). This method can use the age of AMD patients as 
prior information, thereby changing the original data 
distribution so that patients of different age groups are 
distributed far away from each other. Furthermore, mul-
tiple machine learning algorithms were used to identify 
hub genes and construct a diagnostic model for AMD. 
Finally, the different patterns of multiple immune cells in 
trajectory analysis and cell communication were explored 
through AMD’s single-cell sequencing (scRNA-seq) data. 
This research is expected to provide a new theoretical 
basis for treating AMD and provide more critical insights 
into MRGs for future biomedical research.

Method

Acquisition of Data Sets

This article downloaded two macular degeneration RNA-seq 
data sets (GSE29801 (Newman et al. 2012) and GSE135092 
(Jones et  al. 2023; Orozco et  al. 2020)) from the Gene 

Fig. 1  The technical roadmap of the paper
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Expression Omnibus (GEO) database. The GSE29801 data 
set is used as an internal data set containing 151 normal 
samples and 142 AMD samples. The GSE135092 data set 
is used as an external data set, which includes 50 normal 
samples and 50 AMD samples. scRNA-seq data sets of two 
AMD samples were collected from the GSE210543 data set.

Differential Expression Analysis and GO Enrichment 
Analysis

Differentially expressed genes (DEGs) between the control 
and diseased groups were identified based on the limma 
package (Ritchie et al. 2015). The parameters are set as fol-
lows: the absolute value of logFC is more than 0.25, and the 
p-value is less than 0.05. Gene Ontology (GO) enrichment 
analysis was performed on DEGs based on the R package 
“clusterProfiler” (Yu et al. 2012).

Lim et al. 2012) Ritchie et al. (2015). limma powers 
differential expression analyses for RNA-sequencing and 
microarray studies. Nucleic acids research, 43(7), e47. 
https:// doi. org/https:// doi. org/ 10. 1093/ nar/ gkv007

Newman et al. 2012) Yu et al. (2012). clusterProfiler: an 
R package for comparing biological themes among gene 
clusters. Omics: a journal of integrative biology, 16(5), 
284–287. https:// doi. org/https:// doi. org/ 10. 1089/ omi. 2011. 
0118

DS‑NMF Algorithm

The DS-NMF algorithm consists of two parts: deep subspace 
reconstruction and NMF algorithm. Given data points {
xi
}
i=1,⋯,N

 extracted from multiple linear subspaces {
Ri

}
i=1,⋯,K

 , specific points within a particular subspace can 
be represented as linear combinations of other points within 
the same subspace. This property is known as self-expres-
sion. For a data matrix X , the self-expression property can 
be formulated as X = CX , where C is the coefficient matrix 
capturing the linear relationships. Under certain permutation 
conditions, C should exhibit a block diagonal structure, with 
each block corresponding to samples from the same sub-
space (Fan et al. 2008).

This method differs notably from autoencoders. Self-
expression networks focus on discovering subspace struc-
tures and clustering information in data through the self-
expression property. They optimize the coefficient matrix 
WWW by leveraging linear combinations and sparse regu-
larization to uncover relationships among data points. In 
contrast, autoencoders emphasize nonlinear dimension-
ality reduction and reconstruction of data. They achieve 
this through encoder and decoder networks for nonlin-
ear mapping and reconstruction. In summary, while both 

self-expression networks and autoencoders are used for data 
representation and reconstruction, self-expression networks 
are more concerned with subspace structures and clustering 
in data, while autoencoders prioritize nonlinear dimension-
ality reduction and reconstruction performance.

In the deep subspace reconstruction part, the original 
input is reconstructed using the self-expression properties 
of the data. Define the gene expression matrix X ∈ RN∗p . N 
represents the number of genes. p represents the sample size. 
Let X =

[
x1, x2,⋯ , xNz

]
 , where x1 is the first sample of the 

first label, and z represents the total number of categories. 
xNz is the last sample of the zth label.

First, the original data is put into a multi-layer feedfor-
ward neural network, and the nonlinearly transformed matrix 
HM

i
 is output in the output layer. M indicates the total num-

ber of layers on the network. Iterative calculations are per-
formed on the top M + 1 layer to achieve subspace recon-
struction. Below is the definition of network parameters.

