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A B S T R A C T

Cancer is a multifactorial and heterogeneous disease. The corresponding complexity ap-

pears at multiple levels: from the molecular and the cellular constitution to the macro-

scopic phenotype, and at the diagnostic and therapeutic management stages. The overall

complexity can be approximated to a certain extent, e.g. characterized by a set of quanti-

tative phenotypic observables recorded in time-space resolved dimensions by using multi-

modal imaging approaches. The transition from measures to data can be made effective

through various computational inference methods, including networks, which are inher-

ently capable of mapping variables and data to node- and/or edge-valued topological prop-

erties, dynamic modularity configurations, and functional motifs. We illustrate how

networks can integrate imaging data to explain cancer complexity, and assess potential

pre-clinical and clinical impact.

ª 2014 The Authors. Published by Elsevier B.V. on behalf of Federation of European

Biochemical Societies. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Cancer as heterogeneous complex disease and processes in view of the significant amount of aberrant
Heterogeneity is an intrinsic feature of essentially any tumor

and manifests itself at different levels (Burrell et al., 2013).

First, heterogeneity is expressed at clinical level (Bedard

et al., 2013), due to disease evolution and therapeutic re-

sponses varying among patients with the same kind of tumor

(Marusyk and Polyak, 2010). Second, heterogeneity character-

izes the anatomical and physiological properties of tumors

(Meacham and Morrison, 2013). Notably, while heterogeneous

features drive tumor histological classification, unfortunately

they do not allow a common treatment option to be defined. A

third level of heterogeneity refers to molecular constitution
tional Science, University
i.edu (E. Capobianco).
3
Elsevier B.V. on behalf o

se (http://creativecommo
signaling events in any particular tumor. Finally, these pheno-

typic characteristics are the results of genetic aberrations

occurring in a variable dynamic environment, and causing tis-

sue to develop abnormally.

The main problem concerning heterogeneity is how to

account for it, from a biomedical point of view. It is crucial

to understand how to effectively develop ideally targeted ther-

apeutic strategies for a condition that is intrinsically heteroge-

neous and potentially unstable over time. Also, it is necessary

to identify specific models to treat the complexity which is

transferred over the data. The set of observations should be

characterized quantitatively and concisely. With multimodal
of Miami, Miami, FL, USA.
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imaging, for instance, a spatially resolved distribution of

structural, functional and/or molecular parameters linked to

phenotypes can be derived, leading to the mapping of biolog-

ical heterogeneity of neoplastic tissue onto data not neces-

sarily cross-correlated. In this context, we are referring to

observational phenotypic complexity, which embeds a hierar-

chy of other complexities (genetic, molecular, physiological,

microstructural). Defining this hierarchy is beyond the scopes

of this work, whose objective is instead to describe cancer-

related complexity following a novel integrative approach.

1.1. Hallmarks

In order to rationalize the complexities of neoplastic disease,

Hanahan and Weinberg (2000) have defined six phenotypic

hallmarks of cancer, which correspond to six biological abili-

ties acquired during tumor development. They include: 1) Sus-

tained proliferative signaling, 2) Evasion of effects of growth

suppressor, 3) Resistance to cell death program, 4) Acquisition of

replicative immortality 5) Development of a vascular network

(angiogenesis), 6) Invasion of adjacent healthy tissue formation of

distant metastases.

In a more recent publication (Hanahan and Weinberg,

2011), four new complementary features were added to the

list: 7) Genome instability, 8) Inflammation, 9) Reprogramming of

energy metabolism and 10) Evasion of immune surveillance. The

hallmarks indicate to a large extent the multifaceted

complexity of cancer disease. The latter finds a rationale in

the basic remark that wide-spectrum cellular perturbations

are needed for cancer to take place, and they translate into

highly specialized functions of biological processes and path-

ways that interact in an open system through a rich web of

communication exchanges between the cancer cells and their

microenvironment.

Figure 1 reports all these hallmarks and some of their

main references. By looking at them, and considering the

continuing advances in the field, two questions emerge: Is

the Hallmarks’ list sufficient to cover the complexities of neoplastic
Figure 1 eHallmarks of cancer. Hallmarks are listed, with corresponding ex

and then four hallmarks have appeared in the literature, inspiring worldwid

knowing that new synergies and integrations can potentially derive from im
disease? Can we specialize the study of hallmarks based on sub-

classifications like sources of data, approach of investigation, types

of interrelationships, etc.? In an attempt to provide possible an-

swers to these two questions, we set a context for description

and integration of the listed hallmarks, making primarily use

of concepts belonging to molecular imaging and biological

networks.

1.2. Imaging

A starting point is to establish under which type of “lens” the

hallmarks can be analyzed. In such regards, molecular imag-

ing (MI) offers a variety of such lenses aimed to visualize mo-

lecular and cellular events in living subjects, either animals or

human beings. Naturally enough, MI accounts for different

imagesmodalities designed to study individual cells behavior,

for instance via intravital microscopy (IM). Instead, the study

of the formation of macroscopic tumor regions is made

possible by Computer Tomography (CT). Among these two ex-

tremes, other techniques such as Positron Emission Tomogra-

phy (PET), Magnetic Resonance Imaging (MRI) and Optical

Imaging (OI) allow the study of molecular- and cellular-

related processes underlying tumor physiological behavior

and anatomical architecture.

In particular, PET detects pairs of gamma-rays produced by

the annihilation of positron emitted by a radionuclide, which

is bound to an activemolecule that targets the specific biologic

process to be evaluated. In the context of cancer hallmarks,

PET is used to detect the formation of metastasis (Tateishi

et al., 2008), to study hypoxia levels (Chitneni et al., 2011)

and glucose metabolism (Zhu et al., 2011), to quantify

apoptotic cell population (Blankenberg, 2008) and to stage

several types of tumors. MRI differs from PET since it does

not use any radioactive compound, but instead measures

the nuclear magnetic properties of nuclei or molecules that

are consideredmarkers of physiological processes. MRI allows

monitoring of angiogenesis processes (Barrett et al., 2007), tu-

mor metabolism (Zhang et al., 2010), acidosis (Kleijn et al.,
amples of references. They are divided according to generation: first six

e research work. Conceiving the third generation is left to the future,

aging and networks.
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2011), inflammation (McCann et al., 2011) and invasion of sur-

rounding healthy tissue by tumor cells (Wu et al., 2013). Also,

OI measures the light emitted by an optical reporter, which

can be administered to the subject, or genetically engineering

into protein or DNA. Such reporter is composed of a fluores-

cent or bioluminescent dye, and an active molecule. Optical

reporter probes that target pH, hypoxia and proteases are

widely used in the characterization of tumor microenviron-

ment (Wenzl and Wilkens, 2011). Compared to PET or MRI,

OI is more sensitive (order of femto-molar) to detect low con-

centration of target molecules in tissue, but does not offer an

equivalent spatial resolution. Moreover, due to the limited

penetration of light in tissue, OI is confined to small animals.

