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It is increasingly clear that both adult and pediatric glial tumor entities represent collections
of neoplastic lesions, each with individual pathological molecular events and treatment
responses. In this review, we discuss the current prognostic biomarkers validated for clin-
ical use or with future clinical validity for gliomas. Accurate prognostication is crucial for
managing patients as treatments may be associated with high morbidity and the benefits
of high risk interventions must be judged by the treating clinicians.We also review biomark-
ers with predictive validity, which may become clinically relevant with the development of
targeted therapies for adult and pediatric gliomas.
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INTRODUCTION
At present, histological grading represents the most reliable,
accepted overall indicator for the clinical outcome in adult and
pediatric glioma patients (1). Gliomas are histologically classified
according to the World Health Organization (WHO) classification
system, which assigns a malignancy Grade I–IV (2). Traditionally,
the higher the grade of gliomas, the worse the prognosis.

Primary glioblastoma (previously referred to as glioblastoma
multiforme or GBM) develop de novo. This contrasts with sec-
ondary GBM, which undergo progressive malignant transforma-
tion from low grade diffuse astrocytoma (WHO Grade II) or
anaplastic astrocytoma (WHO Grade III) (3). It has been esti-
mated that 5% of all GBMs are secondary lesions (4). Secondary
GBM patients are approximately 15 years younger than those with
primary GBM and have a significantly better clinical outcome (5).
Although, primary GBM cannot reliably be distinguished histo-
logically from secondary GBM (6), their genetic profiles differ
substantially as discussed below. This raises the possibility that
they develop from differing neural precursor cells (7).

It is increasingly clear that GBM can be subdivided into
tumor groups, which have fundamentally differing molecular dri-
vers and varying treatment responses (8). The Cancer Genome
Atlas (TCGA) project aims to establish the genetic and expres-
sion profiles for a wide range of tumors (9). Based on this and
other profiling, GBM has been divided into four putative sub-
types: proneural, neural, classical, and mesenchymal each with a
unique biological behavior (10). However, Philips et al. identi-
fied alternative prognostic subclasses of high-grade astrocytomas:
proneural, proliferative, and mesenchymal (11). The proneural
subclass was enriched for neuronal lineage markers, occurred in
younger patients and has a better prognosis. The proliferative

and mesenchymal markers expressed neural stem cell markers
and have worse clinical outcomes. Recurrent gliomas have been
observed to shift expression patterns toward the mesenchymal
subclass (12). The Philips proneural subtype resembles subsets
from the TCGA proneural and neural subtypes, the Philips pro-
liferative group resembles subsets from the TCGA proneural
and classical. The mesenchymal subtypes overlap in both studies
(13, 14).

The most recent data from the TCGA network has combined
copy-number, DNA methylation, protein, mRNA, and microRNA
(miRNA) expression profiles of 543 GBMs plus exome DNA
sequencing in 291 glioblastomas (15). The key findings of this
data will be discussed throughout this review.

It is essential that new tools are developed that better delin-
eate the biological variants of gliomas. Without this more finessed
approach, treatment targets may be missed and patients given toxic
therapies not sufficiently targeted to their glioma subtype. Such
a biomarker approach means that patients with the same histo-
logical diagnosis, tumor location, and co-morbidities may receive
differing therapy based on the molecular characteristics of their
tumors (16).

A prognostic biomarker is a tumor-specific trait that pre-
dicts clinical outcome regardless of treatment given. Conversely,
a predictive biomarker predicts clinical response to a specific
treatment or drug class (17). Using such biomarkers will allow
personalized prognostic estimates to be given to patients with a
subsequent customized treatment regime, maximizing effective-
ness, and minimizing toxicity. Prognostic biomarkers can also be
used for patient stratification in clinical trial design, to ensure bal-
ance in the arms of randomized control trials of novel glioma
therapies (18).
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FIGURE 1 | Key signaling pathways in the tumorigenesis of gliomas.
The biological behavior of glial tumors is traditionally based on histological
typing and grading. Histology is increasingly being supplemented using
molecular information on genes, epigenetic markers, transcriptional
regulators, and complex gene signatures. This multitude of events

converges on a number of common signaling pathways with considerable
cross talk. Increased understanding of these pathways and their
interactions is facilitating a biomarker-driven approach to glial tumor
biology – improving diagnosis, prognostic estimation, and the
development of targeted therapies.

In this review (see Figure 1 and Table 1), we will consider recent
advances in our understanding of adult and pediatric gliomas,
highlighting both the prospectively validated prognostic and pre-
dictive biomarkers (other than tumor grade and morphology) in
current use. Additionally, putative biomarkers will be discussed
with relevance to both future clinical utility and our current
understanding of gliomagenesis.

