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Background: Polycystic ovary syndrome (PCOS) is a prevalent endocrine disease in
reproductive women associated with poor pregnancy outcomes. In modern society,
people pay more attention to the female factor, but it is uncertain whether sperm quality is
another factor affecting pregnancy outcomes of patients with PCOS.

Method: The effect of sperm DNA fragmentation (SDF) on oocyte fertilization, embryonic
development, and pregnancy outcomes for patients with PCOS who underwent in vitro
fertilization (IVF) treatment was studied. A total of 141 PCOS patients and 332 control
patients undergoing IVF treatment were recruited from January 2017 to December 2019.
All female patients were designated into two groups according to the Rotterdam criteria.
Each group was divided into two sets, DNA fragmentation index (DFI) ≤15% and DFI >
15%, on the basis of sperm DFI.

Result: There were no differences in basic clinical characteristics between couples with a
sperm DFI ≤ 15% or DFI > 15%. For control patients, no differences were observed in IVF
outcomes. However, for PCOS patients, although there were no differences in the
fertilization (60.4% vs. 59.9%, p = 0.831), high-quality embryo (68.5% vs. 67.9% p =
0.832), clinical pregnancy (78.4% vs. 66.7%, p = 0.148), and abortion (12.5% vs. 11.5%,
p = 1.000) rates, a significantly lower high-quality blastocyst formation rate (26.3% vs.
16.3%, p = 0.023) was observed for couples with a sperm DFI > 15% compared with a
sperm DFI ≤ 15%.

Conclusion: For PCOS patients undergoing IVF, oocytes fertilized using sperm with
higher DFI led to a lower high-quality blastocyst formation rate but had no influence on
fertilization, high-quality embryo, clinical pregnancy, and miscarriage rates.

Keywords: PCOS, sperm DNA fragmentation index (DFI), in vitro fertilization, embryonic development,
pregnancy outcome
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INTRODUCTION

Polycystic ovary syndrome (PCOS) is one of the most widespread
gynecological endocrine conditions inwomenof childbearing age and
isgenerallyconsidered tobean importantpublichealthproblem(1,2).
In particular, PCOS is accompanied by infertility, menstrual absence
or irregularity, hyperandrogenism and/or hyperandrogenemia, and
obesity (3) and affects approximately 6%–15% of adult women (4, 5).
During human ovarian follicular development, many primordial
follicles are recruited as a group of growing follicles, and then a
dominant follicle will ovulate. However, in patients with PCOS,
ovarian hyperandrogenism and regulatory systems disrupt follicular
development, which results in ovulation dysfunction (2, 6). Although
increasing evidence shows that patients with PCOS produce more
oocytesduring treatmentviaassisted reproductive technology, clinical
pregnancy outcomes remain disappointing (7–9). Studies have
demonstrated in patients with PCOS that there are a lower
fertilization rate and higher risk of early spontaneous miscarriage
(10–12), associated with poor oocyte and embryo quality (13–16). A
meta-analysis showed that women with PCOS had a significantly
elevated risk ofmiscarriage andpremature delivery (17) and that their
babies had a significantly elevated risk to be treated at a neonatal
intensive care unit (OR: 2.31; 95% CI: 1.25–4.26) and higher
postpartummortality (OR: 3.07; 95% CI: 1.03–9.21) (18).

The integrity of sperm DNA plays a major role in fertilization
and the development of healthy offspring (19), so the sperm
DNA fragmentation index (DFI) may be an important clinical
indicator for figuring out the extent of sperm DNA damage and
integrity (20). There is clear evidence that infertile men have a
higher amount of sperm DFI than fertile men (21). Other studies
pointed out that high sperm DFI was connected with decreased
fertilization, high-quality embryo development, and conception
rates and increased risk of abortion (22–25), as well as the risk of
genetic diseases in offspring (21).

