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Abstract

Heritability analyses of GWAS cohorts have yielded important insights into complex disease 

architecture, and increasing sample sizes hold the promise of further discoveries. Here, we analyze 

the genetic architecture of schizophrenia in 49,806 samples from the PGC, and nine complex 

diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an 

overwhelmingly polygenic disease architecture in which ≥71% of 1Mb genomic regions harbor ≥1 

variant influencing schizophrenia risk. We also observe significant enrichment of heritability in 

GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In 

bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) among 

several pairs of GERA diseases; genetic correlations were on average 1.3x stronger than 

correlations of overall disease liabilities. To accomplish these analyses, we developed a fast 

algorithm for multi-component, multi-trait variance components analysis that overcomes prior 

computational barriers that made such analyses intractable at this scale.

Over the past five years, variance components analysis has had considerable impact on 

research in human complex trait genetics, yielding rich insights into the heritable phenotypic 

variation explained by SNPs
1–3

, its distribution across chromosomes, allele frequencies, and 

functional annotations
4–6

, and its correlation across traits
7,8. These analyses have 

complemented genome-wide association studies (GWAS): while GWAS have identified 

individual loci explaining significant portions of trait heritability, variance components 

methods have aggregated signal across large SNP sets, revealing information about 

polygenic effects invisible to association studies. The utility of both approaches has been 

particularly clear in studies of schizophrenia, for which early GWAS achieved few genome-

wide significant findings, yet variance components analysis indicated a large fraction of 

heritable variance spread across common SNPs in numerous loci, over 100 of which have 

now been discovered in large-scale GWAS
5,9–12

.

Despite these advances, much remains unknown about the genetic architecture of 

schizophrenia and other complex diseases. For schizophrenia, known GWAS loci 

collectively explain only 3% of variation in disease liability
12

; of the remaining variation, a 

sizable fraction has been shown to be hidden among thousands of common SNPs
5,11

, but the 

distribution of these SNPs across the genome and the allele frequency spectrum remains 

uncertain. Even for traits such as lipid levels and type 2 diabetes for which loci of somewhat 

larger effect have been identified, the spatial and allelic distribution of variants responsible 

for the bulk of known SNP-heritability remains a mystery
13,14

. Variance components 

methods have potential to shed light on these questions using the increased statistical 

resolution offered by tens or hundreds of thousands of samples
15,16

. However, while study 

sizes have increased beyond 50,000 samples, existing variance components methods
2
 are 

becoming computationally intractable at such scales. Computational limitations have forced 

previous studies to split and then meta-analyze data sets
6
, a procedure that results in loss of 

precision for variance components analysis, which relies on pairwise relationships for 

inference (in contrast to meta-analysis in association studies)
15,16

.

Here, we introduce a much faster variance components method, BOLT-REML, and apply it 

to analyze ≈50,000 samples in each of two very large data sets—the Psychiatric Genomics 
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Consortium (PGC2)
12

 and the Genetic Epidemiology Research on Aging (GERA; see 

URLs)—obtaining several new insights into the genetic architectures of schizophrenia and 

nine other complex diseases. We harnessed the computational efficiency and versatility of 

BOLT-REML variance components analysis to estimate components of heritability, infer 

levels of polygenicity, partition SNP-heritability across the common allele frequency 

spectrum, and estimate genetic correlations among GERA diseases. We corroborated our 

results using an efficient implementation of PCGC regression
17

 when computationally 

feasible.

Results

Overview of Methods

The BOLT-REML algorithm employs the conjugate gradient-based iterative framework for 

fast mixed model computations
18,19

 that we previously harnessed for mixed model 

association analysis using a single variance component
20

. In contrast to that work, BOLT-

REML robustly estimates variance parameters for models involving multiple variance 

components and multiple traits
21,22

. BOLT-REML uses a Monte Carlo average information 

restricted maximum likelihood (AI REML) algorithm
23

, which is an approximate Newton-

type optimization of the restricted log likelihood
24

 with respect to the variance parameters 

being estimated. In each iteration, BOLT-REML rapidly approximates the gradient of the log 

likelihood using pseudorandom Monte Carlo sampling
25

 and approximates the Hessian of 

the log likelihood using the average information matrix
26

. Full details, including simulations 

verifying the accuracy of BOLT-REML heritability parameter estimates and standard errors 

(which are nearly identical to standard REML), are provided in Online Methods and the 

Supplementary Note. We have released open-source software implementing BOLT-REML 

(see URLs).

Efficiency of BOLT-REML variance components analysis

We assessed the computational performance of BOLT-REML, comparing it to the GCTA 

software
2
 (see URLs) in REML analyses of GERA disease phenotypes on subsets of the 

GERA cohort. We observed that across three types of analyses, BOLT-REML achieved 

order-of-magnitude reductions in running time and memory use compared to GCTA, with 

relative improvements increasing with sample size (Figure 1). The running times we 

observed for BOLT-REML scale roughly as ≈MN1.5, consistent with previously reported 

empirical results for BOLT-LMM association analysis
20

; in contrast, standard REML 

analysis requires O(MN2+N3) running time (Figure 1a and Supplementary Table 1). BOLT-

REML also only requires ≈MN/4 bytes of memory (nearly independent of the number of 

variance components used), in contrast to standard REML analysis, which requires O(N2) 

memory per variance component (Figure 1b and Supplementary Table 1). Consequently, 

GCTA could only analyze at most half the cohort; indeed, computational constraints have 

forced previous studies to split large cohorts for analysis
6
, increasing standard errors. In 

contrast, BOLT-REML enabled us to perform a full suite of heritability analyses on 

N=50,000 samples with tight error bounds
15,16

.
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SNP-heritability of schizophrenia and GERA diseases

We analyzed 22,177 schizophrenia cases and 27,629 controls with well-imputed genotypes 

at 472,178 markers of minor allele frequency (MAF) ≥2% in the PGC2 data12 

(Supplementary Table 2) and nine complex diseases in 54,734 randomly ascertained samples 

typed at 597,736 SNPs in the GERA cohort (see Online Methods; QC included filtering to 

unrelated European-ancestry samples and LD-pruning markers to r2≤0.9). To remove 

possible effects of population stratification, all analyses included 10 principal component 

covariates; PGC2 analyses further included 29 study indicators. We estimated liability-scale 