BIOMARKERS IN ADULT GLIOMAS
PRIMARY VS. SECONDARY GLIOMAS AND ISOCITRATE
DEHYDROGENASE (IDH1 AND IDH2)
Isocitrate dehydrogenases are members of a group of enzymes
involved in energy metabolism that catalyze the decarboxylation
of isocitrate (ICT) into α-ketoglutarate (19). Several studies have
confirmed that IDH1 is mutated in approximately 60–80% of
diffusely infiltrating gliomas (WHO Grade II and III) and in sec-
ondary GBMs, which may derive from them (20). However <10%
of primary GBM carry this mutation (20, 21).

Although patients with IDH1 mutations are generally younger,
a multivariate analysis has confirmed that IDH1 mutation can be

considered a favorable independent prognostic marker in Grade
III and IV gliomas, but not in WHO Grade II astrocytomas (22,
23). IDH2 (isoenzyme) mutations are less common than IDH1
mutations and confer a similar improved prognosis, but as yet the
precise mechanism for this has not been elucidated (20, 24).

Watanabe et al. reported that IDH1 mutations always precede
TP53 mutations or 1p/19q loss (see below) in a large cohort of
Grade II/III and secondary gliomas (25). Disruption of the p53
pathway disruption is frequent in gliomagenesis [dysregulated in
85.3% of GBM according to the latest TCGA findings (15)] and
TP53 mutations play a particularly important role in the devel-
opment of secondary GBM (26). The prognostic significance of
mutated TP53 in GBM is unclear (27, 28). However, it has been
shown that mutant TP53 is associated with increased activity of a
homologous recombination-mediated mechanism called alterna-
tive lengthening of telomeres (ALT). This confers a more benign
biology and favorable prognosis (29, 30).

The ALT phenotype has been positively correlated with IDH
mutations, TP53 mutations, and mutations of the alpha tha-
lassemia/mental retardation syndrome X-linked (ATRX) gene in
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Table 1 |Tissue biomarkers with current clinical or promising relevance in malignant glioma.

Biomarker Diagnostic Prognostic Predictive Comment

ADULT GLIOMAS

IDH1 mutations + + − DNA sequence or protein level biomarker; commonly mutated in low grade and

secondary GBM (20); negative in non-neoplastic glioma mimickers; has prognostic

value in WHO Grade III and IV GBM (22, 23)

MGMT promoter

methylation

(+) + + An epigenetic biomarker in GBM with a putative diagnostic role in detecting

pseudoprogression (190); indicates an improved prognosis in malignant glioma (191)

and predicts an improved PFS with TMZ chemotherapy and RT vs. RT alone (52, 53)

1p/19q Co-deletion + + + Chromosome level biomarker commonly found in oligodendroglial tumors (192);

associated with an overall better prognosis (193) and predicts improved survival

benefit in response to chemotherapy and RT vs. RT alone (68, 69)

EGFR amplification/

EGFRvIII mutation

(+) (+) (+) A gene level biomarker frequently altered in GBM (194); with putative prognostic

validity (103–105); a potential predictive biomarker for molecular therapies (113)

PTEN − + (+) A gene level biomarker, LOH of which is associated with poor survival outcomes for

both anaplastic astrocytomas and GBM (92). The lost or inactive state of PTEN has

been linked to the resistance of targeted EGFR inhibitors in GBM (93)

PDGFRA − + − A gene level biomarker; PDGFRA amplification has recently been shown to be

associated with a poor prognosis in IDH1 mutant GBM (117) and have a negative

prognostic value in Grade III gliomas (118)

PEDIATRIC GLIOMAS

KIAA1549:BRAF + + − A gene level biomarker commonly detected in PA (153) and PMA (167); has

prognostic validity in PA and WHO Grade II astrocytomas (156)

BRAFV600E
+ (+) (+) A gene level biomarker commonly seen in supratentorial PA, PXA, or GG (154); has

putative roles as a prognostic (165) and predictive biomarker (166). Vemurafenib may

improve outcomes in adults with recurrent BRAFV600E mutated PXA (170)

K27M-H3.3 − + − An epigenetic biomarker conferring a worse OS in DIPG (145)

+Current evidence based glioma biomarker.
(+)Putative glioma biomarker under current investigation.

TMZ, temozolomide; RT, radiotherapy; PFS, progression free survival; OS, overall survival; GBM, glioblastoma multiforme; AO, anaplastic olidogendroglioma; PA,

pilocytic astrocytoma; PMA, pilomyxoid astrocytoma; PXA, pleomorphic xanthoastrocytoma; GG, ganglioglioma; DIPG, diffuse intrinsic pontine glioma.

astrocytomas but not in the oligodendroglial tumor lineage (31,
32). ATRX encodes a subunit of the chromatin remodeling com-
plex, which is key for H3.3 incorporation into heterochromatin at
centromeres and telomeres (33).