The genomic integrity of a zygote is indispensable for normal
embryo development. Human sperm has a limited ability to repair
DNA damage, so repairing sperm DNA damage is dependent on
oocytes (26). Although an oocyte can repair DNA damage in a
fertilizing spermatozoon, the capacity is limited. For example,
studies showed that pregnancy outcomes were associated with the
degree of DNA damage (27) and that oocytes could repair sperm
DNA damage when it was less than 8% (28). For patients with
PCOS, it remains uncertain whether oocytes have a disrupted ability
to repair sperm DNA fragmentation (SDF). Therefore, this research
observed whether the different extent of sperm DNA damage had
an influence on embryonic development and clinical pregnancy
outcomes for patients with PCOS undergoing in vitro fertilization
(IVF) treatment.
MATERIAL AND METHODS

Patients and Experimental Design
This study enrolled a total of 473 infertile couples who
underwent IVF for the first time at the Reproductive Medical
Center of the First Affiliated Hospital of Zhengzhou University
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from January 2017 to December 2019. All couples had normal
chromosome karyotypes and had cleavage-stage embryos or
blastocysts for transfer. Male age was less than 45 years, and
all male partners had recently not taken any drug that was
harmful to the sperm. According to the Rotterdam criteria, all
patients were divided into two groups, PCOS (n = 141) and
control (n = 332), and each group was divided into two sets on
the basis of sperm DFI: DFI ≤ 15% and DFI > 15%. The inclusion
criteria of control patients in the study were women aged less
than 35 years with a basal level of follicle-stimulating hormone
(FSH) < 10 mIU/ml, 18.5 < body mass index (BMI) ≤ 24.9, and
female infertility only due to fallopian tube dysfunction. Based
on the 2003 Rotterdam criteria (29), PCOS patients should meet
at least two of the three following characteristics: 1) oligo/
anovulation, 2) clinical symptoms caused by high testosterone
and/or hyperandrogenemia, and 3) ultrasonography showing
more than 12 follicles with diameters of 2–9 mm in one or
both ovaries and/or the volume of one ovarian >10 ml. The
inclusion criteria of PCOS patients were as follows: 1) women
were less than 35 years old, 2) female infertility was due to
fallopian tube factor, and 3) a basal level of FSH < 10 mIU/ml.

Semen Analysis
All examinations were evaluated on the basis of the WHO
laboratory manual (30). Semen samples were collected into
sterile and non-poisonous containers by masturbation after 3
to 7 days of abstinence, and the samples were kept in a controlled
environment to avoid changes that will affect sperm quality.
After liquefaction for 30 min, sperm concentration and viability
were examined in a Makler chamber (Sefi Medical Instruments,
Haifa, Israel). In accordance with Kruger’s strict criteria, sperm
morphology assessment was detected using H&E staining. After
liquefaction, semen samples were prepared using two
discontinuous density gradients (80%–40%), and the
precipitate was collected after centrifugation. Then the samples
were washed twice with IVF medium, and the final precipitant
was suspended in a suitable volume of IVF medium.

Sperm DNA Fragmentation Index
Detection
Semen was collected after 3 to 7 days of abstinence, and the sperm
DFI was tested using sperm chromatin structure assay (SCSA) after
liquefaction. The semen density was adjusted to (0.5–1.0) × 106/ml
with TNT buffer, and the semen sample was incubated with acridine
orange (AO; PH 6.0) solution. Then the sperm were analyzed by a
flow cytometer (BD FACS Canto II, BD Biosciences, San Jose, CA,
USA) and calculated by specific software to analyze the fluorescence
signals. The double-stranded DNA emitted green fluorescence when
binding to AO, while single-stranded DNA emitted red fluorescence.
The number of sperm was not less than 5,000, and the DFI was
calculated by measuring the percentage of sperm with red
fluorescence in the total sperm number. At present, there are three
major methodologies to test SDF, namely, the comet assay, the
terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP
nick end labeling (TUNEL) assay, and the SCSA. In comet assay,
only 50–200 sperm cells per sample are measured by a fluorescence
May 2022 | Volume 13 | Article 822786
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microscopic test, which lacks statistical robustness. Although the
TUNEL assay can be done by flow cytometry, it also can be applied
in bright field/fluorescence microscopy, which has much less
statistical robustness. However, the SCSA is different from other
tests, which is carried out under a normalized protocol (31) and has
definite and clinically valuable cutoff levels for evaluating
spermatogenic potential (32). In SCSA, 5,000–10,000 sperm cells
can be analyzed within a few seconds, which can provide precise and
repeatable statistical data. Although the variation of SCSA analysis
among laboratories is relatively stable, the implementation rate of
SCSA is lower because of an expensive flow cytometer.