SNP-heritability ( , ref. 1) for schizophrenia in the PGC2 data set and all 22 disease 

phenotypes in the GERA data set assuming a liability threshold model; we assumed 

schizophrenia population risk of 1% (ref. 5,11,12), and we assumed GERA disease 

population risks matched case fractions in the GERA cohort. For GERA diseases, we 

estimated  by applying BOLT-REML directly to observed case/control status—obtaining 

raw observed-scale heritability parameter estimates  —and then converting  to 

liability-scale  using the linear transformation of ref. 3 (Table 1 and Supplementary Table 

3). Given the very low values of  for many GERA diseases, we restricted further GERA 

analyses to the nine individual diseases with highest  (Table 1). For schizophrenia, we 

estimated  by developing and applying a computationally efficient implementation of 

PCGC regression
17

 (see URLs and Online Methods) in light of the known downward bias of 

large-sample REML  estimates for ascertained case-control traits
17,27

. Indeed, upon 

performing REML analyses on full data sets as well as on 2x–10x subsamples, we observed 

significant downward bias of schizophrenia  estimates with increasing sample size, 

whereas we observed no such trend in GERA, which is a randomly ascertained cohort study 

(Supplementary Table 4). REML  estimates on 10x–downsampled (N≈5,000) PGC2 data 

were consistent with the PCGC regression estimate (Supplementary Table 4).

These analyses help explain a previously mysterious observation of decreasing 

schizophrenia  estimates with increasing aggregation of cohorts
5
. This phenomenon was 

attributed to phenotypic heterogeneity
5,11

, as suggested by estimates of between-cohort 

genetic correlation <1 (ref. 5). Our analyses implicate ascertainment-induced downward bias 

of estimated  (worsening with sample size) as an additional explanation of this effect 

(Supplementary Tables 4 and 5). In theory, the extent of ascertainment-induced bias could be 

used to infer the extent of case over-ascertainment and hence infer population risk, but we 

found in simulations that larger sample sizes would be required (Supplementary Table 6). 

Finally, we note that while our reported schizophrenia  assumes a population risk of 1% 

(ref. 5,11,12), this assumption does not affect estimates of the relative partitioning of SNP-

heritability across SNP subsets; in the partitioning analyses that follow,  serves only as a 

scale factor (Online Methods). Similarly, while our use of an LD-pruned marker set to 

alleviate LD bias
28–30

 (Online Methods) results in a higher  estimate than using unpruned 
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markers (Supplementary Table 5), this choice does not otherwise affect the analyses that 

follow.

Contrasting polygenicity of schizophrenia and GERA diseases

We next performed a detailed investigation of the polygenicity of schizophrenia and GERA 

diseases. Specifically, we estimated SNP-heritability explained by each 1Mb region of the 

genome,  (defined in Online Methods) (Fig. 2a); we confirmed in simulations that 1Mb 

regions are sufficiently wide to ensure negligible leakage of heritability across region 

boundaries due to LD or incomplete tagging of variants (Supplementary Tables 7 and 8). We 

restricted our primary analyses of GERA diseases to dyslipidemia and hypertension, the 

diseases with the highest observed-scale SNP-heritability  (Supplementary Table 3); we 

had insufficient statistical power to analyze diseases with lower  (Supplementary Fig. 

1). As expected, SNP-heritability estimates for individual 1Mb regions were individually 

noisy (mean estimated  / mean s.e.( )= 0.85 for schizophrenia and 0.51 for 

dyslipidemia and hypertension), although we did see substantial SNP-heritability in some 

1Mb regions (particularly for dyslipidemia, which has relatively large-effect SNPs
13

; in 

contrast, no 1Mb region was estimated to explain more than 0.1% of schizophrenia liability). 

We therefore sought to draw inferences from the bulk distribution of per-megabase SNP-

heritability estimates (Supplementary Fig. 2). (We note that a limitation of BOLT-REML is 

that it is does not compute likelihood ratio test statistics for testing whether individual 

variance components contribute nonzero variance; see Supplementary Note.)

To understand the effect of different levels of polygenicity on the distribution of per-

megabase SNP-heritability estimates, we simulated quantitative traits of varying 

polygenicity (2K–600K causal SNPs) with  matching the genome-wide observed-scale 

 estimates for schizophrenia, dyslipidemia, and hypertension (Supplementary Table 3) 

using PGC2 and GERA genotypes. We then applied the same procedures we applied to the 

real phenotypes to obtain per-megabase SNP-heritability estimates, and we compared the 

simulated distributions of per-megabase estimates to the observed distributions, focusing on 

the fraction of 1Mb regions with  estimates of zero (Figure 2b). Intuitively, more-

polygenic traits have heritability spread more uniformly across 1Mb regions and hence have 

fewer  estimates of 0, as our simulations confirmed. (Based on this statistic, our 

analyses suggest that schizophrenia has a genetic architectures involving >20,000 causal 

SNPs; however, we caution that—unlike our analyses below—this estimate is contingent on 

our parameterization of simulated genetic architectures, as are previous estimates
11,31

.)

We further interrogated our real and simulated distributions of per-megabase SNP-

heritability estimates to obtain nonparametric bounds on the cumulative fraction of 

explained by varying numbers of true top 1Mb regions—i.e., those that harbor the most 

SNP-heritability in the population—for schizophrenia, dyslipidemia, and hypertension 

(Figure 2c). We observed that the probability of observing an  estimate of zero for a 

given 1Mb region is a convex function of the true SNP-heritability of that region 
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(Supplementary Figures 3 and 4), and we harnessed this observation to upper-bound the 

cumulative heritability explained by true top regions. To lower-bound this quantity, we 

applied a cross-validation procedure (similar to ref. 32) in which we selected top regions 

using subsets of the data and estimated heritability explained using left-out test samples 

(Online Methods). Combining upper and lower bounds produced conservative 95% 

confidence intervals for heritability explained by top regions (Figure 2c), as we verified in 

simulations (Supplementary Fig. 5). In particular, we inferred that schizophrenia has an 

extremely polygenic architecture, with most 1Mb regions (conservative 95% CI: 

71%-100%) contributing nonzero SNP-heritability and very little concentration of SNP-

heritability in top 1Mb regions, in contrast to dyslipidemia (Figure 2c). Importantly, these 

bounds are not contingent on any particular parametric model of genetic architecture 

(Supplementary Fig. 6): this inference uses simulation data only to interrogate the sampling 

variance of  estimates, which is largely independent of the distribution of heritability 

across SNPs in a region (Supplementary Fig. 4)
28

. (We report only conservative 95% 

confidence intervals—without parameter estimates—because obtaining point estimates 

would require assuming a parameterization of genetic architecture.) We repeated all of these 

analyses using 0.5Mb regions and observed no qualitative differences in the results 

(Supplementary Figures 2, 3, 7 and Supplementary Table 7).