Among them, m = 1,2, , ..., M indicates the number of 
network layers. W (m) and b(m) represent the weight and bias 
o f  t h e  m − th  l aye r  n e t wo r k  r e s p e c t i ve ly. 
H(M) =

[
h
(M)

1
, h

(M)

2
,⋯ , h

(M)

Nz

]
 , where h(M)

Nz
 represents the N 

sample of the zth class after undergoing a nonlinear transfor-
mation by the multi-layer neural network. Finally, the objec-
tive function of the subspace reconstruction algorithm of the 
zth class samples is:

where cl represents the vector of self-expression coefficients 
of layer l and || ⋅ ||F represents the Frobenius norm. h(M)

l
 is 

the output of the l − th feature of the top-level network after 
nonlinear transformation. H(M) is the output of the original 
data. The expression of h(m)

l
 is as follows:

where G(·) indicates the sigmoid activation function. The 
specific definitions are as follows.

The following equation can be obtained after calculating 
the partial derivatives of Eq. 2 and sorting it out (for the 
specific derivation process, see Supplementary material 1.1).

(1)� =
{
W (m), b(m), n = 1 ∶ M

}

(2)min
{W(m),b(m)

1

2

Nz�

l=1

‖h(M)

l
− clH

(M)‖
2

F

(3)h
(m)

l
= G

(
W (m)h

(m−1)

l
+ b(m)

)

(4)G(x) =
1

1 + e−x

(5)
(
H(M)

)T
H(M)CNz

=
(
H(M)

)T
H(M)

https://doi.org/
https://doi.org/10.1093/nar/gkv007
https://doi.org/
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
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The self-expression coefficient matrix for all samples is 
defined as follows.

Finally, the reconstructed data can be expressed as the 
following formula.

The variable X̃ represents the data after deep subspace 
reconstruction. Leveraging neural networks to uncover non-
linear features in the data enables the incorporation of exist-
ing clinical information to reflect grouping information that 
reflects similar data structures. Incorporating prior informa-
tion into the data as input to the NMF algorithm can enhance 
the algorithm’s performance to a certain extent. The NMF 
algorithm is a low-rank decomposition algorithm. This paper 
clusters the reconstructed data based on the NMF algorithm. 
The objective function of the NMF algorithm is given below. 
In Supplementary Material 1.2, we provide the parameters 
related to the neural network component in the DS-NMF 
algorithm. In Supplementary Material 1.3, the optimization 
and solving process of the algorithm is detailed.

Among them, W ∈ RS∗K and H ∈ RK∗M are the basis and 
coefficient matrices, respectively. W  and H need to be guar-
anteed to be nonnegative. The sum needs to be guaranteed to 
be nonnegative. K is the number of clusters. Spectral cluster-
ing is performed on W  to obtain the final clustering result.

Analysis of Gene Set Variation Between Subtypes 
and Immunoassays

This article implements gene set variation analysis of differ-
ent subtypes based on the R package “GSVA” (Hänzelmann 
et al. 2013). Based on the “c2.cp.kegg.v7.5.1.symbols.gmt” 
reference gene set, multiple Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways with significantly different scores 
between subtypes were identified. The infiltration abundance 
of 22 immune cells in different subtypes was evaluated using 
the “CIBERSORT” algorithm (Chen et al. 2018). In addition, 
differences in the expression of immune checkpoints and HLA 
genes among different subtypes were evaluated. The above 
analyses all used the Wilcoxon method to compare differences.