In oligodendrogliomas, a high frequency of TERT promotor
mutations have been reported (34), occurring concurrently with
IDH mutations and total 1p/19q loss [resulting in the loss of the
tumor suppressor genes CIC and far upstream element binding
protein 1 (FUBP1) – see below] (35). TERT is a catalytic subunit of
telomerase and occurs mutually exclusively with ATRX mutations
(34). This suggests that ATRX and TERT promotor mutations
serve as alternative mechanisms for telomere lengthening.

This recent evidence points to two recurrent genetic signatures
in gliomas. The first group progresses along an astrocytic lin-
eage with ALT, alterations in ATRX, TP53, and IDH. The second
group has a strong oligodendroglial component and carries IDH
mutations and alterations in either CIC and FUBP1 and/or 1p/19q
loss. The latter group has the longest median overall survival
(OS) (36).

These finding support current theories that IDH1 mutation
occurs early in gliomagenesis and may affect a glial proneural cell
population that can give rise to both astrocytes (with ATRX and
TP53 mutations) and oligodendrocytes (with TERT mutations
and 1p/19q co-deletions) (37). Most recently, TERT mutations
have been shown to have a significant overlap with IDH1 wild
type primary GBM (38), suggesting that alternative progenitor
cells give rise to these tumors.

A remarkable study showed that the R132H IDH1 point muta-
tion results in the production of a different functional metabo-
lite called 2-hydroxyglutarate (2-HG) (39). Increased 2-HG is
known to inhibit histone demethylation (40), in part because his-
tone demethylases and TET 5-methylcytosine hydroxylases are
α-ketoglutarate-dependent dioxygenases involved in epigenetic
control (41). Mutated IDH1 and increased 2-HG may therefore
pre-dispose glioma cells to DNA hypermethylation.

Extensive DNA hypermethylation can be part of the so-called
glioma CpG island methylator phenotype (G-CIMP) (42). A
recent study reported a significant association between IDH
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mutation and methylation status (determined by the H3k9me3
methylation mark) in Grade II but not Grade III (anaplastic)
astrocytomas or glioblastomas (43). Furthermore, H3K9me3-
positive Grade II oligodendrogliomas showed improved OS when
compared with H3K9me3-negative cases (43).

Glioma CpG island methylator phenotype GBM has been
shown to be associated with younger patients, with IDH1 muta-
tions and an improved prognosis, clustering in the TCGA
proneural subgroup (44). The G-CIMP phenotype therefore
appears to be a feature of lower grade gliomas and provides a
molecular definition of secondary glioblastoma (45). It may be
possible in the future to monitor mutant IDH1 glioma-associated
2-HG using non-invasive MR spectroscopy (46). Furthermore,
the early role of mutant IDH in neoplastic transformation has
lead to development of mutant IDH specific inhibitors (47).
IDH could therefore assume an additional role as a predictive
biomarker.

EPIGENETIC MODIFIERS OF GLIOBLASTOMA – MGMT PROMOTER
METHYLATION AND miRNAs
Recently, epigenetic modifiers, such as hypermethylation have
been implicated in the significant differences in glioma response
to treatment (48). Of particular importance in glioblastoma is
the DNA repair protein O6-methlyguanine methyl transferase –
MGMT – (10q26). Active MGMT is able to remove alkyl groups
from DNA, thereby reducing the efficacy and promoting can-
cer cell resistance to alkylating chemotherapeutic agents such as
temozolomide (TMZ) (49).

Following on from the work of Esteller et al. (50), a landmark
paper by Hegi et al. showed that MGMT promoter methylation
silences gene expression in 45% cases of GBM. (51). This results
in a significantly better prognosis for patients.

Following this discovery, the EORTC-NCIC trial and other
studies have shown that MGMT promoter methylation increases
progression free survival (PFS) in cases of GBM treated with TMZ
and radiotherapy (RT) vs. RT alone (52, 53). Variability in methy-
lation load at individual CpG sites also seems to affect PFS and OS
in patients receiving TMZ (54).

In addition, the prospective randomized NOA-08 (55) and
Nordic (56) trials showed that MGMT promoter methyla-
tion in elderly patients (who traditionally receive RT alone
for malignant astrocytoma) correlates with longer event free
survival and OS (respectively) when treated with TMZ. The
latest TCGA findings suggest that MGMT promoter methyla-
tion may only have such predictive validity in classical sub-
type GBM (15). A multivariable analysis has additionally shown
that the MGMT promoter methylation (MGMT-STP27) status
and G-CIMP phenotype have a significant prognostic role in
anaplastic oligodendrogliomas/oligoastrocytomas and are pre-
dictive of OS outcomes when treated with adjuvant procar-
bazine/CCNU/vincristine (PCV) (see below) chemotherapy (57).