Having computed per-megabase SNP-heritability estimates, we checked for correlations 

between estimated  and genomic annotations that vary slowly across the genome. 

Specifically, we tabulated GC content, genic content
6
, replication timing

33
, recombination 

rate
34

, background selection
35

, and methylation QTLs
36

 per megabase of the genome. (Each 

of these annotations had r2>0.3 autocorrelation across consecutive 1Mb segments; see 

Supplementary Table 9.) For each disease (schizophrenia, dyslipidemia, and hypertension), 

we observed the greatest correlation with GC content (p<10−5) (Supplementary Table 10). 

We also observed significant correlations of per-megabase SNP-heritability with genic 

content, replication timing and recombination rate; however, upon including GC content—

which is correlated with each of the other annotations (Supplementary Table 11)—as a 

covariate, all other correlations became non-significant (Supplementary Table 10). To further 

investigate this finding, we stratified 1Mb regions into GC content quintiles and partitioned 

SNP-heritability across strata, observing a clear enrichment of heritability with increasing 

GC content (Figure 3), which we verified was not due to systematic differences in SNP 

counts or MAF distributions across GC quintiles (Supplementary Table 12 and 

Supplementary Fig. 8) and not explained by differences in meQTL counts (Supplementary 

Fig. 9). To quantify this enrichment, we performed finer partitioning into 50 GC strata and 

regressed SNP-heritability estimates against GC content (Online Methods). We found that a 

1% increase in GC content (relative to the median) corresponded to 1.0%, 4.4%, and 3.2% 

increases in heritability explained (relative to the mean) for schizophrenia, dyslipidemia, and 

hypertension (95% confidence intervals, 0.3–1.6%, 2.1–6.7%, and 1.8–4.6%). Again, 

repeating these analyses using 0.5Mb regions produced no qualitative differences in results 

(Supplementary Fig. 10 and Supplementary Tables 10 and 11). We also observed that 

including 10 principal component covariates per variance component or applying extremely 

stringent QC had negligible impact on our results (Supplementary Table 13). Likewise, 
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repeating our analyses using PCGC regression instead of BOLT-REML produced consistent 

results with slightly larger standard errors (Supplementary Table 13).

Finally, we performed chromosome partitioning of SNP-heritability for each disease, as 

previously done for schizophrenia using N=21K samples
5
. We confirmed a strikingly linear 

relationship between per-chromosome SNP-heritability of schizophrenia and chromosome 

length (Supplementary Fig. 11), consistent with a highly polygenic disease architecture. In 

contrast, the trend for dyslipidemia was noticeably less linear, consistent with the existence 

of large-effect loci (Supplementary Fig. 11).

Enrichment of SNP-heritability in higher-frequency SNPs

Given the high observed-scale heritability of schizophrenia on the full N=50K data set 

(Supplementary Table 3), we reasoned that analyses partitioning schizophrenia SNP-

heritability by allele frequency would yield tight partitioning estimates, providing greater 

resolution to previous inferences using N=21K samples
5
. To calibrate this analysis 

(accounting for incomplete LD between tag SNPs and true causal SNPs), we first ran minor 

allele frequency (MAF)-partitioned heritability analyses of simulated quantitative 

phenotypes based on UK10K sequencing data (see Online Methods and URLs). We 

simulated genetic architectures in which causal SNPs were drawn from SNPs with MAF 

p≥0.1% and were randomly assigned allele effect sizes with variances proportional to (p(1 − 

p))α for various values of α between −1 and 0 (ref. 28,29) (Online Methods). Under this 

parameterization, α=−1 corresponds to a model in which rare SNPs have larger per-allele 

effects, so that all SNPs have the same expected contribution to variance
1
, while α=0 

corresponds to a model with no selection
37

 in which all alleles have similar per-allele 

effects, i.e., rarer SNPs contribute less variance. We performed MAF-partitioned analyses
29 

over six MAF bins (partitioning the 2–50% MAF range) using tag SNPs from the PGC2 data 

set, and we observed that the heritability captured by tag SNPs in each bin ( , defined 

in Online Methods) accounted for most but not all of the true heritability contributed by 

causal UK10K variants in each bin ( , defined in Online Methods) (Fig. 4a).

We then performed MAF-partitioning of schizophrenia  by running BOLT-REML on the 

full PGC2 data set with variance components corresponding to the same six MAF bins (Fig. 

4b). We estimated total narrow-sense heritability contributed per MAF bin,  (Fig. 4b), 

by performing an inverse-variance weighted least-squares fit of observed  against data 

from our simulations, interpolated for −1≤α≤0; this procedure yielded a best-fit value of α=

−0.28 (jackknife s.e.=0.09) (Supplementary Fig. 12), from which we inferred . To keep 

our inferences robust to model parameterization, we computed conservative 95% confidence 

intervals for  (independent of the best-fit α) by taking the union of 95% confidence 

intervals assuming different values of α (−1≤α≤0). Finally, we divided  by the number 

of UK10K SNPs per bin (Supplementary Table 14) to estimate the average heritability 

explained per SNP in each MAF bin,  (Fig. 4c), observing a clear increase in per-SNP 

heritability with increasing allele frequency. Repeating the MAF-partitioning using PCGC 

regression produced consistent results with slightly larger standard errors (Supplementary 
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Table 13). We observed the same general trend in analyses of GERA diseases, although the 

results were noisier due to smaller  (Supplementary Fig. 13).