Diagnostic Model Construction Methods

This paper implements the construction of diagnostic mod-
els through random forest (RF), support vector machine 

(6)C =

[
C1,⋯ ,CNz

]
+

[
C1,⋯ ,CNz

]T

(7)X̃ = CX

(8)ONMF = ‖X −WH‖2
F

s.tW ≥ 0,≥ 0

recursive feature elimination (SVM-RFE), K nearest neigh-
bor (KNN), and adaptive boosting (Adaboost) algorithms. 
Python’s scikit-learn package (Pedregosa, et al. 2011) imple-
ments RF, KNN, and Adaboost. SVM-RFE is implemented 
by the R package “e1071.” After the internal data set was 
randomly divided into the training set and the test set at 
a ratio of 7:3, a tenfold cross-validation method was used 
on the training set to obtain the gene set with the highest 
accuracy in the test set by selecting the top features and 
perform AUC verification. In the RF algorithm, criteria are 
set to entropy, and n_estimators are set to 500. n_neighbors 
is set to 3 in the KNN algorithm. n_estimators is set to 500 
in the Adaboost algorithm. The random seed of the SVM-
RFE algorithm is 13,579. The remaining parameters of all 
algorithms involved are default parameters.

Nomogram Model Construction

This paper builds a nomogram model based on the R pack-
age “rms” and uses diagnostic genes. The construction effect 
of the nomogram model was evaluated through calibration 
curves. Decision curve analysis (DCA) is implemented 
based on the decision_curve function in the R package 
“rmda.” Clinical impact curves were also plotted to predict 
high-risk probability stratification for a population of 1000.

Analysis Methods of scRNA‑seq Data

This article is based on the CreateSeuratObject function of the 
R package “Seurat” (Hao et al. 2024) to convert the original 
count matrix into a format readable by the Seurat package. In 
the quality control process, cells that meet the requirements of 
nFeature_RNA greater than 200 and less than 7000, nCount_
RNA less than 5000, mitochondrial gene proportion less than 
3%, and red blood cell proportion less than 0.2% are retained 
based on the subset function. The LogNormalize method based 
on the NormalizeData function implements standardization in 
the standardization process. The first 20 principal components 
are selected for clustering based on the RunPCA function in 
the dimensionality reduction and clustering process. After set-
ting the resolution to 1, 21 cell clusters are obtained based 
on the FindClusters function. The removal of double cells is 
realized based on the R package “DoubletFinder” (Stoeckius 
et al. 2018). Subsequently, cell type annotation was imple-
mented based on the R package “singleR” (Aran et al. 2019). 
Cell trajectory analysis is implemented based on the R pack-
age “monocle.” Cell communication analysis is implemented 
based on the “CellChat” (Jin et al. 2021) package.

Connectivity Map (cMAP) Analysis

The cMAP database (https:// clue. io/) can explore asso-
ciations between diseases, genes, and small-molecule 

https://clue.io/
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compounds based on gene expression. The dysregulated 
genes from the differential analysis were entered into the 
cMAP database to identify potential small-molecule drugs 
for AMD treatment. Potential small-molecule compounds 
are entered into the Pubchem database (https:// pubch em. 
ncbi. nlm. nih. gov/) to obtain the compound’s molecular 
structure.

Cell Cultures and Treatment

Human retinal pigment epithelial cells (ARPE-19) were 
purchased as frozen vials from Shanghai EK-Bioscience 
Biotechnology Co., Ltd. (Shanghai, China), and all cell 
experiments were performed between the third and fifth 
generations. The cells were cultured in DMEM/F-12 (sup-
plemented with 10% FBS, 1% streptomycin/penicillin) at 
37 °C in a humidified atmosphere containing 95% air and 
5%  CO2. Cells at 80–90% confluence were selected for sub-
culture and subsequent experimentation. For  H2O2-induced 
oxidative damage studies, the cells were treated with a 

serum-free medium containing various concentrations of 
 H2O2 (400 μM) for 24 h.

Real‑Time Quantitative Polymerase Chain Reaction 
(qRT‑PCR)

Total RNA was extracted from RPE cells using Trizol rea-
gent (Invitrogen, USA). Total RNA was reverse transcribed 
into cDNA using HiScript II Q Select RT SuperMix for 
qPCR (Vazyme, China). qPCR was performed using SYBR 
green reagent (Vazyme, China) on Roche 96 (Roche, USA). 
The gene expression level was quantified using the  2−ΔΔCt 
method. GAPDH (glyceraldehyde 3-phosphate dehydroge-
nase) was used as an internal control gene. Analysis of each 
sample was performed in triplicate. Primer sequences are 
listed in Supplement Table 1. Statistical analysis was per-
formed in GraphPad Prism software. Statistical difference 
between groups was assessed by Student’s t-test. p < 0.05 
was considered statistically significant.
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Fig. 2  Results of differential expression analysis. A The volcano plot 
obtained by differential expression analysis. B A bar graph of GO 
enrichment analysis of DEGs. C The Venn diagram of the intersec-

tion of DEGs and mitochondria-related genes. D A box plot of inter-
section gene expression in normal and diseased groups. E A circle 
diagram of the chromosomal location of intersection genes
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Result