Controlled Ovarian Stimulation and
Laboratory Procedures
Patients undergoing IVF used an ultra-long protocol for
promoting ovulation. On the second or third day of the
menstrual cycle, the patients were injected intramuscularly
with a gonadotropin-releasing hormone agonist (GnRH-a;
triptorelin acetate) to reduce gonadotropin secretion in the
pituitary gland. After 28–35 days, patients were assessed by
color Doppler ultrasound inspection and routine blood
examinations for FSH, luteinizing hormone, and estradiol
levels. When the gonadotropin levels were at a low threshold,
induction of ovulation was implemented, and the development
of follicles was monitored by transvaginal ultrasound inspection.
When the number of the mean diameter of dominant follicles
with at least 17 mm was more than three, the usage of
gonadotropin was ceased. Then the patients were injected
intramuscularly with 10,000 IU of recombinant human
chorionic gonadotropin (HCG, Livzon) to promote final
follicle maturity. Oocytes were collected 35–37 h after injection.

Oocyte Fertilization and Embryo Culture
Fresh sperm were prepared using density gradient centrifugation in
sperm-gradient 40% and 80% solutions, and the collected sperm
underwent sperm swim-up technique to reach a final sperm
concentration of 1 × 106/ml. Then sperm were cultured with
mature oocytes for fertilization. Embryos were cultured in a
comfortable atmosphere of 6% CO2 at 37°C. Then the physician
decided to use two good-quality grade I or II embryos (using the
Peter scoring system) on Day 3 or one blastocyst for transfer per
patient based on embryo quality and the physical condition of the
patients. The rate of fertilization was calculated by measuring the
proportion of double pronuclear embryos (2PN) in total MII
oocytes. The rate of high-quality embryos was defined as the
number of embryos with grade I or II/the number of 2PN
cleavage. The blastocysts were evaluated according to Gardner
and Schoolcraft scoring system, and high-quality blastocysts were
defined as those scoring ≥3 BB. The rate of high-quality blastocyst
formation was defined as the number of high-quality blastocysts/
total developed blastocysts.

Clinical Follow-Up
When the embryo was transferred at 14 days, the patients were
tested for serum b-hCG levels. Serum b-hCG levels >50 IU/L
were diagnosed as biochemical pregnancy. When the embryo
transferred at 35 days, the patients were asked to get a
Frontiers in Endocrinology | www.frontiersin.org 3
transvaginal ultrasound. Detecting a normal fetal heart rate in
the uterus was considered a clinical pregnancy. Abortion was
defined as an embryo or fetus that did not survive.

Statistical Analysis
Statistical data were analyzed by SPSS 25.0 software. Variable
data were shown as the mean ± SD (x ± s). The rates of early
embryo development, clinical pregnancy, and abortion were
contrasted using the c2 test. p < 0.05 was defined as
statistical significance.
RESULTS

Relationships Between Sperm DNA
Fragmentation and In Vitro Fertilization
Outcomes for Women With Control and
Polycystic Ovary Syndrome
As shown in Table 1, the differences in basic clinical
characteristics (age, BMI, and basal levels of hormone)
between the couples with a sperm DFI ≤ 15% and a sperm
DFI > 15% were not observed, but embryonic development
differed between the two groups; all results are shown in Table 2.

We analyzed the relationship between sperm DFI and
embryonic development in control and PCOS patients. Although
there were no significant differences for the control couples
undergoing IVF, for PCOS patients, a lower high-quality
blastocyst rate (26.3% vs. 16.3%; p = 0.023) was observed for
couples with a sperm DFI > 15% compared with a sperm DFI ≤
15%. Surprisingly, no statistical differences between SDF and
fertilization and high-quality embryo rates in the two groups
were observed.