Notably, multiple combinations of different MI techniques

can be used, in principle, to study the evolution of cancer hall-

marks in-vivo in and in a non-invasive fashion. This inte-

grated approach is definitely attractive since ensures

measurements of a large number of phenotypic variables of

tumor tissue from which inference on gene expression,

signaling pathway activity and tumor microenvironment

can be conducted. Table 1 below introduces a list of features

characterizing tumor tissues in terms of morphology, status

of the inflammatory process, physiology and metabolism.

The list we report is not complete, being only a sample from

the possible feature space which could be considered. We

thus focus on the listed examples assuming as the available

knowledge base all the image readouts obtained by the

described MI techniques. Box 1 is then built to show the use

of the features to obtain for each image voxel a quantitative

assessment, which can be then translated into corresponding

terms.
Table 1 e List of features characterizing tumor tissues (left), and correspo
(middle). References are reported for each example.

Features MI modality

Morphology:

shape MRI (T1, T2, r), CT

solid vs liquid regions MRI (T1, T2, r), CT

necrotic regions MRI (T1, T2, r), CT

viable regions MRI (T1, T2, r)

alteration in cellularity MRI e ADC

apoptosis PET (124I-annexin V)

Inflammatory status

edema formation MRI (T1, T2, FLAIR), CT

infiltration of immune cells MRI (cell tracking SPIO)

Physiology

angiogenesis MRI (DCE)

vascular architecture CT (angiography), MRI (angiogr

vessel density MRI (VSI)

hemodynamic response MRI (DSC)

vascular permeability MRI (DCE)

tumor oxygenation PET (18F-MISO), MRI (BOLD, 17O)

acidosis MRI, MRS

Tumor metabolism

glucose consumption 18FDG PET

metabolites concentration MRS

Symbols: MRI ¼ Magnetic Resonance Imaging (T1 ¼ T1-weighted, T2 ¼ T2

FLAIR ¼ Fluid Attenuated Inversion Recovery, SPIO ¼ Super Paramagneti

Enhancement, DCE ¼ Dynamic Contrast Enhancement), MRS ¼ Magne

(18F-FDG ¼ 18F-Fluordesoxyglucose, 18F-MISO ¼ 18F-fluoromisonidazole), C
1.3. Integrated approach to cancer

An emerging need is therefore integrating information from

multi-evidence sources, and this step requires harmonization

of multiple heterogeneous findings. In particular, as imaging

measurements lie at the interface of experimental and techno-

logical developments, the obtained information brings a vari-

able potential, depending on the changes occurring in both

fields. MI tools support therapy decisions as they address the

need of responding effectively to key cancer mechanisms

such as multidrug resistance. However, due to the fact that a

data multitude on vascularity, hypoxia, signaling and meta-

bolic activity etc. (Paulmurugan et al., 2013) is at play, a thor-

ough analysis requires a new generation of computational

instruments.MI is especiallyvaluable for thegoalof identifying

markers of angiogenesis and advancing early diagnosis of can-

cer, but also for optimizing the response to anti-angiogenic

treatment and combining drug therapies. Therefore, personal-

ized solutions urgently require support from such techniques

for improving the identification of responders.

Consider the tumor vascular network: an important goal is

to measure abnormalities observed at a molecular level, and

indicate the presence of cancer phenotypes. Such phenotypes

can be useful to define the associated marker potential,

depending on specific features (molecular processes triggering

vessel formation, architecture, functions such as perfusion,

leakage, etc.). Clearly enough, the accurate measurement of

a few specific tumor features is not sufficient to characterize

the wide spectrum of tumor phenotypes. Studies performed

in the past decades (for instance, Goh et al., 2007) have

concluded that cancer is a network disease, with many
nding MI modality through which feature measurements are obtained

Reference

(Young, 2007)

(Young, 2007)

(Berry et al., 2008)

(Berry et al., 2008)

(Drevelegas, 2011; Haacke, 1999)

(Blankenberg, 2008)

(Young, 2007)

(Bulte, 2009; Ahrens and Bulte, 2013)

(Barrett et al., 2007)

aphy) (Matsumotoa et al., 2007; Hartung et al., 2011)

(Tropr�es et al., 2011)

(Kim et al., 2013)

(Kickingereder et al., 2014)

(Hendrickson et al., 2011; Nilesh and Quarles, 2011)

(Raghunand, 2006)

(Chen, 2007)

(Kurhanewicz et al., 2011)

-weighted, r ¼ proton density, ADC ¼ Apparent Diffusion Coefficient,

c Iron Oxide, VSI ¼ Vessel Size Index, DSC ¼ Dynamic Susceptibility

tic Resonance Spectroscopy, PET ¼ Positron Emission Tomography

T ¼ Computer Tomography.

http://dx.doi.org/10.1016/j.molonc.2014.08.013
http://dx.doi.org/10.1016/j.molonc.2014.08.013
http://dx.doi.org/10.1016/j.molonc.2014.08.013


Box 1 Computational approach: from imaging readouts to networks.
Panel A shows the image readoute voxele feature chain for two states, angiogenic and non. Based on the feature values, the

state of the tumor processes can be determined. If a voxel presents high values for perfusion, permeability and vascular size

index (VSI) features, it is reasonable to assume that it is angiogenic. On the contrary, low values of these features, together

with high levels of necrosis, identify a non-angiogenic voxel.

Panel B shows the bridge between images and networks starting from voxels and nodes, and correspondingly from

clusters and modules.
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players acting in combination at different space and temporal

scales, and with different kinds of feedback mechanisms as

part of a complex interactive framework. The development

of a new neoplastic mass, in this perspective, cannot only be

viewed as a genetic disease but actually as a network of both

genome-based and transcriptome-based abnormalities, co-

operating to the progression of tumor growth.