Acquisition and Analysis of DEMRGs

First, this article conducts differential expression analysis on 
samples from the normal and diseased groups in the inter-
nal data set. A total of 528 DEGs were obtained. Figure 2A 
shows the volcano plot obtained from differential expression 
analysis. The differentially expressed genes are in the gene 
diff.xls file in the Supplementary Material. Figure 3C is a 
bar graph obtained by GO enrichment analysis of DEGs. 
We will discuss in part an analysis of the role of these path-
ways in the development of AMD. Subsequently, 31 inter-
section genes were obtained from the intersection of MRGs 
and DEGs collected from previous literature (Chang et al. 
2023) (Fig. 2B–E).

Identification of Subtypes of Age‑Related Macular 
Degeneration

To use age as prior information to change the distribution of 
the original data, this article first reconstructs AMD samples 
based on the DS-NMF algorithm. The input data are the 

expression profiles of 31 intersection genes and two group 
labels of AMD divided by the median age. This method per-
forms multi-layer nonlinear mapping of gene expression pro-
files through multi-layer feedforward neural networks. It is 
then reconstructed on top of the network. During reconstruc-
tion, AMD samples were divided into two groups according 
to the median age. Figure 3A and B show the distribution 
changes of the original data before and after reconstruc-
tion. Labels 1 and 2 represent samples younger and older 
than the median age of all AMD samples, respectively. The 
NMF algorithm was performed on the reconstructed data. 
The final number of clusters was set to 2 according to cophe-
netic (Fig. 3C). Figure 3D shows the consensus matrix with 
a cluster number of 2. Figure 3E shows the final clustering 
results for AMD samples. The two subtypes were effectively 
distinguished. In addition, visualization results of different 
subtypes of samples based on t-SNE dimensionality reduc-
tion are presented in Supplementary materials Figure S3.

To explore the differences between the two isoforms in 
terms of enrichment pathways and immune landscapes, dif-
ferential expression analysis of the two isoforms was first 
performed (Fig. 4A). Subsequent GSVA analysis identified 
multiple pathways with significantly different scores between 
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the two subtypes (Fig. 4B). We will analyze the biological 
significance of these pathways in the “Discussion” section. 
Furthermore, the CIBERSORT algorithm was used to evalu-
ate the difference in infiltration abundance of 22 immune 
cells between the two subtypes. The infiltrating abundance 
of most immune cells in the two subtypes was significantly 
different (Fig. 4C). Finally, immune checkpoints and HLA 
genes were collected from previous literature and found that 
the expression of most genes was significantly different in 
the two groups (Fig. 4D, E) (Liu et al. 2024). The results of 
enrichment and immunoassays confirmed the reliability of 
AMD subtype identification. Furthermore, in Supplementary 
Material Sect. 1.4, we present the AMD clustering results 
obtained using other clustering algorithms and highlight the 
differences in immune infiltration abundance across sub-
types. Additionally, we included the GSVA results of the 
two baseline clustering algorithms in Supplementary Mate-
rial 1.4, further confirming the biological significance of the 
subtypes identified by the DS-NMF algorithm.

Results of Correlation Analysis Between Diagnostic 
Genes and Immune Cells

In order to explore the diagnostic value of mRGs in the 
macula, this article constructed a diagnostic model based 
on the expression profiles of 31 intersection genes and using 

multiple machine learning algorithms. The diagnostic model 
can effectively classify AMD and control group. Specifi-
cally, this article selects different numbers of top features 
to build diagnostic models based on RF, Adaboost, KNN, 
and SVM-RFE algorithms. The RF, Adaboost, KNN, and 
SVM-RFE algorithms achieved the maximum accuracy in 
the internal test set when selecting the first 9, 26, 14, and 
13 features, respectively (Fig. 5A, C, E, and G). Figure 5B, 
D, F, and H are the AUCs of the four algorithms on the 
internal test set, respectively. Among them, the SVM-RFE 
algorithm reached the largest AUC (0.806). Therefore, we 
further tested the diagnostic model constructed on the exter-
nal test set, and its AUC was 0.816 (Fig. 5I). In addition, we 
give the maximum AUC of the deep neural network and the 
Rogeist regression algorithm in the supplementary material 
Figure S2.