Genetic correlations across GERA diseases

Since GERA samples were phenotyped for multiple diseases, we also estimated genetic 

correlations and total correlations (rg and rl, defined in Online Methods) among GERA 

disease liabilities (Figure 5 and Supplementary Table 15). We estimated genetic correlations 

using bivariate BOLT-REML on each pair of case-control traits
7
 and total liability-scale 

correlations using Monte Carlo simulations to match total observed-scale correlations 

(Online Methods). We first ran the analysis using only our standard set of covariates (age, 

sex, 10 principal components, and Affymetrix kit type) (Fig. 5a) and then reran the analysis 

including BMI as an additional covariate (Fig. 5b). We verified that of the nine survey-

derived covariates provided with the GERA data set, BMI was the only one relevant to our 

analysis (Supplementary Fig. 14). Interestingly, we observed that adjusting for BMI 

produced (on average) a 25% (s.e.=5%) relative reduction in genetic correlations and a 19% 

(s.e.=3%) relative reduction in total correlations, as assessed by regressing BMI-adjusted 

correlations on unadjusted correlations, suggesting that some correlation signal among these 

diseases is mediated by BMI. Of the 13 significant genetic correlations in the unadjusted 

analysis, six became non-significant upon adjusting for BMI, leaving a very strong genetic 

correlation between asthma and allergic rhinitis (rg=0.85, s.e.=0.11) and a cluster of six 

moderate genetic correlations among cardiovascular disease, type 2 diabetes, dyslipidemia, 

and hypertension (rg=0.27–0.43) (Supplementary Table 15).

We further investigated the relationship between genetic correlations (rg) and total 

correlations (rl) among disease liabilities. We observed that rg significantly exceeded rl for 

asthma and allergic rhinitis (rg=0.85 vs. rl=0.46; p=0.008 adjusting for 36 hypotheses); no 

other pair reached significance. We also observed an approximately linear relationship 

between genetic correlation and total liability correlation; regressing rg on rl yielded a 

proportionality constant of rg/rl=1.3 (s.e.=0.1, with the caveat that the 36 trait pairs are not 

independent) robust to the choice of whether or not to use BMI as a covariate 

(Supplementary Fig. 15).

Discussion

We have introduced a new fast algorithm, BOLT-REML, for variance components analysis 

involving multiple variance components and multiple traits, and demonstrated that it enables 

previously-intractable large-sample heritability analyses. Such analyses will be essential to 

attaining the statistical resolution necessary to reveal deeper insights into the genetic 

architecture of complex traits (Supplementary Table 16)
15,16

. We have applied BOLT-REML 

to perform ≈50,000-sample analyses of the PGC2 and GERA data sets, uncovering multiple 

insights into complex disease architecture, including extreme polygenicity of schizophrenia, 

enrichment of SNP-heritability in GC-rich regions and in higher-frequency SNPs, and 

significant genetic correlations among several GERA diseases.

Loh et al. Page 8

Nat Genet. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our per-megabase analyses of SNP-heritability in schizophrenia, dyslipidemia, and 

hypertension revealed contrasting levels of polygenicity, with schizophrenia exhibiting an 

exceptionally polygenic architecture. Our inference that most 1Mb regions of the genome 

(71–100%) contain schizophrenia loci evokes the concern that increasingly-powered 

complex-trait GWAS will ultimately implicate the entire genome, becoming 

uninformative
38

. Recent very large-scale GWAS
12,32,39

 have begun grappling with this 

problem by focusing on biological pathways or gene sets instead of individual SNPs
40

. 

While previous studies have provided evidence for a highly polygenic architecture for 

schizophrenia
9,41

, no previous study has quantified polygenicity at the extreme level of we 

have observed here; in light of this result, methods that further interrogate associations at the 

pathway level will be essential to extracting further biological insights about 

schizophrenia
42

. This finding also raises the question of whether polygenicity would 

diminish in analyses with more homogeneous sample recruitment or phenotype (e.g., 

treatment-resistant schizophrenia); future studies may be sufficiently powered to answer this 

question. As to our observation of enrichment of SNP-heritability with increasing GC 

content, further study will be required to disentangle the mechanisms underlying this 

phenomenon; previous work has shown that GC architecture has complex effects on 

recombination and replication timing
33

 as well as DNA methylation
43

.

Our results partitioning the SNP-heritability of schizophrenia and GERA diseases across the 

2–50% allele frequency spectrum shed light on the extent to which rarer SNPs tend to have 

larger per-allele effects, as predicted by evolutionary models
44,45

. Our analysis of 

schizophrenia, based on well-imputed SNPs with MAF≥2%, does not assess the contribution 

of rare variants (MAF<1%) due to the need for stringent QC in heritability analyses of 

ascertained case-control cohorts
3
; however, the trend for SNPs with MAF 2–50% (Fig. 4b,c) 

strongly suggests that rarer SNPs have larger effect sizes per allele, yet explain less variance 

per SNP. While further study of more phenotypes and rarer variants is needed, this 

observation implies that the implicit assumption of α=−1 made by standard analyses of 

heritability
1
 and mixed model association

20,27
 may be suboptimal, leaving room for further 

improvement on both fronts.

Our correlation analyses of GERA diseases identified a very strong genetic correlation 

(rg=0.85, s.e.=0.11) between asthma and allergic rhinitis. While the link between asthma and 

allergy has long been known and recent GWAS have identified many shared associations, 

the extent to which these two diseases are genetically related has not previously been 

quantified
46–48

. Among other disease pairs, our observation of significant genetic 

correlations among metabolic diseases confirms and adds resolution to previous 

estimates
49,50

, while our observation of significant broad decreases in genetic and total 

correlations upon including BMI as a covariate highlights the importance of carefully 

considering the effects of heritable covariates when conducting and interpreting genetic 

analyses
51

. Additionally, our empirical observation of an approximately linear relationship 

between correlations of total liability and genetic correlations
52

, viewed in conjuction with a 

similar (but noisier) empirical observation among a set of seven quantitative metabolic 

traits
50

, suggests the generality of such a trend for human complex traits.
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Methodologically, while the variance components (REML) approach
1
 that we have applied 

and accelerated here enjoys widespread use, three alternative approaches to heritability 

analysis (with various trade-offs) have recently been proposed. First, the Bayesian sparse 

linear mixed model
53

 adapts the variance components approach to better-model traits with 

large-effect loci, slightly reducing standard errors at the expense of much larger 

computational cost; integrating this approach into BOLT-REML is a potential future 

direction. Second, PCGC regression
17

, which generalizes Haseman-Elston regression
54

, is 

not subject to downward bias under case-control ascertainment; we therefore recommmend 

PCGC regression for the purpose of estimating genome-wide  in such situations. (For 

partitioning SNP-heritability across subsets of SNPs, PCGC estimates have slightly higher 

standard errors than REML.) Third, LD Score regression
49,55

 is a very different approach 

that makes inference using only GWAS summary statistics—not genotype data. LD Score 

regression has the disadvantage of somewhat higher standard errors (vs. REML) that further 

increase if inference is desired for small regions of the genome; as such, we are not currently 

aware of a method for assessing degree of polygenicity using summary statistics. All of 

these methods have the limitation that they assume independence of genetic and 

environmental effects; violation of this assumption may cause bias.