As we aim to elucidate networks in the context of cancer,

we anticipate that three aspects are worth consideration

when choosing network inference tools:

A The data diversity, reflected into similarity/dissimilarity

aspects at network scale, can reveal dependence/indepen-

dence data structure;

B The inference approach to be derived. If data integration is

a component of the analysis, the methodology is condi-

tioned on such factor, and networks offer high flexibility

in such regards;

C The data heterogeneity, which calls for suitable transfor-

mations and normalizations, and leads to a preference to-

wards computational frames that harmonize such

complexity.
2. Complex networks in tumor environment

A remarkable property of networks is that they adapt to a va-

riety of contexts, and widely differentiate their impact on the

basis of only two structural components, nodes and edges.

However, biological data can reflect measurements of highly

correlated entities, and these correlations are often not

analytically known or statistically predictable. This limitation

explains in part the success that clustering and network

modularity techniques have over more traditional quantita-

tive approaches requiring hypotheses or assumptions to build

ad hoc models. In particular, inferring through networks on

the basis of connectivity patterns allows for the identification

of forms of data dependencies at multiple scales, a concept

summarized by the scale-free property of networks (Barab�asi

and Albert, 1999).

Central to the cancer field are features such as progression,

angiogenesis, immune response, interaction with microenvi-

ronment and mechanisms leading to the development of

drug resistance. Rather than conceiving networks as struc-

tures designed to reproduce in silico pathophysiological pro-

cesses, we consider them as inference tools that elucidate

their complex connectivity patterns and their cross-linked

pathways. Including MI information obtained from a multi-

tude of observed data types represents an injection of predic-

tion power in the system. As each data type brings some

characteristic features, a rich classification of these features

accounting for the specificity of each imaging technique/tool

is obtained by stacking them together as attributes of the

network nodes. The advantages of such strategy are:

1 Multiscale information (molecular and biological variety)

at node level;

2 Multiple evidences (technical/technological variety) at

network scale;

3 Direct data-driven mathematical treatment;
4 Fast generalization to new types of features;

5 Reproducibility to other imaging contexts.

Networks usually represent static associations (edges) be-

tween biological variables (nodes). If the associative relation-

ships have a regulatory nature, inference can be conducted

by using ad hoc causal methods. Unfortunately, spatiotem-

poral dynamics are lacking in network maps, and typically

require volume-averaged parameters at specific time points.

By addressing an ensemble view of network (Marras et al.,

2010) (see Box 2), inference can be conducted at the systems’

level, providing results which are less sensitive to possible

outlying influences and non-equilibrium effects.

Networksnaturally address theconcept of integrative infer-

ence (Bakal et al., 2007), as they adapt the nodes to amultitude

of data types, define the edges linking thenodes as either inter-

active or regulative (causal) connecting mechanisms underly-

ing the phenotypic parameters, and enable the computational

predictions. In principle, systems-based network inference

can model features representing the hallmarks of oncogenic

signaling networks (see for instance Huang and Fraenkel,

2009; Bandyopadhyay et al., 2010; Morris et al., 2010;

Vinayagam et al., 2011) or cellecell communication (see Goke

et al., 2013). We believe that network inference approaches

inspiring network medicine (Zanzoni et al., 2009; Barabasi

et al., 2011), canbe further specialized to allowcharacterization

of cancerhallmarks through theirmany interfaceswithclinical

data, but also genetics, omics, and imaging modalities.

How functional sub-networks can apply to cancer is illus-

trated in some recent work (Wu et al., 2010; Nibbe et al.,

2010; Wen et al., 2013). Sub-networks are network partitions

that can be obtained in various ways. Each partition can

generate a module or a hierarchy of sub-modules, depending

on the resolution with which the partitioning occurs.

Figure 2 is centered onmodularity, fromwhich a series of prop-

erties can be derived (see also Kirouac and Onsum, 2013).

Modularity stands at the very nexus of network inference,

acting in two directions. First, it generates those properties,

in particular robustness, which allow for an adaptive response

to the environment. Second, it mitigates the complexity asso-

ciated with heterogeneity by dissecting the system into com-

ponents, while limiting the negative influences of system’s

redundancies.

2.1. Importance of modularity

Modular configurations offer the advantage of being highly

adaptable structures to pursue the examination the distribu-

tion in space and in time of cellular components. Assuming

that a panel of imagingmeasurements is available, the tempo-

ral monitoring focused on modules would allow inference on

cancer progression and therapy response. Also, a spatial con-

trol over the modules can elucidate both methodological and

cancer-specific aspects, the former referred to the integration

of evidences from different MI techniques, and the latter

related to angiogenesis, proliferation, etc., whose changes

would likely determine differential configurations useful to

discriminate across the marker potential of modules.

Modular cancer maps can link molecular pathways to phe-

notypes at variable resolution (hierarchically, sub-modularly),

http://dx.doi.org/10.1016/j.molonc.2014.08.013
http://dx.doi.org/10.1016/j.molonc.2014.08.013
http://dx.doi.org/10.1016/j.molonc.2014.08.013


Box 2 Networks as integrative models: theory.
A network generating process can be conceived as a stochastic mechanism responsible for the construction of gene regu-

latory, proteineprotein, metabolic, inflammatory and other specialized networks. In general, a partition of network space

as N[Q] ¼ [N[Q](O), N[Q](L)] can consist of observed (O) and latent (L) components, according to the incidence of unknown

parameters Q.

This is equivalent to considering a subset of variables which are function ofQ and are separated in this parameter space

according to V[Q] ¼ [O1, L2], with [Q ¼ (Q1,Q2)]. An example is provided by a network configuration in which the links be-

tween the nodes are only partially measured, typical case for PIN for instance, and thus only a few links can be drawn. The

rest of missing links can only be predicted. Thus, the network partition N[Q] creates a dichotomy between observed and

latent variables, which in this case are links differentiated according to the possibility of quantifying them.

Mixed combinations of such components yield a network N0 which is a noisy approximation to an optimal (according to

defined criteria) one, sayN*. Due to the power of random networks, the mixtures allow to approximate Poisson or Gaussian,

multiplied by a hidden variable distribution. Notably, an ensemble view of randomnetwork dynamics considers the average

connectivity as a random variable of unknown distribution.

Note that the observed degree distribution of a network, say a Poisson distribution, is: P(k) ¼ ! U(l) p(kjl)dl, for (0,N) in-

tegral range. This simply represents a marginalization of the degree distribution based on the conditional and the hidden

variable distributions. Depending on the latter distribution, awide class of complex networks can be recovered. For example,

a scale-free network approximation is associated with power law distributions. The inference problem of interest is to

recover the unknown entity, i.e. the latent distribution which drives the fluctuations. An inverse problem is therefore pre-

sented, i.e. recovering U(l) as a function of the observed degree distribution. This degree distribution in random networks

can be associated to a Gaussian, g(k), which would lead to efficient computation of U(m,s).