Furthermore, the columnar line chart model is a 
graphical risk prediction tool that integrates multiple pre-
dictive factors into a single predictive model, providing 
intuitive and clinically accessible prediction outcomes. 
In our study, the columnar line chart model was used for 
AMD risk assessment and personalized prediction. We 
constructed the columnar line chart model based on the 
first 13 diagnostic genes (CYP27B1, FUS, FZD5, GLS2, 
GLYATL1, HSPA1A, NDUFA4L2, PDPN, SLC2A1, 
SNN, SPR, GSTZ1 and TRAF6) (Fig. 6A). Figure 6B 
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gives the calibration curve of the nomogram model. The 
nomogram model based on 13 diagnostic genes agreed 
with the ideal model. DCA analysis showed that although 
both the nomogram model and individual diagnostic 
genes produced net benefits, the net usage of the nomo-
gram model was significantly greater than that of indi-
vidual diagnostic genes. This suggests that nomogram 
models may have more clinical value than individual 
diagnostic genes (Fig. 6C). Clinical impact curve analy-
sis showed that the nomogram model had high diagnostic 
ability (Fig. 6D). In addition, to explore the correlation 
between diagnostic genes and immune cell infiltration 
abundance, this article screened the correlation results 
with p < 0.0001 based on the Spearman correlation coef-
ficient of the two. Figure 7A–U show each gene and its 
two most strongly correlated immune cells. The remain-
ing correlation analysis results are shown in Supplemen-
tary material Figures S4-S6.

Analysis Results of scRNA‑seq Data

Immune infiltration analysis found that the infiltration 
abundance of various immune cells was significantly dif-
ferent between AMD and normal groups. This article fur-
ther explores the interaction between various immune cells 
based on scRNA-seq data. Specifically, this article per-
forms quality control, standardization, scaling, dimension-
ality reduction, clustering, and cell type identification on 
scRNA-seq of two AMD samples. Figure 8A and B show 
violin plots of critical indicators before and after quality 
control. Figure 8C shows the score heat map for identifying 
cell types based on the singleR algorithm. Figure 8D offers 
two-dimensional plan views of different types of cells after 
nonlinear dimensionality reduction using uniform manifold 
approximation and projection (UMAP). A total of nine cell 
types (chondrocytes, CMP, endothelial cells, tissue stem 
cells, neurons, T cells, monocytes, NK cells, and fibroblasts) 
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were identified in this article. Figure 9A and B show the 
expression landscape of some hub genes in immune cells 
(T cells, NK cells, and monocytes). Among them, FUS is 
highly expressed in NK cells and T cells. HSPA1A and SNN 
are highly expressed in monocytes.

Furthermore, this article conducts a pseudo-chronological 
analysis of different types of cells after annotation (Fig. 10 
A, B). Monocytes, T cells, and chondrocytes are in the early 
stages of differentiation. NK cells differentiate last. The 
remaining cells are located at multiple stages of differentia-
tion. Cell communication analysis revealed that chondro-
cytes had stronger signaling than other cell types (Fig. 10 
C, D). We found multiple significant pathways using each 
immune cell group (T cells, monocytes, and NK cells) as 
source and target, respectively. Then, we conducted com-
munication analysis with other cell groups (Fig. 10 E, F). 

We will explore the role of these pathways in the develop-
ment and progression of AMD in detail in the “Discussion” 
section.