Further epigenetic regulation is imposed on gliomas by miR-
NAs exerting complex effects on cancer gene networks (12). miR-
NAs may exert tumor suppressive or oncogenic functions through
the post-transcriptional regulation of gene expression. miR-21 was
the first miRNA to be investigated in gliomas (58) and is ele-
vated in gliomas compared to healthy cortex (59). miR-21 acts as

an oncogenic miRNA, inhibiting matrix metalloproteinase regu-
lators and promoting glioma cell migration (60). miR-181a/b/c
were originally found to be downregulated in glioblastoma (61).
Of note, downregulation of miR-181b and miR-181c has been
associated with clinical response to RT and TMZ when com-
pared to patients with progressive disease (62). miR-181d has been
shown to exert a suppressive effect on MGMT expression with a
corresponding inverse association with TMZ response in GBM
(63). Most recently, this has been reported to occur due to the
effect of miR-181d on MGMT protein translation, downregulat-
ing MGMT expression independently of promoter methylation
(64). miRNA data has also identified GBM subclasses within the
TCGA, with significant clinical differences (65). Interestingly, miR-
NAs (such as miR-9) were shown to regulate subclass-specific gene
expression and thus characterize and contribute to the phenotypic
diversity of glioblastoma subclasses. Full discussion of miRNAs
implicated in glioma initiation and progression are out with the
scope of this review. Nevertheless, miRNAs present exciting oppor-
tunities for further biomarker research with direct application
for patient stratification in clinical trials or as future therapeutic
agents (58).

CO-DELETION OF CHROMOSOMES 1p/19q IN OLIGODENDROGLIOMAS
AND GROSS CHROMOSOMAL ALTERATIONS IN GBM
Loss of the short arm of chromosome 1 and the long arm of chro-
mosome 19 (co-deletion of 1p/19q) is seen in >60% of Grade
II/III oligodendroglial tumors (66, 67).

The recent findings of the major randomized clinical trial
RTOG 9402 showed an OS benefit in response to PCV chemother-
apy plus RT vs. RT alone in patients with 1p/19q co-deletions
and both anaplastic oligodendroglioma and anaplastic oligoastro-
cytoma (68). A recent update of the similar EORTC 26951 trial
confirmed that patients with 1p/19q co-deleted anaplastic oligo-
dendroglial tumors showed an improved OS and PFS when treated
with adjuvant PCV (69).

The cause for this survival benefit is still unclear. However,
recently two candidate tumor suppressor genes have recently been
discovered within the areas of chromosomal loss. FUBP1 and CIC
(the homolog of the Drosophila capicua gene) have been identified
on 1p and 19q, respectively (70, 71). FUBP1 is thought to be a dual
(activator/inhibitor) transcriptional modulator of MYC (72). CIC
is thought to act as a transcriptional repressor, regulating target
gene expression of activated epidermal growth factor receptor
(EGFR), Ras/Raf, and MAPK cancer pathways (73).

In previous studies, the combination of 1p and 19q loss in GBM
is rare, and numbers are too small to reliably determine any sur-
vival benefit (28). However, loss of 1p alone has been observed
in both primary and secondary GBM (74). Interestingly, a mul-
tivariate analysis found that LOH 1p alone was associated with
longer GBM survival (75). Detailed studies have shown that 1p36
is a preferential target of chromosome 1 deletions in astrocytic
tumors and homozygously deleted in a subset of glioblastomas
(76). It has been also been suggested that 19q LOH alone may
confer a longer OS in patients with GBM (77).

The short arm of chromosome 9 contains the tumor suppressor
genes CDKN2A and CDKN2B, which encode p14ARF, p16INK4A,
and p15INK4B. These proteins have key roles in the p53 and RB
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pathways and hence, the G1 cell cycle checkpoint. LOH 9p is fre-
quently seen in GBM samples (78, 79) and has been associated with
a shorter OS (77) although other studies have not confirmed this
finding (80). Interestingly, the absence of CDKN2A or CDKN2B
deletion and a frequent loss of 17p (which includes p53) dif-
ferentiate diffuse intrinsic pontine glioma from non-brainstem
high-grade pediatric glioma (see later) (81).