Compared to existing REML methods, the BOLT-REML algorithm we have proposed is 

much more computationally efficient; however, our approach does have limitations. First, 

because BOLT-REML achieves its speedup by avoiding direct computation of likelihoods, it 

is unable to compute likelihood ratio tests to assess whether variance parameters are 

significantly nonzero. In fact, the assumptions underlying REML analytic standard errors 

break down for parameter estimates of zero (and more generally, at the parameter space 

boundary; see Supplementary Note). GCTA
2
 provides an unconstrained optimization feature 

that allows negative variance estimates, thereby sidestepping this issue and also reducing 

constraint-induced bias; incorporating such a feature into BOLT-REML is a potential future 

direction. Second, BOLT-REML, like all REML algorithms, occasionally fails to converge 

when variance parameters are poorly constrained, typically for multi-component models at 

small sample sizes (N ≪ 5,000). Given that sample sizes are steadily increasing, however, 

we expect BOLT-REML to be a robust choice for harnessing the full power of large-scale 

cohorts to further elucidate complex trait architectures.

URLs

BOLT-REML software and source code (implemented in the BOLT-LMM v2.1 package), 

http://www.hsph.harvard.edu/alkes-price/software/.

GCTA software, http://www.complextraitgenomics.com/software/gcta/.

PCGC regression efficient software, http://github.com/gauravbhatia1/PCGCRegression.

PLINK2 software, http://www.cog-genomics.org/plink2.

KING software, http://people.virginia.edu/~wc9c/KING/.
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EIGENSOFT v6.0.1, including open-source implementation of FastPCA, http://

www.hsph.harvard.edu/alkes-price/software/.

GERA data set, http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000674.v1.p1.

UK10K project, http://www.uk10k.org/.

Online Methods

BOLT-REML algorithm

The overall framework of the BOLT-REML algorithm is Monte Carlo AI REML
23

, a 

Newton-type iterative optimization of the (restricted) log likelihood with respect to the 

variance parameters sought. BOLT-REML begins a multi-variance component analysis by 

computing an initial estimate of each parameter using the single variance component 

estimation procedure of BOLT-LMM
20

 (which is the only analysis possible with BOLT-

LMM). Then, in each iteration, BOLT-REML rapidly approximates the gradient of the log 

likelihood using pseudorandom Monte Carlo sampling
25

 and the Hessian of the log 

likelihood using the average information matrix
26

. BOLT-REML efficiently computes both 

approximations using conjugate gradient iteration
18,19

 with the performance optimizations 

applied by BOLT-LMM
20

. The approximate gradient and Hessian produce a local quadratic 

model of the likelihood surface, which we optimize within an adaptive trust region radius—

key to achieving robust convergence—to obtain a proposed step. To evaluate success of the 

proposed step (i.e., determine whether to accept the step, whether to change the trust region 

radius, and whether the optimization has converged) we introduce a gradient-based 

approximation to the change in log likelihood achieved by the step. These procedures allow 

BOLT-REML to consistently achieve convergence in ≈O(MN1.5) time; in contrast, existing 

multi-component REML algorithms either are less robust or require O(MN2+N3) time (e.g., 

GCTA
2
). Details are described in the Supplementary Note.

Accuracy of BOLT-REML variance components analysis

We verified the accuracy of BOLT-REML analysis by simulating quantitative traits with 

infinitesimal architectures using genotypes from subsets of the GERA data set and 

partitioning heritability by chromosome. On a first set of 50,000 simulations using 

genotypes from N=2,000 samples on chromosomes 21–22, BOLT-REML correctly 

estimated components of heritability, computing nearly identical results to GCTA
2
 when run 

with 100 Monte Carlo trials, and incurring only 1.03 times higher standard errors when run 

with 15 Monte Carlo trials (Supplementary Table 17), consistent with theory 

(Supplementary Note). On additional sets of 100 simulations using genotypes from 

N=10,000 samples on chromosomes 1–2, BOLT-REML correctly estimated genetic 

correlations in bivariate analyses of simulated quantitative traits
7
 (Supplementary Table 18) 

and randomly ascertained case-control traits using a liability threshold model
3 

(Supplementary Table 19). Finally, in simulated N=50K case-control cohorts over-

ascertained for cases (including population stratification and varying polygenicity), we 

observed that while absolute estimates of heritability were downward biased, as previously 

Loh et al. Page 11

Nat Genet. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.hsph.harvard.edu/alkes-price/software/
http://www.hsph.harvard.edu/alkes-price/software/
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v1.p1
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v1.p1
http://www.uk10k.org/


demonstrated
17,27

, relative contributions of variance components and their standard errors 

were still accurately estimated when partitioning heritability by chromosome or minor allele 

frequency (Supplementary Figures 16–19).

PGC2 data set

We analyzed the PGC2 schizophrenia data set
12

, applying the following filters. Of 39 

European-ancestry cohorts available to us for analysis, we first eliminated 10 cohorts 

(containing 12% of the available samples) with the lowest numbers of well-imputed SNPs. 

We further filtered out samples with <90% European ancestry as determined by SNPweights 

v2.0 (ref. 56). Finally, we extracted an unrelated subset of individuals (pairwise genetic 

similarity <0.0884) using KING v1.4 --unrelated --degree 3; see URLs (ref. 57,58), 

comprising 22,177 cases and 27,629 controls (Supplementary Table 2). Of the imputed 

genotypes previously computed for each cohort, we restricted to well-imputed autosomal 

markers (genotype call confidence P>0.8 with <2% missing rate in the cohort), given that 

stringent QC is critical to avoid inflated estimates of components of heritability in 

ascertained case-control data
3
. We then merged the 29 cohorts, taking the union of 

remaining markers across cohorts and then restricting to markers with total missing rate 

<5%, leaving 4.4 million markers. We further imposed a >2% MAF threshold based on the 

imputation quality of typical arrays at low MAF
59

, yielding 3.9 million markers in 

substantial LD, to which we applied two rounds of LD-pruning at r2=0.9 (PLINK2
60

 --

indep-pairwise 50 5 0.9; see URLs), reducing the number of markers to 596,583 and 

finally 472,178. Our primary motivation for pruning was to reduce susceptibility of REML 

 estimation to LD bias
28–30

; additionally, pruning reduced computational costs.