Potential Drug Identification

To identify potential small-molecule drugs that could treat 
AMD patients, we imported the top 150 upregulated DEGs 
and the top 150 downregulated DEGs into the cMAP data-
base. The results showed that the top ten highest-scoring 
compounds included triamterene, LE-135, eflornithine, 
ellipticine, L-690330, IOX2, SAL-1, NF-449, miglitol, and 
SR-57227A, which are potential therapeutic candidates for 
AMD patients but have not yet been validated by existing 
literature (Fig. 11 A-J).
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Validation Results of the Hub Genes by qRT‑PCR

To further verify the results of bioinformatics analysis, 
the mRNA levels of the 13 hub genes were determined 
with qRT-PCR. As illustrated in  Fig.12 , the SNN, 

PDPN, GLYATL1, CYP27B1, GLS2, NDUFA4L2, 
FUS, and SLC2A1 were significantly downregulated in 
 H2O2-treated ARPE‐19 cells compared to normal cells 
(all p < 0.05), while the HSPA1A and TRAF6 were sig-
nificantly upregulated in  H2O2-induced ARPE‐19 cells 

R = 0.69, p < 2.2e−16
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immune cell infiltration abundance. A, B Correlation scatter plots 
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(all p < 0.05), as predicted by the bioinformatics analy-
sis. Although the expression of FZD5, GSTZ1, and SPR 
showed no statistical difference between  H2O2-treated 
cells and normal cells, their expression trend was consist-
ent with bioinformatics analysis.

Discussion

From the bioinformatics perspective, this article explores 
the role of MRGs and the signaling pathways involved in 
the progression of AMD through RNA-seq, scRNA-seq, 
and other data. Firstly, this paper intersects the DEGs of 
the normal group and the AMD group. After conduct-
ing GO enrichment analysis on 31 intersection genes, it 
was found that some top pathways have been confirmed 

to play a critical role in AMD. Eszter Emri conducted a 
combined transcriptome, proteome, and secretome analy-
sis from three genetically distinct human donors and found 
that AMD samples were involved in the unique pathway 
of the extracellular matrix (Emri, et al. 2020). Zhao et al. 
detected 44 and 53 significantly different metabolites in 
positive and negative ion modes in the AMD and control 
groups, respectively (Zhao et al. 2023). Retinal ganglion 
cell (RGC) death is the leading cause of AMD. The study 
by Zhong et al. found that K + channels, including ether-
à-go-go (Eag), may contribute to dendritic repolarization 
during excitatory postsynaptic potentials and the attenua-
tion of action potential backpropagation and protect RGCs 
(Zhong et al. 2013).

Secondly, this paper proposes a DS-NMF algorithm. 
This method reconstructs the input gene expression 
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profile using the traditional NMF algorithm. Specifically, 
the original gene expression profile is passed through a 
multi-layer feedforward neural network during recon-
struction. The sample age is then used as prior informa-
tion at the network’s top level to change the data distribu-
tion. Finally, the reconstructed data is used as the input 
of the NMF algorithm. Based on the DS-NMF algorithm, 
this article identified two subtypes with apparent differ-
ences in enrichment pathways and immune cell infiltra-
tion. Most of the pathways with significant differences 
between the two subtypes have been confirmed to play 
a critical role in the progression of AMD. Research by 
Santos et al. revealed that complement and coagulation 
components and adhesion factors are differential bio-
markers for vitreoretinal eye diseases, including AMD 
(Santos et al. 2023). Subramanian et al. found that OCT 

biomarkers were associated with visual impairment and 
vitreomacular adhesion in patients with diabetic macu-
lar edema (Subramanian et al. 2023). Chen et al. found 
that fenofibrate inhibited subretinal fibrosis by inhibiting 
TGF-β-Smad2/3 signaling and Wnt signaling in neovas-
cular AMD (Chen et al. 2020).