Most recently, a small subset of GBMs has been reported as
carrying chromosomal translocations fusing the tyrosine kinase
domains of FGFR genes (FGFR1 or 3) to TACC1 or 3, respectively
(82). The resulting fusion protein localizes to metaphase spindle
poles, inducing aneuploidy. An FGFR inhibitor (83) was shown
to prolong survival in FGFR3-TACC3-initiated glioma mice mod-
els. This gives promise to FGFR-TACC rearrangements as putative
predictive biomarkers for FGFR inhibitor response (84).

EGFR ACTIVATION, EGFRvIII MUTATION, AND DOWNSTREAM
MEDIATORS OF GBM TUMORIGENESIS
It is well known up to 65% of so-called primary glioblastomas
show epidermal growth factor receptor (7p12) amplification, over-
expression, and/or mutations of this pathway (10). Such glioblas-
tomas are part of the “classic” expression subtype (10) occurring
mutually exclusively with IDH-mutated secondary GBM (20).
EGFR is a receptor tyrosine kinase. Ligand binding by EGF pro-
motes receptor dimerization and autophosphorylation of the cyto-
plasmic domain (85). Such EGFR activation is thought to promote
cellular proliferation via activation of the MAPK and PI3K-Akt
pathways (86).

The small molecule inhibitors gefitinib and erlotinib compete
with ATP to prevent phosphorylation and therefore, ameliorate
oncogenic downstream signaling (87). However, this mitogenic
signaling network shows significant modularity in GBM (88).
Gliomas are therefore able to escape the need for receptor func-
tion by activating alternative oncogenic pathways when challenged
by receptor targeted-agents (89), dramatically revealing the com-
plexity of tyrosine kinase signaling in these tumors (85). This
means that treatments targeted to multiple signaling hubs and
inhibitors of compensatory signaling paths are needed to inhibit
tumor growth and recurrence.

Previous trials of EGFR kinase inhibitor therapy have been
unsuccessful (90), most likely due to the role of downstream
mediators of the pathway, which can undergo mutation (91). For
example, PTEN is a tumor suppressor gene located at 10q23. It
functions to suppress the PI3K-Akt signaling pathway. LOH at
10q is associated with poor survival outcomes for both anaplas-
tic astrocytomas and GBM (92) and the lost or inactive state
of PTEN has been linked to the resistance of targeted EGFR
inhibitors in GBM (93). However, in vitro studies have shown that
PTEN deficient GBM cells show significant responses to combined
mTOR/EGFR kinase inhibitor therapy (94, 95).

Further predictive response stratification may be possible
through baseline measurements of downstream mTOR activa-
tors such as s6 kinase (96). Similarly in GBM patients, levels of
phosphorylated Akt have been shown to be predictive of clinical
response to erlotinib in EGFR amplified tumors (97, 98). This
highlights the importance of carefully selected molecular determi-
nants for rational trials of EGFR inhibitors in GBM. Downstream

pathway inhibitors such as BMK120 – a pan PI3K inhibitor cur-
rently undergoing phase II trials in patients stratified by PTEN
status (99) – may also have efficacy when used in combination
with EGFR inhibitors. Furthermore, gain-of-function mutations
in PI3KCA have been found in 15% of glioma samples (100)
and pre-clinical studies have shown that dual PI3KCA/mTOR
inhibitors augment the antiproliferative effects of EGFR inhibi-
tion (101). Such combination therapy could be used in concert
with traditional chemo- and radiotherapy to abrogate alternative
survival pathway activation and enhance cytotoxicity (102).

The evidence for EGFR amplification as an independent pre-
dictor for survival in GBM varies between studies (103–105).
However, higher expression of the down stream mediator phos-
phorylated MAPK has been reported to independently confirm a
lower OS in newly diagnosed GBM (106).

Of current interest is the EGFRvIII mutation, which is the most
common EGFR mutation resulting from an in-frame deletion of
801bp spanning exons 2–7 (107). This leads to a constitutively
active EGFR (107). This EGFRvIII mutation occurs in 20–30%
of GBM patients and is detected exclusively in cases with EGFR
amplification (108).

Interestingly, in vitro models have suggested that GBM cells
expressing EGFRvIII are resistant to small molecule tyrosine
kinase inhibitors (109). EGFRvIII signals to a mTOR complex
2 induced mechanism (110), thereby differing from the EGFR-
mTOR complex 1 signaling axis, which may contribute to such
therapy resistance. Nevertheless, co-expression of EGFRvIII and
wild type PTEN has previously been shown to be associated with
response to erlotinib in GBM patients (111). Conversely, erlotinib
has been suggested to act synergistically with a c-Met inhibitor
against in vitro models lacking PTEN (112). An ongoing trial of
the EGFRvIII vaccine (Rindopepimut) CDX-110 has shown longer
OS in patients treated after GBM resection (113).