Multiscale analysis would also be computable by a wavelet-like transform, i.e. J[(kem)/s], which can also be associated

to a Gaussian. Other parametric families may fit into the networks, and also non-parametric families (such as principal and

independent components, factor analyzers, kernels, splines, etc.) can be exploited in their approximation power. Finally,

variational modeling and Dirichlet Processes (infinite-order mixtures) extends the flexibility with which networks can be

stochastically characterized. Notably, a stochastic model can be defined by a specifiedmixture of densities, allowing for un-

supervised learning and probabilistic clustering (modularization) in networks (see for further details Marras et al., 2010).

Figure 2 e Network modularity and properties. Modularity is key, and properties are indicated and defined (circles). The yellow clouds include

action guidelines enabled by network inference. Robustness brings better stability of modular configurations, inducing resilience. Biotype

heterogeneity can be handled by configuration plasticity and ability to re-modularize, leading to better adaptation to change of conditions in a

contextual way. Possible redundancy can be tackled by dimensionality reduction and model selection. An adjustment of the basic network structure

presents the advantage of optimizing the fit of individual traits (personalized therapy approaches). Cancer hallmarks (H1. H10) are mapped and

positioned in correspondence with network properties that most suitably refer to them.
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and sort apparently disparate mutations into conserved sets

of oncogenicmodules by a variety of similarity metrics under-

lying the network topology. In order to explain the configura-

tions of modules that can be generated under the influence of

cancer, synergistic dysregulation dynamics should be

measured in terms of both connectivity (characterizing the

modules) and activity through expression levels (associated

to cancer phenotypes such as sub-types, functional modules,

splicing motifs etc.). In particular, network topology identifies

through hub nodes (degree-based, measuring node connectiv-

ity) and central nodes (betweenness-based, measuring node

load and importance) possible cancer hotspots. Correspond-

ingly, the warning signals associated to them may allow

monitoring of cancer evolution. Warning signals emerge

from dynamic patterns or motifs which are observable at

network or at modular scale, and their utility is alerting that

the system is likely undergoing a change of state having an

impact on its global configuration. Examples are provided by

warning signals related to events such as switching between

disease states or measurement of therapy effects, whose in-

fluences can be monitored at systems level.

Modeling tumor processes is quite different frommodeling

the same processes in healthy tissue. The simultaneous pres-

ence of different states of the same cells and the apparently

chaotic alteration of cellular behavior make the formulation

of a deterministic mathematical model very hard at a cellular

level. This hurdle increases when considering the physiolog-

ical behavior of tumor tissues. Nevertheless, the possibility

to measure different features at different scales suggests a

data-driven model for the system as a whole. The complexity

of the model, together with its reliability, increases with the

number of features that we can consider and measure.

When a single entity (say, a gene or a protein) can be used

under certain conditions to predict the state of the whole

module to which it belongs, the corresponding changes

induce effects subject to better control at both intra- and

inter-modular scales.

2.2. Attractor states

Network modules do not act as separate entities, but as cross-

linked ones. Consequently, a certain redundancy from over-

lapping pathway activity can be observed when signals

converge to restricted network regions in which sets of inter-

connected proteins function as state attractors (Kauffman,

1969; Huang et al., 2010; Creixell et al., 2012).

In general, biological networks should lead to the construc-

tion of models that predict the change of configuration

following perturbation events. Depending on the latter, we

might expect that some significant differential aspects emerge

from networks, and they might involve hubs, modules, etc.

Differential network analysis should identify the causes of a

change of configuration and the propagation of the effects ul-

timately affecting the phenotypes of interest, with reference

to cancer hallmarks. The issue of localizing regions in the

network identified as target of any possible intervention is

even more important (Pe’er and Hacohen, 2011), but also

hard to obtain because network models reflect static rather

than dynamic context relationships, thus simplifying the rep-

resentation of their internal state fluctuations due to a variety
of signals (stimuli, drugs, etc.) and their time series measure-

ments. The example provided by these authors involves

mTOR as a therapeutic target in view of its critical role for

cell growth, and the complications in terms of increased cell

proliferation arising from crosstalks between the joint activa-

tion of Akt and ERK pathways induced by mTOR inhibition.

Establishing through networks a tumor fingerprint is thus

possible even if complicated to model due to the need of

considering network re-configuration or re-modulation, and

changes in attractor or stable equilibrium states. While ad-

vances in network medicine are expected toward modeling

both observed and latent cancer systems dynamics, network

states can be associated to points of an N-dimensional state

space, and network modules would represent sets or commu-

nities of states in communicationwith each other, either tran-

siently or persistently. An advantage offered by networks is

that the modularized dynamics might be entropically

measured and topologically-characterized. Attractors as sta-

ble points in the expression state space, represent points to

which the system would return after small perturbations.

However, this ideamight be simplistic, as it assumes a smooth

expression landscape, occasionally subject to abrupt events.

This simply hypothetical condition might not account for

the impacts of a variety of possible perturbations (external

cues or internal microenvironment), including the treatment

at systems scale of phenotypic response patterns, for instance

induced by drug resistance (Mar and Quackenbush, 2009) or by

mutations that perturb signalingdynamics. In both cases, non-

stationarity in the system disrupts cancer network attractors.

An important effect is noticed when the elimination of a spe-

cific pathway by an intervention may be counteracted by the

up-regulation of interconnected pathways. This is a pattern

observed for kinases, describedas frequentpathwayswitching

after inhibitory treatments. Accordingly, these dynamic

should drive state transitions within the network and through

mechanisms of adaptation based on complex feedback con-

trols that modulate cascades of events. Compensatory effects

also occur at the pathway level within an integrative (genetic,

environmental, omics) context. For instance, responsiveness

to drug treatments presents the critical aspect of sensitivity

and resistance mechanisms. A common inference strategy

is to compare signaling states across tumor phenotypes

following perturbation experiments targeted to key modules

and/or component nodes/edges (i.e. edgetic perturbations,

see del Sol et al. (2010); Zhong et al., 2009).

Network states reflect specific conditions, for instance

normal versus disease at a coarse level, but also tissue-

specific physiological variability or disease stages at finer

levels. Such states are characterized by the measurement of

ad hoc parameters, which become then relevant to the output

assessment and interpretation. Networks represent a meth-

odological tool for conducting inference, indeed one of the

several tools which are available. For example, Janes et al.