To further explore whether SDF had an impact on pregnancy
outcomes, we analyzed the correlation between different
damaged DNA and the rates of clinical pregnancy and
abortion in two groups, as shown in Table 3. Surprisingly, no
statistical differences regarding clinical pregnancy (78.4% vs.
66.7%, p = 0.148) and abortion (12.5% vs. 11.5%, p = 1.000)
rates in two groups were observed.
DISCUSSION

It is established that PCOS is a prevalent metabolic disease that
negatively affects female reproduction, health, and quality of life (4).
Most research has mainly focused on female infertility factors related
to PCOS. However, poor pregnancy outcomes for PCOS women
may be related not only to oocytes but also to sperm quality. Sperm
DNA integrity plays an important role in precisely transmitting
parental genetic material to the offspring (33, 34). Increasing
evidence supported the view that high sperm DFI was associated
with poor pregnancy outcomes, regardless of natural conception and
fertility treatments (35, 36). A recent meta-analysis study pointed out
that sperm DNA damage may adversely affect clinical gestation after
patients underwent IVF and/or intracytoplasmic sperm injection
(ICSI) treatment (37). The association between higher levels of
May 2022 | Volume 13 | Article 822786
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sperm DFI and increased early abortion rate was observed in a
retrospective cohort study (20), and a prospective observational
study indicated that in ICSI cycles, elevated sperm DNA damage
had a negative influence on pregnancy rates (38). However, few
studies have explored the effect of sperm DFI on embryonic
development and reproductive outcomes of patients with PCOS.
Therefore, the current study investigated the effect of sperm DFI on
embryonic development and fetation outcomes.

In this research, higher sperm DFI had no influence on the
fertilization rates in patients with PCOS, which is consistent with
previous reports that showed that sperm DNA is not involved in the
fertilization process, even though spermatozoa with fragmented
DNA could fuse with oocytes to begin the process of fertilization
(33, 39–42). Before embryonic genes are activated, repair of paternal
DNA is attributed to maternal RNA and proteins controlling DNA
integrity (43, 44). Recent studies demonstrated that declining oocyte
quality is positively correlated with diminished efficiency of DNA
repair and negatively correlated with embryo development (23, 45).
For patients with PCOS, the present study observed that oocytes
fertilized with higher levels of SDF (>15%) resulted in a poor-quality
blastocyst rate, which supports the work by Fatehi et al., which
showed that oocytes fertilized with damaged sperm DNA exhibited
normal 2–3 cleavage stage development but were blocked at the
blastocyst stage (46). To a certain extent, oocytes can repair SDF, and
good-quality oocytes can repair more damage (47). For example, a
Frontiers in Endocrinology | www.frontiersin.org 4
prospective observational study suggested that in donor cycles, an
elevated sperm DFI had no influence on embryo development
because of using the good-quality donated oocytes, which were
sufficiently capable of repairing DNA damage (33). We speculated
that oocytes from women with PCOS had a reduced ability to repair
DNA damage, which led to lower high-quality blastocyst rates.
Another study showed that in ICSI cycles in women of the
advanced age group, the capacity of oocytes to repair sperm DNA
damage was reduced, which led to lower high-quality Day 3 embryo
implantation and conception rates and higher abortion rates (23).
Conversely, the current findings showed no difference in clinical
pregnancy andmiscarriage rates for patients with PCOS using sperm
with >15% DFI compared with ≤15% DFI. Our results show that
elevated SDF had no effect on pregnancy outcomes in patients with
PCOS because of the selection of the best embryos for transfer.

PCOS is a complex endocrine disorder, and sperm DNA
damage in the current study may not be the only factor that
influences embryonic development. Other factors intrinsic to
patients with PCOS may have impacted negatively upon
embryonic development. Also, in our study, semen was
prepared using density gradient centrifugation to select optimal
sperm fertilization. Therefore, one reason for no difference in
clinical pregnancy and miscarriage rates between patients with
PCOS using sperm with a DFI ≤ 15% and > 15% may be the
preoptimized sperm. It is urgent to do more research to reveal
TABLE 2 | IVF-ET laboratory characteristics in control and PCOS patients with different sperm DFI.

Control (n = 332) PCOS (n = 141)

DFI ≤ 15(n = 246) DFI > 15(n = 86) p DFI ≤ 15(n = 102) DFI > 15(n = 39) p

Retrieved oocytes (n) 14.0 ± 5.8 12.4 ± 5.4 0.034 16.2 ± 6.0 15.7 ± 4.9 0.672
Mature oocytes (n) 11.4 ± 5.0 9.9 ± 4.9 0.015 13.2 ± 4.9 12.5 ± 4.5 0.703
Fertilization rate (%) 76.2%

(2125/2788)
78.8%

(660/838)
0.127 76.4%

(996/1304)
77.1%

(367/476)
0.751

Good embryos (%) 72.7%
(1520/2090)