Recently, an analysis of in-frame gene fusions in GBM has
identified EGFR-SEPT14 fusions, which tend to cluster in the
TCGA classical and mesenchymal subgroups, constitutively acti-
vate STAT3 signaling and confer mitogen-independent growth
(114). EGFR-SEPT14-positive GBM xenograft cells additionally
showed a significant response to lapatinib (114), indicating a pre-
dictive role for EGFR fusions in EGFR inhibitor clinical trials.
The latest whole genome sequencing work from the TCGA has
identified further complex rearrangements of the EGFR gene or
structural variants of genes surrounding its locus (15). The prog-
nostic and predictive effects of these rearrangements have yet to
be elucidated.

In GBM, platelet-derived growth factor receptor alpha
(PDGFRA) is the most commonly altered receptor tyrosine kinase
after EGFR (10, 115). GBM with amplified PDGFRA have been
shown to be associated with either amplified EGFR or amplified
MET (the hepatocyte growth factor receptor) (116). PDGFRA
amplification has recently been shown to be associated with a
poor prognosis in IDH1 mutant GBM (117) and have a negative
prognostic value in Grade III gliomas (118). In PDGFRA ampli-
fied gliomas two genetic rearrangements have been described – a
gene fusion between kinase insert domain receptor (KDR) and
the PDGRFA gene and PDGFRA (∆8, 9), an intragenic dele-
tion rearrangement (115). Both PDGFRA mutants behave as
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transforming oncogenes with elevated tyrosine kinase activity.
Unfortunately, early phase clinical trials of dual tyrosine kinase
and PDGFR inhibitors have not been successful (119), indicating
that a better understanding of this signaling pathway is needed
prior to further clinical testing.

VASCULAR ENDOTHELIAL GROWTH FACTOR AND ITS RECEPTORS
Vascular endothelial growth factor (VEGF) plays a key role in the
malignant angiogenesis seen in GBM. Activated vascular endothe-
lial growth factor and its receptors 2 (VEGFR2) activates the
Ras-Raf and PI3K-Akt transduction pathway (120). Although
>60% of GBM express VEGF by immunohistochemistry, VEGF
expression does not correlate with survival in GBM (121). How-
ever, shorter PFS has been associated with increased VEGFR2
immunohistochemical expression at tumor recurrence (122).

Bevacizumab (Avastin) is a humanized monoclonal antibody
against VEGF (123). The RTOG-0825 (US) and AVAGlio (Europe)
trials are large randomized phase III trials using bevacizumab in
addition to standard radio- and chemotherapy in newly diag-
nosed GBM (124). These trials showed no improvement in OS
with bevacizumab (125, 126). However, subgroup and molecular
analysis may still reveal positive results (127) as could prospec-
tive randomized trials of combination therapies that include
bevacizumab (128).

The tyrosine kinase inhibitor sorafenib is currently being trialed
in combination with mTOR inhibitors in patients with recur-
rent GBM (129) and with standard chemotherapy and RT in
untreated GBM (130). Sorafenib has multi-target activity against
VEGFR2, VEGFR3, PDGFRB, c-Kit, BRAF, and Raf (131). The
clinical response outcomes have so far been disappointing in recur-
rent GBM (132). Sunitinib is an alternative multi-target inhibitor
against VEGFR1-3, PDGFRA/B, FLT-3, c-Kit, and RET (133, 134).
Unfortunately, results so far indicate no significant improvement
in PFS in recurrent GBM (135).

BIOMARKERS IN PEDIATRIC GLIOMAS
PONTINE, HEMISPHERIC, AND THALAMIC GLIOMAS
Although pediatric GBM are morphologically indistinguishable
from adult GBM, they have a unique biological signature (136).
For example, while TP53 and PIK3CA mutations occur in all high
grade gliomas (137), <10% of childhood GBM harbor EGFR
amplifications or PTEN mutations (138, 139). Similarly, IDH
mutations are found in <5% of pediatric GBM although become
more common in adolescents (140).

K27M and G34V/R gain-of-function mutations in H3F3A,
which encodes histone H3.3, have recently been studied in pedi-
atric and young adult GBM (141, 142). H3.3 is known to modulate
gene expression during brain development (143). H3.3 mutations
were shown to be prevalent in pediatric cohorts and mutually
exclusive with IDH mutations (142, 144). K27M mutations have
been shown to occur in over 70% of pediatric diffuse intrinsic
pontine gliomas (DIPG) and confer a worse OS when compared to
patients with wild type H3.3 (145). Additionally, 80% of pediatric
thalamic GBM carry this mutation (145). Indeed, K27M-H3.3
mutations characterize pediatric midline GBM (136). In cohorts
of childhood brainstem and thalamic tumors, this mutation occurs
commonly in the younger (median 10 years) age group (142, 145),

overlaps significantly with TP53 but only co-occurs with ATRX
mutations in approximately half of all cases (145). The K27M
mutation has also been found in the related histone H3.1 in 18%
of DIPG (141).