(2005) have proposed a systems approach centered on data-

driven models for the analysis of large-scale experimental

signaling network measurements, and specifically designed

to reduce the redundancy and complexity of the correspond-

ing data sets.

In particular, distinct apoptotic outputs were identified

and measured by flow cytometry at multiple times after

http://dx.doi.org/10.1016/j.molonc.2014.08.013
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stimulation. The output measurements were useful to build

an apoptotic signature covering early-to-late apoptotic re-

sponses measured across cytokine input combinations. Both

time-related and dose-dependent features were uncovered

from such complex measurement system. Such signatures

were clearly dependent on the initial state conditions, in addi-

tion to the input stimulus, and two aspects concerned: (a) The

possibility of controlling separately the signature components

can simplify the task of linking signatures to intracellular

network dynamics; (b) Mapping a variety of molecular signals

to systems responses allows for the identification of variables

which are critical in predicting apoptosis within the target

network.

Defining the salient features of such critical variables is a

very important task in every application context. In the work

of the above mentioned authors, such goal was achieved by

organizing a panel of time-dependent signaling metrics used

as dimensions to evaluate the projected stimuli. Similarly, a

systems approach based on networks e the one we propose

e can merge quantitative imaging experiments with data-

driven analysis aimed to identify at molecular scale a basis

set of diagnostic and/or therapeutic features explaining the

signaling dynamics of cancer-modified biological processes

and pathways.

2.3. Endogenous and exogenous network dynamics

The complexity of signaling networks involves convoluted dy-

namics originated by level and activation states of proteins

exerting effects on multiple key pathways at different time

points. These dynamics occur in part in response to exposure

to drugs, and in part refer to other measurements, such as

expression profiles that enrich in additional pathways, and

phenotypic responses that refer to key processes (cell cycle

phases, apoptosis, etc.). The organization of signaling data in

a mathematical framework is a complex problem. Data-

driven and exploratory tools may be preferred to models

based on distributional or probabilistic assumptions. In Lee

et al. (2012) networks design and inference are discussed,

with the aim of controlling data connectivity and dynamic

patterns underlying a combinatorial drug context.

Inference of angiogenesis, apoptosis, therapeutic targeting

can be conducted through multiple types of experimental im-

aging which allow tomonitor patients responsiveness to ther-

apeutic drugs, thus assessing their efficacy and toxicity. The

advantage of using networks in support to such observations

is that they can integrate such features with other cancer-

intrinsic features measured at various biological levels, and

translate the whole information into a topological representa-

tion. From the changes observed in the network configura-

tions, one can infer the dynamics of complex signaling

pathways and elucidate the effects of their inhibition with re-

gard to key mechanisms such as drug resistance. In general,

the network topology change induced by cancer appears to

some extent controlled, thus preventing global alterations

while remaining significant compared to the variation typical

of a random network (Serra-Musach et al., 2012). This

described is a sort of localized impact observed with networks

that may reflect the property of robustness in relation with

cancer onset and progression, and also response to therapy.
Even after the inhibition of cellular targets by some drugs,

the outcome of treatment varies adaptively with cancer cells

response and with the dysfunctionality level present in path-

ways. Depending on the tissues, resistance to the same tar-

geted agent in cancer with identical oncogenic mutations

can develop.

A classic example of chemotherapy resistance is provided

by inhibition of EGFR linked to possible unresponsiveness, as

with KRAS-mutant colorectal cancer or the mechanism link-

ing HER3 to MET in lung cancer, indicating a so-called onco-

genic bypass, i.e. the fact that a primary drug target remains

unaffected by inhibition while an alternative kinase can

instead be activated (Holohan et al., 2013). Instead, for BRAF

in melanoma other types of resistance mechanisms have

been identified, in particular acute adaptive responses

through activation of alternative BRAF isoforms. However,

BRAF inhibitors are less effective in colorectal cancer than in

melanoma due to the activation of EGFR-AKT signaling

responsible for resistance.
3. Integration of two worlds: imaging and networks

Thepotential of joining spatially resolved features (e.g. derived

from MI) and network descriptions to account for tumor het-

erogeneity remains largely unexplored. The simultaneous

acquisition of different MI modalities offers the possibility to

consider together both spatial and temporal aspects of physi-

ological processes related to tumor development. These as-

pects plays a crucial role in the understating of complex and

multiscale mechanisms such as angiogenesis or metastasis

formation that are driven by a network of processes at a

different spatial and temporal scale (Qutub et al., 2009).

For example, angiogenesis (Figure 3) at a molecular level is

regulated by a balance between pro- and anti-angiogenic fac-

tors, microenvironment conditions and hypoxia level: an

alteration of this equilibrium drives the recruitment of endo-

thelial cells, which in turn start in cascade the capillary forma-

tion, vessel maturation (veins and arteries) and building of

vascular network. At this stage the vascular network fully in-

tegrates tumor and hosting tissue and determines the ex-

change of blood, oxygen and nutrients, which has effects at

molecular level. Through MI it is possible to study all these

events at their specific spatial scale and it is also possible to

follow their dynamic evolution. By taking into account these

two aspects, a comprehensive physiological model of angio-

genic process can be built and an added value achieved.

The hybrid approach combining observational inference

with data-driven analysis represents a strategy to charac-

terize proliferative diseases. In particular, the complexity of

phenotypic expression represented within the network topol-

ogy implies that a change in the latter should reflect a varia-

tion in phenotypic expression, which then translates into

physiological, anatomical and molecular changes of tumor

tissue. Network topologies are informative for diagnosis,

especially for differentiating benign from malignant tumor,

for assessing the efficacy of tumor treatment, and for predict-

ing therapy outcome.

Box 3 illustrates the concept of multiplexing, re-adapted to

merge the two objects of our investigation. The combination

http://dx.doi.org/10.1016/j.molonc.2014.08.013
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Figure 3 e Sketch of angiogenic process through its specific components. At a molecular level, angiogenesis can be modeled as a balance between

pro-angiogenic and anti-angiogenic factors, respectively promoting and inhibiting the formation of the new vessels. Once the process has started,

the endothelial cells are recruited and the formation of the smaller capillaries (5e20 mm) takes place. The next step is the formation of bigger

vessels as arterioles and venules, (20e200 mm), and further arteries and veins 200e500 mm. This vascular system grows like a network and the

connection between the different parts will determine the perfusion of the tissues. A better network architecture leads to a better blood delivery.