70.0%
(458/654)

0.180 68.5%
(673/983)

67.9%
(247/364)

0.832

Blastocyst development (%) 60.2%
(742/1232)

62.8%
(218/347)

0.381 57.8%
(339/586)

60.0%
(129/215)

0.584

High-quality blastocysts (%) 31.3%
(232/742)

32.1%
(70/218)

0.814 26.3%
(89/339)

16.3%
(21/129)

0.023
May 20
22 | Volume 13 | Article 8
Data are presented as mean ± SE, unless otherwise noted. IVF, in vitro fertilization; PCOS, polycystic ovary syndrome; DFI, DNA fragmentation index.
TABLE 1 | The basic clinical characteristics in control and PCOS patients with different sperm DFI.

Variable Control (n = 332) PCOS (n = 141)

DFI ≤ 15(n = 246) DFI > 15(n = 86) p DFI ≤ 15(n = 102) DFI > 15(n = 39) p

Female age (years) 29.5 ± 2.8 29.8 ± 2.9 0.325 28.6 ± 3.3 28.2 ± 3.5 0.444
Female BMI (kg/m2) 21.4 ± 1.7 21.6 ± 1.8 0.559 24.4 ± 3.4 24.1 ± 3.9 0.621
FSH (mIU/ml) 6.9 ± 1.8 7.2 ± 2.0 0.193 6.1 ± 1.5 5.9 ± 1.8 0.412
E2 (pg/ml) 41.4 ± 32.2 40.4 ± 23.1 0.786 45.3 ± 33.8 50.4 ± 43.2 0.474
P4 (ng/ml) 0.4 ± 0.3 0.5 ± 1.8 0.448 0.6 ± 1.1 0.6 ± 0.6 0.905
LH (mIU/ml) 5.7 ± 3.8 6.0 ± 6.1 0.586 9.8 ± 5.7 9.6 ± 7.6 0.922
Male age (years) 30.4 ± 4.1 31.2 ± 4.4 0.112 29.3 ± 3.6 29.4 ± 3.9 0.960
Male BMI (kg/m2) 25.0 ± 3.8 25.1 ± 3.5 0.967 25.0 ± 3.6 24.4 ± 3.8 0.425
Sperm concentration (%) 53.1 ± 33.5 44.0 ± 26.4 0.013 58.6 ± 36.4 44.4 ± 26.7 0.03
DFI (%) 8.5 ± 3.3 21.8 ± 7.5 0.000 8.5 ± 3.3 22.4 ± 6.5 0.000
Progressive motility 40.2 ± 7.5 34.6 ± 8.4 0.000 40.2 ± 9.1 32.2 ± 11.4 0.000
Data are presented as mean ± SE. DFI, DNA fragmentation index; BMI, body mass index; FSH, follicle-stimulating hormone; E2, estradiol; P4, progesterone; LH, luteinizing hormone.
22786
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the underlying mechanism by which increased sperm DNA
damage is associated with reduced embryonic development for
women with PCOS who undergo fertility treatments.

Although traditional semen analysis is important to evaluate
male infertility (48), it does not fully reflect the fertility potential
of sperm. Numerous studies have shown that about 15% of
patients with normal semen parameters exhibit infertility (48,
49). Therefore, it is necessary to identify diagnostic measures to
detect subtle sperm defects, such as chromosomal condensation
defects or DNA strand breaks.

The study was limited by the number of patients in the PCOS
group because a small sample size was more likely to produce
research bias. Otherwise, as a retrospective study, there was no
chance to detect the sperm DFI of the treated sperm sample. To
further study whether higher spermDFI can influence IVF outcomes
of PCOS women, the sample size should be expanded, and it is better
to evaluate the sperm DFI of treated sperm samples to exclude the
influence during the pretreatment process in IVF cycles.

In conclusion, in the two groups, there was no difference
between fertilization, high-quality embryo rates, and higher DFI
(DFI > 15%). However, there was a significant statistical
difference between the rate of good-quality blastocysts and
higher DFI (26.3% vs. 16.3%, p = 0.023) for patients with
PCOS undergoing IVF treatment. Surprisingly, clinical
pregnancy and miscarriage rates were independent of SDF,
because of the selection of the best embryos or blastocyst
for transfer.
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