GERA data set

We analyzed GERA samples (see URLs; dbGaP study accession phs000674.v1.p1) typed on 

the GERA EUR chip
59

 with phenotypes available for each of 22 disease conditions based on 

electronic medical records. (Our primary analyses did not include survey-derived 

phenotypes such as BMI, as the data use conditions stipulated that these phenotypes could 

only be used as covariates.) We applied similar filters as above, eliminating samples with 

<90% European ancestry and samples with missing sex, and extracting an unrelated subset 

of 54,734 individuals using PLINK2 (--rel-cutoff 0.05). We removed SNPs deviating 

from Hardy-Weinberg equilibrium (p<10−6) and SNPs with missing rate >2%, leaving 

597,736 autosomal SNPs.

UK10K data set

Our simulations used UK10K genotypes from sequencing data (see URLs); we merged the 

ALSPAC and TWINSUK cohorts, intersected marker sets and eliminated multi-allelic 

variants (leaving 18 million variants), and extracted 3,567 unrelated individuals using 

PLINK2.

Definitions of heritability parameters

We define  as the proportion of population variance in disease liability (assuming a 

liability threshold model
61

) explained by the best linear predictor using typed variants
6
. We 
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call this quantity “SNP-heritability”1 (although the set of well-imputed variants in our PGC2 

data set included a small fraction of biallelic indels). We define  as the proportion of 

population variance in disease liability explained by the subset of variants in a particular 

MAF range within the same best linear predictor (jointly fit using all typed variants) and 

define  and  analogously
6
. We define h2 as the total narrow-sense heritability—

i.e., the proportion of population variance explained by the best linear predictor using all 

variants (including untyped variants)—and we define  as the proportion of population 

variance explained by all variants in the MAF range (within a predictor using all variants). 

Finally, we note that we abuse notation slightly by using the above symbols to refer to both 

true population parameter values and estimates thereof.

Estimating SNP-heritability of disease liabilities

We estimated  for each GERA disease by running BOLT-REML on all samples and all 

markers in our filtered data set. In all our GERA analyses, we adjusted for age, sex, 

Affymetrix kit type, and 10 principal component (PC) covariates by residualizing genotypes 

and phenotypes accordingly. We included PC covariates (computed using FastPCA
62

; see 

URLs) to eliminate phenotypic variance explained by ancestry. We transformed raw REML 

parameter estimates (denoted ) to  using the linear transformation of ref. 3 assuming 

case fraction for each GERA disease matched population risk.

For the PGC2 data set, which is over-ascertained for schizophrenia cases, we estimated 

using PCGC regression
17

 (see below) in order to avoid ascertainment-induced REML 

bias
17,27

. In all our PGC2 analyses, we included sex, 29 study indicators, and 10 principal 

components as covariates and assumed schizophrenia population risk of 1% (ref. 5,11,12).

Computationally efficient implementation of PCGC regression

In order to run PCGC regression on N=50K samples, we developed a new, efficient software 

implementation of PCGC regression (see URLs). The new software (i) eliminates in-

memory storage of N×N matrices by accumulating dot products among regressors on-the-fly 

(i.e., streaming the genetic relationship matrix inputs); (ii) speeds up jackknife computations 

(by streaming the GRMs in one pass); (iii) eliminates storage of “cleaned” GRMs (i.e., 

GRMs with PCs projected out) by projecting PCs on-the-fly.

Partitioning SNP-heritability across genomic regions

We estimated per-chromosome  by running BOLT-REML on all samples and markers 

using one variance component per chromosome and rescaling raw REML parameter 

estimates and standard errors by  (Supplementary Table 3), noting that relative 

variance contributions are accurately estimated by REML even under case-control 

ascertainment (Supplementary Figures 16–19). Estimating per-megabase  in an 

analogous manner would have required fitting a >2500-variance component model, which 

was computationally intractable, so we instead performed the computation on contiguous 

chromosomal segments of up to 100 regions at a time, parallelizing computations using 
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GNU parallel
63

. We used joint multi-VC analyses rather than fixed effect analyses of one 

region at a time to improve robustness against potential confounding (e.g., subtle structure or 

LD between SNPs in nearby windows): any such confounding would contribute to multiple 

one-region-at-a-time fixed effect analyses, whereas it is spread across a joint random-effects 

analysis. (Additionally, we note that fixed effect regression run on one region at a time 

would incur strong upward bias: each regressor, even if uncorrelated with the phenotype, can 

still be used to explain ~1/N of the variance.) For schizophrenia, we used one variance 

component per 1Mb region in the segment (discarding regions containing <5 markers) plus a 

single additional variance component containing all remaining markers. (This approach is 

similar to ref. 64 but computationally cheaper than directly applying ref. 64 using BOLT-

REML.) Including all markers in the model was necessary because of ascertainment-induced 

genome-wide “linkage disequilibrium” among causal variants
27

; we observed that analyses 

without the all-remaining-markers variance component produced inflated estimates. For the 

GERA diseases, we did not observe this phenomenon, as expected for a randomly 

ascertained trait, so for computational efficiency we included only markers in flanking 1Mb 

regions in the additional variance component. We ran BOLT-REML with 15 Monte Carlo 

trials for the extensive computations in this section; we used 100 Monte Carlo trials in all 

other analyses. We note that we were unable to perform these analyses using PCGC 

regression due to the disk space requirements of storing 100 different 50K × 50K GRMs. We 

also note that the choice of 1Mb as the window size reflects a trade-off between fine 

resolution and the need to preserve reasonable signal-to-noise of  estimates (using 

N=50K samples) for downstream analyses. A larger sample size would allow decreasing the 

window size. In the limit of infinite sample size, analysis using one variance component per 

SNP would theoretically be possible, but in this limit, the variance component model would 

also converge to standard multivariate (fixed effect) regression.