Afterward, the link between tumor vascular network and the vascular system of the surrounding tissue will be tightly established and tumor can be

considered an organ which interacts with other organs but in abnormal conditions. Newly formed vessels are now able to produce important

physiological effects as draining blood from the vascular system, changing the local level of pH and hypoxia, mechanically compressing the host

tissue, introducing tumor cells in the bloodstream or in the lymphatic system, and invading surrounding tissues.

Box 3 Multiplexing.
Originally developed in the experimental context, and then transferred into the computational domain, the idea of multi-

plexing is in principle as simple to define as extremely hard to implement, implying that a new generation of tools would

be needed.

Computational Multiplexing Imaging (COMI) is a very desirable research direction.

COMI is a natural derivation of the seminal idea recently inspired byWelch et al. (2011), who discussed of Experimental and

Computational Multiplexing by focusing on the reconstruction of complex multi-component pathways, and involving concur-

rent activity measurements obtained from spatiotemporal dynamics. Another contribution has just appeared about pre-

clinical cancer imaging applied to therapeutics and drug discovery (Conway et al., 2014).

COMI would thus emerge in two principal ways:

1 Integrating the observational power available from imaging, thus associating with the experimental evidence;

2 Expanding the system’s prediction power by combining information in a unifying computational frame.

Network for instance organize the information flowing across connectivity patterns. The integration in the network

context implies that a specific computational treatment should be adapted to its structure. The variables and parameters

measured quantify an abundance of observables (related to cell morphology, morphodynamic pattern analysis, etc.) that

refer to molecular activities. Integrating such wealth of data necessarily requires that networks produce inference, also

causative and not just correlative, multiresoluted, modular and robust to perturbations rather than globally optimized

and model-dependent.

COMI’s impact is expected in diagnostics, prognostics, and by considering therapeutics, also in theranostics.

M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 1e1 6 9

http://dx.doi.org/10.1016/j.molonc.2014.08.013
http://dx.doi.org/10.1016/j.molonc.2014.08.013
http://dx.doi.org/10.1016/j.molonc.2014.08.013


M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 1e1 610
between imaging and networks is framed within an approach

namedComputational Multiplexing Imaging (COMI). In partic-

ular, a non-invasive readout such as imaging is ideal to study

adaptive processes, and naturally integrates with both exper-

imental and computational multiplexing components,

including networks.

3.1. Bottlenecks in cancer modeling

The (ten) hallmarks may be related to potential barriers that

the neoplastic mass has to overcome in order to survive and

proliferate. Despite the knowledge that has been acquired in

the last decades on tumor biology, substantially improving

our understanding of the molecular and cellular processes

involved, mathematical modeling of these processes remains

a challenge. The reason for the complexity is in the variety of

such processes, and in both the amount and the nature of

their interdependent component variables that need to be

considered.

Angiogenic complexity

Among the tumor hallmarks, two of them are of particular

relevance from a clinical perspective, being critical determi-

nants of patient prognosis: angiogenesis, and activation of in-

vasion and metastasis formation. In particular, angiogenesis

refer to the establishment of a vascular network, and is pre-

requisite for the tumor to outgrow its limits dictated by com-

pound diffusion.Without its vascular system, the tumormass

would be confined to a size of amillimeter in diameter or even

less, with no clinical evidence. Angiogenesis therefore consti-

tutes and essential switch in tumorigenesis and, due to this

peculiarity, an ideal target for therapy. In this context,

modeling the angiogenic processes would be fostering our

intrinsic understanding and potentially supporting the devel-

opment of anti-angiogenic therapy.

Angiogenesis involves remodeling of the blood vasculature

according to a network with a mix of functions characterized

by distinct cellular features. Some of the latter are induced by

cancer and not specifically referred to its primary site. The

changes that such features cause are relevant not just to the

disease progression because of an increased vessel subtype

heterogeneity, but also for the prognosis and the response to

treatment (Farnsworth et al., 2014). The concept of anti-angio-

genic drugs aims at re-normalizing the cancer vasculature to

allow efficacy of the drug due to an easier cell access. A

commonly associated effect is drug resistance because alter-

native signaling routes or other mechanisms such as hypoxia

may facilitate revascularization.

A network-centered assessment of angiogenesis may

require that node aggregates are considered at a spectrum of

localized scales to measure the influence exerted by the state

at which each cell is referred. However, encompassing struc-

tural diversity comes with the price of weakening the accu-

racy of estimating global properties. This is basically due to

the presence of under-sampled networks. Typically, models

hold for the entire network, but the data may consist of just

fractions of it, i.e. a sampled sub-network. The problem is

that estimates for thewhole network parameters are obtained

by applying the model to the sub-network, assuming the
model is consistent under sampling. A general way to reduce

the typical complexity of highly dimensional networks

enriching hierarchies of relations, is to employ ensemble

models that average out possible errors and avoid the singu-

larity of very specific results.

Despite three decades of efforts in this direction, a compre-

hensivemodel isnot yet available. Beyond thedifficulty related

to the huge number of players, angiogenesis events spanmul-

tiple length and time scales. Molecular processes such as the

expression of angiogenic growth factors triggered by hypoxia

once the tumor has outgrown the distance of oxygen diffusion

occur in a confined space of micrometers. These mediators

thendiffuse through tissue, prompting sprouts in the direction

of the concentration gradient nearby host vessels. The forma-

tion of a capillary network including feeding and draining ves-

sels extends over a range frommillimeter to centimeter. Then,

characteristic times range frommicro-tomilli-seconds formo-

lecular events, while a time frame from weeks to months is

required for the formation of vascular structures.

Metastatic complexity

Death caused by cancer is not due to primary tumor forma-

tion, which usually is surgically removed, but rather to the

dissemination of cancer cells into adjacent tissue (recurrence)

or in other organs (metastases). Hence, tumor invasion and

metastasis formation are determinants of patient survival.

Activation of these processes require the acquisition of spe-

cific phenotypes thatmake cells able to detach from the tumor

mass, migrate and survive in a different tissue. The interac-

tion of cancer cells with the surrounding microenvironment

therefore constitutes a critical node in a tumor network (see

for instance Johansson et al., 2014).