Fig. 9  The expression landscape 
of some hub genes in immune 
cells (T cells, NK cells, and 
monocytes) is shown. Among 
them, FUS is highly expressed 
in NK cells and T cells. 
HSPA1A and SNN are highly 
expressed in monocytes

Fig. 10  Results of cell trajectory analysis and communication analy-
sis between immune cells. A, B The results of grouping cells accord-
ing to pseudo-chronological order and cell type respectively. C, D 
Network diagrams of the number and intensity of signaling pathways 
in the communication process between immune cells respectively. 
The size of the nodes in the graph reflects the number of cells of this 
type. The thickness of the line reflects the amount/strength of com-
munication between cells. E, F Bubble diagrams of the pathways in 
which each immune cell acts as a source and target and communi-
cates with other cells respectively

◂
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This article builds a robust diagnostic model based on 
various machine learning algorithms to assist the clinical 
diagnosis of AMD. Among them, the AUC of the diagnostic 
model built using the SVM-RFE algorithm reached 0.806 
and 0.816 in the internal and external test sets, respectively. 
We screened a total of 13 diagnostic genes (CYP27B1, FUS, 
FZD5, GLS2, GLYATL1, HSPA1A, NDUFA4L2, PDPN, 
SLC2A1, SNN, SPR, GSTZ1 and TRAF6). Some genes 
have been confirmed to be closely related to AMD. McKay 
and others found that two SNPs in the CYP27B1 gene are 
associated with early AMD (McKay et al. 2017). The find-
ings of Choudhury et al. suggest that the interaction between 
HSPA1A and FHL-1 may impact AMD. This may mean that 
the expression and function of HSPA1A may be related to 
the onset and progression of AMD (Choudhury et al. 2021). 
In a multicenter cohort association study of SLC2A1 single 
nucleotide polymorphisms and AMD, Baas et al. found pop-
ulation-dependent genetic risk heterogeneity in AMD (Baas 

et al. 2012). Choroidal neovascularization (CNV) is a form of 
wet AMD. Ding et al. found that inhibiting TRAF6 can alle-
viate choroidal neovascularization in vivo (Ding et al. 2018).

Since various immune cells are significantly related to 
diagnostic genes, this article uses scRNA-seq data to ana-
lyze the differences in pseudo-chronology and communi-
cation of different immune cells. This article discovered 
the significant signaling pathways conducted through cell 
communication analysis when three immune cells com-
municate with other cells. The retinal pigment epithelium 
(RPE) performs many functions critical to retinal health 
and visual function and is implicated in the development 
of AMD. Studies by Jadeja et al. have shown that the loss 
of NAMPT in the aging RPE will promote cell senescence 
(Jadeja et al. 2018). Schlecht and others discovered that 
regulating the SPP1 pathway provides new opportunities 
for AMD therapeutic intervention by establishing a mouse 
model (Schlecht et al. 2020). Chandola et al. found that 

Fig. 11  Screening of potential small-molecule compounds for AMD by cMAP analysis. A–J Eflornithine, ellipticine, IOX2, L-690330, LE-135, 
miglitol, NF-449, SAL-1, SR-57227A, and triamterene

Fig. 12  Quantitative reverse 
transcription-polymerase 
chain reaction (qRT-PCR) 
for the expression of the hub 
genes in ARPE-19 cells of 
oxidative damage and the 
controls. Expression of hub 
genes was normalized against 
GAPDH expression (p < 0.05). 
***p < 0.001, **p < 0.01, 
*p < 0.05
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CD44 aptamer-mediated cargo delivery to retinal pig-
ment epithelial cell lysosomes can prevent AMD (Chan-
dola et al. 2019). Lee et al. found that COE and BP exert 
anti-angiogenic effects on retinal neovascularization by 
inhibiting the expression of AREG and other genes (Lee 
et al. 2016). Finally, qPCR validation was performed on 
all diagnostic genes. The expression trends of most genes 
were confirmed.

Conclusion

Aging changes in macular structure may cause different 
subtypes of AMD. This article proposes a DS-NMF algo-
rithm to identify two subtypes of AMD. The two sub-
types have significant differences in enriched pathways 
and immune infiltration. Based on the MRGs between 
subtypes, this paper constructed an AMD diagnosis 
model based on four machine learning methods. The 
diagnostic model constructed by the SVM-RFE algo-
rithm can reasonably predict the occurrence of AMD. 
The communication patterns between immune cells 
and other cells in AMD samples were explored through 
scRNA-seq data sets. The subtypes and pathways identi-
fied in this article and the diagnostic model constructed 
in this article can provide new insights into the precise 
treatment of AMD.
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