We estimated per-GC quintile  by stratifying 1Mb regions into GC quintiles and 

running BOLT-REML as above with one variance component per quintile. To obtain finer 

resolution for regression analyses, we further stratified 1Mb regions into 50 GC content 

strata. We then performed a series of BOLT-REML analyses with one variance component 

containing the first n strata and a second variance component containing the last 50−n strata, 

and we estimated  of the nth stratum as the difference between the SNP-heritability 

estimates for n and n−1 strata.

Bounding SNP-heritability explained by top 1Mb regions

We bounded the population variance in disease liability explained by the 1Mb regions with 

largest true  using the following procedure. We inferred an upper bound by analyzing 

the observed distribution of  estimates and accounting for sampling variance. 

Explicitly, we analyzed the probability of obtaining a zero  estimate, P(0), as a 

function of the actual value of  (relative to its mean). Because of sampling noise and 

the nonnegativity constraint on our REML  estimates, P(0) is always positive. In lieu 

of an analytic formula for P(0) as a function of actual , we obtained Monte Carlo 
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estimates of P(0) by simulating quantitative traits (for the samples analyzed, using their 

actual genotypes) with heritability equal to the  of the actual disease status 

(Supplementary Table 3). We distributed heritability across varying numbers of causal 

variants (13 values ranging from 2,000 random markers to all available markers) and 

assigned each normalized causal variant a normally distributed effect size, repeating each 

simulation five times. For each of the 65 simulated traits, we estimated  for each 1Mb 

region. Combining this data with the actual  per region (i.e., the sum of squared 

simulated effect sizes), and aggregating the data from all simulations and all 1Mb regions, 

we obtained a clean empirical estimate of P(0) as a function of actual , which we 

observed was well-fit by a sum of two exponentials (Supplementary Fig. 3). While the 

empirical curve was based on simulation data, it is robust to the genetic architecture used in 

simulations (e.g., varying numbers of causal SNPs and normal vs. Laplace effect size 

distributions, Supplementary Fig. 4), as it simply measures the sampling distribution of 

constrained REML estimates for our genotype data at a given actual .

To interpret the observed fraction of zero  estimates in light of this information, we 

harnessed the fact that the decay curve of P(0) vs. actual  is convex (Supplementary 

Fig. 3). In particular, if a set of 1Mb regions has a fixed average actual , their average 

P(0) is minimized when all the regions have equal actual  (by Jensen’s inequality). 

Conversely, an uneven distribution of actual  across regions tends to increase the 

number of zero  estimates. These observations allowed us to bound the maximum 

fraction of  that could be explained by top 1Mb regions and still be consistent with the 

observed fraction of zero  estimates. Explicitly, if a certain number of top regions 

explain SNP-heritability , then the sum of P(0) over all regions is minimized by setting 

 of each top region to (  / #top regions) and  of each remaining region to 

( ) / (#non-top regions). We therefore bounded  by requiring this minimum 

expected number of zero  estimates to be at most the observed number of zero 

estimates (plus 1.96 times its s.e. for a conservative 95% confidence bound). We checked the 

accuracy of this procedure using simulated case-control ascertained data sets with varying 

numbers of causal SNPs (Supplementary Fig. 5).

We obtained lower bounds on the fraction of  explained by top 1Mb regions by 3-fold 

cross-validation. For each fold in turn, we estimated  for each region using the 

remaining two folds, ranked regions accordingly, and then estimated the SNP-heritability 

explained by top-ranked regions using the left-out fold. We repeated this procedure three 

times, obtaining nine estimates per fraction of regions, and computed the mean minus 1.96 

times the s.d./3 as a conservative 95% confidence lower bound on SNP-heritability 

explained by top regions. We estimate s.e. using s.d./3 because the variance of heritability 

estimates scales with the number of sample pairs (N2) for N = M15,16. This s.e. estimate is 
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not theoretically precise due to the complexities of sample reuse in cross-validation
65

, but a 

rough estimate (see Supplementary Table 4 for empirical support) suffices given that the 

lower bound is probably a substantial underestimate (i.e., very conservative): the finite 

sample size of the training folds prevents an accurate ranking of regions, especially those 

contributing small amounts of variance.

Partitioning SNP-heritability across allele frequency bins

We computed per-MAF bin  estimates in a manner analogous to  estimates. To 

infer per-MAF bin  explained by untyped as well as typed variants, we ran simulations 

using UK10K sequencing data to assess the tagging efficiency of our PGC2 and GERA 

marker sets in various MAF ranges. Specifically, we simulated fully heritable quantitative 

traits in which normalized SNPs with MAF p≥0.1% (in the UK10K data) were selected as 

causal with probability 0.5% and assigned normally distributed effect sizes with variance 

(p(1−p))α. (This setup assumes that UK10K SNPs explain all narrow-sense heritability, but 

given that we are only interested in tagging efficiency at MAF≥2%, our estimation 

procedure is robust to violations of this assumption. We also note that our choice of a normal 

distribution of effect sizes is inconsequential given the robustness of REML estimates to a 

wide range of genetic architectures
28

.) We performed 4,000 simulations for each of α = 0, –

0.25, –0.5, –1. For each marker set, we then computed REML estimates of  for each 

simulated trait across six MAF bins (Fig. 4) using one variance component per bin
29

 and 

restricting to SNPs in the marker set. A small subset of the PGC2 marker IDs (8%) and 

GERA SNP IDs (4%) were not present among the UK10K SNP IDs, so we did not include 

these markers in our REML analyses of simulated traits; we verified that the inclusion vs. 

exclusion of these markers had a negligible effect on schizophrenia  estimates 

(Supplementary Fig. 20). We performed REML analyses of UK10K simulated traits using a 

slightly modified version of GCTA v1.212 in order to perform robust unconstrained REML 

(i.e., allow negative  estimates); at low sample sizes, constrained REML estimates are 

upward biased due to noise and the positivity constraint. (We modified GCTA to improve 

robustness in this setting by adding a trust region framework to its REML optimization.) 

Finally, we computed  for the simulated traits by summing squared simulated effect 

sizes.