Studies of tumor microenvironment (Ungefroren et al.,

2011) have revealed some specific mechanism involved in tis-

sue infiltration and metastasis formation, such as epithelial-

to-mesenchymal transition and degradation of the extracel-

lular matrix. Together, they are responsible for the change

of cell morphology enabling the detachment from the primary

tumormass and themigration through the extracellular space

for invasion of the surrounding tissue. If such detached cells

manage to reach lymphatic or blood vessels, these circulating

tumor cells may form tumor colonies (metastases) in other

parts of the body.

The possibility of determining features that characterize

tumor microenvironment in a 3D fashion (Cox and Erler,

2012) is crucial for understanding the infiltration capacity of

the tumor cells into healthy tissue. The alteration of cellular

pH and oxygenation in a specific direction, for example, will

promote the infiltration in that direction instead of another

one. Moreover, the increase of mechanical pressure of sur-

rounding tissue in a region will decrease the possibility for

the cells to proliferate or migrate there. Therefore, being

able to determine a group of 3D features that drive prolifera-

tion allows identifying the preferential direction of tumor evo-

lution. Microenvironment plays a role in tumor development,

influencing in a significant way the response to therapy. High

level of oxygenation, for example, promotes the formation of

free radicals that enhance the effect of radiotherapy treat-

ment (Wenzl and Wilkens, 2011).

http://dx.doi.org/10.1016/j.molonc.2014.08.013
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In the last decade, multiscale models aimed to describe tu-

mor invasion (Anderson, 2007), cell migration (Zaman, 2006;

Rangarajan and Zaman, 2008), and metastases formation

(Zaman, 2007), have been proposed. Nevertheless, a unifying

model which accounts for every aspect is not available. For

both angiogenesis and metastases formation, the main prob-

lem for a model is to cover multiple temporal and spatial

scales. Complex networks offer an integrative multiscale

modeling framework (Capobianco et al., 2011; Ryan et al.,

2013; Capobianco, 2013).

3.2. Network profiling toward tumor fingerprint

Recently, it has been demonstrated (Curtis et al., 2012) that

what is commonly classified as breast cancer, may include

ten different pathological conditions at genetic level. This

example suggests that a single biomarker may unlikely target

tumor features for all types of breast cancer, even considering

the expression of possible common traits. Instead, a set of bio-

markers or a marker panel targeting different phenotypic

characteristics should be considered in order to significantly

enhance the diagnostic accuracy with complementary infor-

mation (Erler and Linding, 2010). This has been demonstrated

ex-vivo in tumor samples using a set of five different labeled

antibodies enabling the differentiation of malignant from

non-malignant lesions (Weissleder et al., 2010).

Networks offer a unique opportunity to characterize tumor

phenotypes (Pe’er and Hacohen, 2011). In particular, modu-

larity allows the implementation of marker panel strategies

to face combinatorial treatments. In order to describe the

complexity of heterogeneous proliferative mechanisms,

multi-marker signatures rather than single marker ones build

a more predictive fingerprint, owing to the connectivity of the

multiple readouts at play. Network models can de facto be

specialized in cancer for detecting modules induced by

markers (Dao et al., 2011; Ben-Hamo and Efroni, 2013) with

the result of complementing gene selection approaches based

on expression thresholds and pathway enrichment.

Network profiles can therefore be built from the obtained

modular configurations, based on specific hallmarks or phe-

notypes that are observed in-vivo. In turn, an ensemble of

such profiles establishes a sort of unique fingerprint by which

physiological processes can be simultaneously encoded, for

instance gene expressions, pathway landscapes, morpholog-

ical abnormalities, and molecular mechanisms occurring at

different spatial and temporal scales. Such fingerprint is obvi-

ously strictly correlated with the stage of tumor evolution,

which in turn, is defined by the hallmarks. Even if different re-

gions of the tumor can be in different stages of tumor progres-

sion, as in the case of glioblastoma (Zacharaki et al., 2009), the

network profile can nevertheless still be useful, due to its

possible multidimensionality.
4. Clinical applications

The chance to define unique tumor fingerprints through

network profiling is probably themost important contribution

which is expected from oncology-driven networks (Ciriello

et al., 2013). We report in Figure 4 a reference scheme for our
next remarks in both diagnostic and therapeutic terms. At

the diagnostic stage, pathological versus non-pathological

conditions may be differentiated, based on specific network

profiles. Moreover, the identification of a precise network

state through a particular configuration, summarizing all the

physio-pathological conditions of tumor tissue, makes tumor

classification more accurate and allows to define a baseline

usable as reference point during cancer treatment. The more

accurate the classification, and the better is the treatment.

Therefore, at a therapeutic stage, the evaluation of tumor

fingerprint during treatment and its comparison with the

initial state can be used to evaluate in real time its efficacy.

This aspect, in principle, makes it possible to enable quick

changes in therapy, in case of unsatisfactory preliminary re-

sults. A topologically-characterized network configuration is

thus a diagnostic instrument displaying the state of the dis-

ease system, normal or altered, and a therapeutic support

tool for the assessment of the effects of treatment. In partic-

ular, drug-target interactions may inform on the changes

occurring between states, and their propagation effects can

be tracked at the network scale by comparing profiles and by

detecting the dynamic connectivity patterns which regulate

the migrations across them.

4.1. Differential diagnosis

A tumor fingerprint constitutes the ideal marker to differen-

tiate pathological versus non-pathological conditions, or to

distinguish between different stages of the same disease. An

example is the differentiation between neoplastic situations

as malignant tumor, versus non-neoplastic ones as benign

lesion. This differentiation can be made on the basis of differ-

ential network topology, i.e. by observing configurations

changes. Then, the study of dynamic behavior can also

explain some communication and trafficking occurring be-

tween modules, due to movement of fluids, transport of mol-

ecules or migration of cells, which can reveal invasion or

metastatic potential. A clear advantage of the differential

approach supported by networks is reflected by the integrative

nature of the clinical evaluation impact derived on the basis of

a mix of factors such as tumor features, patient characteris-

tics, gene expression profiles and disease markers, SNPs (sin-

gle nucleotide polymorphisms), etc.