G34V/R H3.3 mutations have been noted to cluster in child-
hood hemispheric GBM (144, 145). Such supratentorial tumors
occur in an older population (median 18 years) and almost always
overlap with TP53 and ATRX mutations (142). Recently, it has
been reported that loss-of-function mutations in the H3K36
trimethyltransferase SETD2 also occur in supratentorial high
grade gliomas of older children and young adults and are mutually
exclusive with H3.3 mutations (146).

How H3.3 mutations promote tumorigenesis through inter-
ference with chromatin function has not been fully elucidated.
However, the K27M mutation has been shown to inhibit K27
methylation (associated with polycomb-mediated gene repres-
sion) (147) and K27 acetylation (which is present on active gene
promoters) (148). Both H3.3 mutations may additionally alter
the expression of neural development genes (149). Furthermore,
future work on the role of H3K36 methylation in tumorigenesis
and the effects of differing histone mutations may reveal roles as
predictive biomarkers (146).

PILOCYTIC ASTROCYTOMAS: KIAA1549:BRAF AND BRAFV600E

Pilocytic astrocytomas are the most common childhood brain
tumor, accounting for approximately 20% of brain tumors under
the age of 20 (150). Pilocytic astrocytomas are slow-growing, non-
infiltrating tumors with WHO malignancy Grade I (2). They may
occur throughout the central nervous system but are found most
frequently in the posterior fossa and the hypothalamic/chiasmatic
region. Gross surgical resection frequently results in a cure and
over 90% of patients survive more than 10 years (151). How-
ever, local recurrence occurs in 10–20% of cases and the primary
lesion, its recurrence and the subsequent treatment can cause
considerable morbidity as well as neurocognitive and endocrine
dysfunction (152).

Jones et al. (153) were the first to describe a tandem duplica-
tion at 7q34 in a high proportion of pilocytic astrocytomas. This
rearrangement creates a fusion gene (KIAA1549:BRAF) with con-
stitutive BRAF kinase activity and putative abnormal activation
of MAPK/ERK pathway. KIAA1549 is an as yet uncharacter-
ized gene.

Multiple exonic fusion combinations between KIAA1549 and
BRAF have now been reported, all of which result in loss of the
BRAF autoregulatory N-terminal domain while the C-terminal
kinase domain is retained, resulting in constitutive activation of
the oncogenic MAPK pathway (154). The frequency of this fusion
gene in pilocytic astrocytomas reported in the literature varies
from 50 to 100%, depending on the patient demographic (154).
The genetic mechanism resulting in this fusion is the subject of
ongoing research (155).

It was originally reported that there was no significant differ-
ence in survival at follow up of fusion positive vs. fusion negative
pilocytic astrocytomas (153). Hawkins et al. later found that the
KIAA1549:BRAF fusion was an independent prognostic marker
for significantly improved 5 year PFS for pilocytic astrocytomas as
well as Grade II diffuse and pilomyxoid astrocytomas (156).
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The KIAA1549:BRAF fusion gene was initially thought to
be highly specific for pilocytic astrocytomas (154) thereby sug-
gesting a useful diagnostic biomarker for a tumor with varied
and challenging histology. However, Lin et al. recently identi-
fied KIAA1549:BRAF in 36% of glioneuronal tumors studied
as well as 33% of pilomyxoid astrocytomas (157). In addition,
KIAA1549:BRAF has been identified in 9% of diffuse adult gliomas
(pre-dominantly oligodendroglial neoplasms) (158). In a large
proportion of these cases, KIAA1549:BRAF and IDH mutations
were present as independent molecular events. This suggests that
in a small proportion of adult glial tumors 7q34 rearrangements
may contribute to Ras-RAF-ERK signaling dysregulation. This has
important implications for the design of novel therapies.

The above discussion highlights the single pathway nature of
pilocytic astrocytomas – a disease driven by abnormal MAPK/ERK
pathway activation. Indeed, recent evidence has highlighted fur-
ther oncogenic “hits” driving this pathway. Two new fusion genes
involving the kinase domain of the known oncogene NTRK2 and
point mutations within the kinase domain of FGFR1 have been
identified (159). All FGFR1-mutant tumors are extracerebellar and
may be further modified by co-expression of the mutated phos-
phatase gene PTPN11 to upregulate phosphorylated ERK (159).
NTRK2, FGFR1, and PTPN11 are likely to act as upstream dri-
vers of MAPK/ERK pathway activation and may be responsible
for the paradoxical pathway activation seen in KIAA1549:BRAF
tumors treated with BRAF inhibitors (160). These genetic changes
could therefore become key as predictive biomarkers for stratifying
patients in ongoing trials of combination FGFR, NTRK2, and/or
MAPK/ERK kinase inhibitors (161, 162).