Estimating genetic correlations and total correlations of disease liabilities

For each pair of GERA diseases, we estimated their genetic correlation (denoted rg) directly 

from bivariate BOLT-REML, which models both genetic and residual covariance, using all 

samples and markers. Under a liability threshold model, the estimated genetic correlation 

(using observed case-control phenotypes) accurately reflects the genetic correlation of 

underlying disease liabilities, so we did not need to transform raw BOLT-REML rg 

parameter estimates
7
. However, the total correlation of observed case-control phenotypes is 

damped relative to the total correlation of underlying disease liabilities (which we denote by 

rl): assuming two diseases have bivariate normal liabilities l1 and l2 with correlation rl, the 

correlation of case-control phenotypes is rp= corr(l1>z1, l2>z2), where z1 and z2 are 
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appropriate liability thresholds. In general, |rp|≤|rl| under a bivariate normal liability 

threshold model; e.g., two traits with the same liabilities (rl=1) but different thresholds 

(z1≠z2) have rp<rl. We recovered rl from rp by straightforward Monte Carlo simulation, 

performing a binary search to determine the value of rl producing the observed rp assuming 

values of z1 and z2 corresponding to GERA case fractions. Similarly, we obtained an s.e. for 

rl by transforming the 95% confidence interval for rp (based on its s.e. of (1-rp
2)/ ) in the 

same way. Finally, we note that for analyses in which we included BMI (coded on a 1–5 

scale in the GERA data) as a covariate, we included an additional missing indicator 

covariate marking samples with missing BMI (5%).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Computational performance of BOLT-REML and GCTA heritability analysis 
algorithms
Benchmarks of BOLT-REML and GCTA in three heritability analysis scenarios: partitioning 

across 22 chromosomes, partitioning across six MAF bins, and bivariate analysis. Run times 

(a) and memory (b) are plotted for runs on subsets of the GERA cohort with fixed SNP 

count M=597,736 and increasing sample size (N) using dyslipidemia as the phenotype in the 

univariate analyses and hypertension as the second phenotype in the bivariate analysis. 

Reported run times are medians of five identical runs using one core of a 2.27 GHz Intel 

Xeon L5640 processor. Reported run times for GCTA are total times required for computing 

the GRM and performing REML analysis; time breakdowns and numeric data are provided 

in Supplementary Table 1. Data points not plotted for GCTA indicate scenarios in which 

GCTA required more memory than the 96GB available. Software versions: BOLT-REML, 

v2.1; GCTA, v1.24.
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Figure 2. Extreme polygenicity of schizophrenia compared to other complex diseases
(a) Manhattan-style plots of estimated SNP-heritability per 1Mb region of the genome, 

, for dyslipidemia, hypertension, and schizophrenia. The APOE region of chromosome 

19 is an outlier with an  estimate of 0.022. (b) Fractions of 1Mb regions with estimated 

 equal to its lower bound constraint of zero in disease phenotypes (solid) and simulated 

phenotypes with varying degrees of polygenicity and with  matching the  of each 

disease (dashed). Simulation data plotted are means over 5 simulations; error bars, 95% 

prediction intervals assuming Bernoulli sampling variance and taking into account s.e.m. (c) 

Conservative 95% confidence intervals for the cumulative fraction of SNP-heritability 
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explained by the 1Mb regions that contain the most SNP-heritability. Lower bounds are from 

a cross-validation procedure involving only the disease phenotypes while upper bounds are 

inferred from the empirical sampling variance of  estimates (Online Methods).
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Figure 3. SNP-heritability of disease liabilities partitioned by GC content
GC content was computed at 1Mb resolution, after which 1Mb regions were stratified into 

GC quintiles for variance components analysis. Quintiles 1–5 have median GC contents of 

35.7%, 38.1%, 40.2%, 42.8%, and 47.2%, respectively. Error bars, 95% confiden-ce 

intervals based on REML analytic standard errors.
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Figure 4. Inferred heritability of schizophrenia liability due to SNPs of various allele frequencies

(a) Simulated narrow-sense heritability per MAF bin ( , dashed blue curves) and 

estimated SNP-heritability per MAF bin ( , solid red curves) for quantitative 

phenotypes with genetic architectures in which SNPs of minor allele frequency p have 

average per-allele effect size variance proportional to p (1 − p)α. Simulations used causal 

SNPs with MAF≥0.1% in UK10K sequencing data and tag SNPs from our PGC2 analyses; 

error bars, 95% confidence intervals based on 4,000 runs. (b) SNP-heritability (red) and 

inferred narrow-sense heritability (blue) of schizophrenia liability partitioned across six 

MAF bins. Point estimates of narrow-sense heritability per bin are based on interpolated 

values of the ratio  at α=−0.28, which provided the best weighted least-squares 

fit between observed  and interpolated  from the simulations in panel (a) 
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(Supplementary Fig. 12). (c) Inferred narrow-sense heritability of schizophrenia liability 

explained per SNP in each MAF bin, i.e.,  in panel (b) normalized by UK10K SNP 

counts (Supplementary Table 14). Schizophrenia  error bars, 95% confidence intervals 

based on REML analytic standard errors. Schizophrenia  and  error bars, unions of 

95% confidence intervals assuming −1≤α≤0.
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Figure 5. Genetic correlations and total correlations of GERA disease liabilities
(a) Correlations from bivariate analyses using only age, sex, 10 principal components, and 

Affymetrix kit type as covariates. (b) Correlations from bivariate analyses including BMI as 

an additional covariate. Genetic correlations are above the diagonals; total liability 

correlations are below the diagonals. Asterisks indicate genetic correlations that are 

significantly positive (z>3) accounting for 36 trait pairs tested. Numeric data including 

standard errors are provided in Supplementary Table 15.
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Table 1

Estimated proportions of variance in disease liability explained by SNPs.

Disease Cases Controls

 (s.e.)

Schizophrenia 22,177 27,629 0.274 (0.007)

Allergic rhinitis 13,437 41,297 0.074 (0.015)

Asthma 8,929 45,805 0.152 (0.018)

Cardiovasc. dis. 14,861 39,873 0.092 (0.015)

Diabetes type 2 6,845 47,889 0.297 (0.022)

Dyslipidemia 29,511 25,223 0.263 (0.014)

Hypertension 27,921 26,813 0.255 (0.014)

Macular degen. 3,700 51,034 0.242 (0.029)

Osteoarthritis 19,832 34,902 0.098 (0.014)

Osteoporosis 5,337 49,397 0.195 (0.024)

Schizophrenia cases and controls are from the PGC2 data set
12

; the  estimate assumes a population risk of 1% and was computed using PCGC 

regression to avoid REML bias induced by over-ascertainment of cases
17,27

. Cases and controls for the other 9 diseases are from the GERA data 

set;  estimates assume random sample ascertainment and were computed using BOLT-REML.
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