Infratentorial posterior fossa pilocytic astrocytomas tend to
display a high frequency of the KIAA1549:BRAF fusion (163).
KIAA1549:BRAF fusion positive pilocytic astrocytomas also occur
less frequently with increasing age (164). Supratentorial tumors
are less frequently fusion positive but have an increased frequency
of the oncogenic BRAFV600E mutation (154), a putative pediatric
low grade prognostic biomarker (165), and promising predictive
biomarker (166).

Additionally, BRAF V600E is associated with 60–80% of pleo-
morphic xanthoastrocytomas (PXA, WHO Grade II) across all age
groups (167). These tumors do not have concomitant 7q34 BRAF
duplications (168), indicating a potential diagnostic role for the
BRAFV600E mutation. A BRAFV600E mutation specific antibody
is available (169) and a recent small study suggested that vemu-
rafenib (a BRAF inhibitor with significant activity against BRAF
mutated metastatic melanoma) may improve outcomes in adults
with recurrent BRAFV600E mutated PXA (170). BRAFV600E is also
reported in 20–25% of pediatric and adult gangliogliomas (171)
[or higher (172)] and may have a role as a negative prognostic
biomarker (173). BRAFV600E mutated gangliogliomas have been
shown to be associated with concomitant mTOR pathway activa-
tion, which may aid the development of targeted treatments for
this tumor (174).

GLIOMAS, INTRATUMOURAL HETEROGENEITY, AND BRAIN TUMOR
STEM CELLS
The discussion above highlights our developing understanding
of glial tumors as entities with individual pathological molecu-
lar events and treatment responses. It is increasingly recognized,

however, that individual tumors contain distinct spatial regions
with differing molecular profiles. For example, microdissected
glioma tissue specimens have been shown to harbor unique mol-
ecular profiles in central vs. peripheral invasive regions (175).
Receptor kinases (EGFR, MET, PDGFRA) have also been found
to be amplified in single tumors in different cells in a mutu-
ally exclusive fashion (176). Such intratumoural heterogeneity
results in divergent subclones of neoplastic cells within the same
tumor and is likely to drive treatment failure, treatment resis-
tance, and subsequent recurrence of the malignancy (177, 178).
Indeed, it has recently been shown that different samples from the
same GBM can be classified into different GBM subtypes (179).
It follows that the impact of sampling bias must be considered
when stratifying patients in future clinical trials using molecular
criteria.

Furthermore, tumor recurrence post-treatment may consist of
multiple neoplastic clones coexisting in the same lesion. Analysis
of such patterns of heterogeneity could enable patients to receive
targeted multimodal therapies for recurrent tumors (12, 180). This
aim will additionally require a greater understanding of how brain
cancer stem cells (also termed brain tumor initiating cells) drive
such divergent neoplastic clones and cause tumor relapse (181–
183). It has been shown both in vivo and in vitro that brain tumor
initiating cells can be epigenetically differentiated into mature neu-
ronal type cells (184, 185). Such cells can also be directed into
non-neuronal cell types with a resultant suppression of malignant
cellular behavior (186). It is hoped that such epigenetic manip-
ulation could 1 day lead to further, more refined, personalized
treatment (187, 188).

CONCLUSION
Over the last decade, there has been an unprecedented surge in our
understanding of what drives neoplastic growth in glial tumors.
Further molecular characterization of these tumors in the future
will accelerate biomarker discovery and facilitate the creation of
new diagnostic categories for gliomas (189). Only IDH mutation
status (prognostic) and MGMT methylation status and 1p/19q co-
deletion (predictive) are currently routinely used for evaluation of
glioma patients by clinicians in the US and UK. However, the
ongoing development of targeted therapies as mono and combi-
nation treatments necessitates the discovery of optimal molecular
predictive biomarkers, which will further our understanding of
these tumors.

Additionally, biomarker analysis will become a major factor
in glioma clinical trials, with rapid identification of putative
biomarkers in early stage trials with sufficient statistical design
to validate predictive associations in phase III trials. Care will
therefore be required to distinguish biomarkers that provide
prognostic information from those that have predictive validity.
This approach will allow us to determine future personalized
therapeutic choices with minimal toxicity and improve clinical
outcomes for patients for whom the diagnosis of a malignant
glioma still portends a dismal outlook.
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