Among the applications of networks, some refer to tumor

classification based also on the integration of omics and clin-

ical information. In his pioneering work, Perou et al. (2000)

proposed the classification of invasive breast cancer based

on the expression of the oncoprotein HER2 and ER opening

theway to themolecular classification of cancer. Many groups

extended the approach, then validated (Wirapati et al., 2008)

on large groups of datasets with thousands of patients. Conse-

quently, it has been recently demonstrated that breast cancer

accounts for ten different disease sub-types (Curtis et al.,

2012). The same approach, based on similar molecular signa-

tures has been also applied in the classification of melanomas

(Bittner et al., 2000), lymphomas (Alizadeh et al., 2000) and

lung cancer (Bhattacharjee et al., 2001). Clearly enough, the

more accurate is the classification, the more specific will be

the choice of the therapy. Exerting control on cancer hotspots

at network scale (i.e. driver or landmark nodes or modules)

http://dx.doi.org/10.1016/j.molonc.2014.08.013
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Figure 4 eHeading tumor fingerprints. Each voxel of tumor volume can be represented by a set of measurable variables and a set of latent variables

defined according to established physiological models. These variables are chosen in order to describe the physiological heterogeneity of tumor

tissue. Among them, a specific set of non-redundant features is selected by means of dimensionality reduction processes. Network architecture is

made on the basis of this reduced features dataset (nodes) and on the real or predicted interactions between them (edges). The state space of the

network defines configurations as snapshots with topological characterization, and dynamics are at play when transitions between states occur. The

combination of the two aspects allows the identification of a fingerprint, which informs on the tumor stage and on the quantification of the

expression of each hallmark. Based on tumor fingerprints, voxels that show similar properties, or adhere to the same hallmarks, will be grouped in

homogeneous clusters or modules. This way, tissue heterogeneity is split into homogeneous groups of voxels, and the overall complexity is reduced.
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can simplify the decision process for the clinician called to

personalize the therapy to the patient characteristics.

4.2. Quantifying treatment efficacy

Standard chemotherapeutic drugs, which aim to inhibit repli-

cations for fast growing cells, can basically interfere with

network topology, which in turn implies that their effects

can be monitored. Drug-dependent topological characteriza-

tions are particularly useful for assessing normal versus

abnormal network structures, implying that a certain connec-

tivity map among molecules may constitute a marker of the

presence of tumor.

Anti-angiogenic drugs interact with the network at a topo-

logical level, but affect also its dynamical behavior due to the

fact that the suppression of part of the vascular network alters

the way to transport fluids, proteins and nutrients through

different parts of the tumors. The anti-angiogenic effect can

be therefore evaluated in a detailed manner including the

study of dynamic behavior in space and time. Network topol-

ogy configurations induced by a tumor fingerprint can also be

informative in terms of response to therapy in a contextual

way (single versus combinatorial therapy), allowing for the

quantification of the possibility of controlling treatment’s out-

comes based on parameters, i.e. VEGF expression, vascular

permeability, vessel density, etc.
4.3. Predicting treatment efficacy

One of the critical points for the assessment of treatment effi-

cacy is the wide range of responses observed among different

patients with the same kind of tumor, which is a manifesta-

tion of tumor heterogeneity. The latter is responsible for the

heterogeneous distribution of the target molecules, making

the interaction with the drug sometimes non-specific. As an

example, we can consider the anti-angiogenic treatment,

which aims to destroy tumor vessel network, or equivalently

blocking the 5th hallmark. One of the common targets for

these drugs is VEGF, which ismainly expressed during the for-

mation of the new vessels and less during thematuration pro-

cess. The result is a strong concentration of VEGF at capillary

level and a weak expression at bigger vessels. Since vascular

tumor networks consist of a non-hierarchical agglomeration

of vessels with different dimensions, VEGF will be expressed

heterogeneously through the network. It is therefore evident

that any specific treatment, which aims to block angiogenesis

inhibiting VEGF, will be only partially efficient.

Despite this situation, the goal of modeling for determina-

tion of treatmentmight involve the quantification of the chan-

ces that it will succeed or fail, which is a complex task. A

network approach can be particularly valuable, due to built-

in characteristics such as phenotype-responsiveness and

occurrence of state transitions. Furthermore, the network

http://dx.doi.org/10.1016/j.molonc.2014.08.013
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fingerprint could in principle work as a prognostic index of the

treatment efficacy. In combination with machine-learning

techniques, it is possible to define and train specific algo-

rithms that, based on the initial conditions defined by the

network profile, are able to guess the evolution or quantify

the chances of events following the treatment. Figure 5

sketches this idea, in terms of differential analysis allowed

by networks. Coming back to the example of the anti-

angiogenic treatment, the knowledge of the distribution of

VEGF and the architecture of the vascular network, which is

embedded in the network profile, constitute the starting point.

Based on these factors and the performance over the training

dataset, it is possible to train a machine-learning algorithm in

terms of predictive inference towards the system, and with

consideration of only the initial fingerprint.

4.4. Prognostic inference

Prognostic inference is linked to advancement in medicine,

and networks are increasingly providing support to such

achievements (Kim et al., 2012); Wu and Stein, 2012; Shi

et al., 2012; Li et al., 2010). Given patient groups and parame-

ters specific to them, prognostic models should be selected

to predict the future occurrence of outcomes. Examples are

a specific medical condition or disease, but also events such

as medical interventions and death. Traditionally, inference

models are derived from historical data by applying super-

vised methods of analysis. There are limitations in this

approach, and a first one is that variable selection may cause

loss of clinical information, while another one comes from the

static nature of such models, which partially adapt to new
Figure 5 e Two complex application settings. In differential diagnosis (top

benign lesions. The configuration of the network, which is used as fingerp

differential quantification of the presence of each phenotypic hallmark. Th

hallmark. The differentiation between the two tissues is therefore made on

(bottom panel) aims to evaluate the effects caused by a perturbation (i.e. cyto

the comparison occurs simply as evaluation between treatment scenarios, e
measurable patient information occurring during disease or

treatment. Finally, the innermost methodological rationale

of such models is to build relationships between dependent

(outcome) and independent (predictor) variables, and this

model choice prevents the learning process from optimally

dealing with highly convoluted dynamics.

The clinical use of network prognostic models is generally

targeted to the estimation of the distribution of variables that

represent future events related to conditions observed for pa-

tients. This is the case occurring during the disease process,

where the observational time window reaches the endpoints.

In particular, networks can act as the principal inference tools

for the generation of clusters and modules whose linear or

non-linear combinations can be significantly correlated with

patient survival. Network modularization is particularly valu-

able in establishing communities whose association strength

arise from the patient’s characteristics. This way, a novel type

of patient stratification can be produced from networks,

which in turn can be used for improving the management of

therapeutic options though better scenario prediction and

monitoring.
5. Outlook

Understanding tumor heterogeneity by complex network ap-

proaches opens two important scenarios in pre-clinical and

clinical stages, respectively. At a pre-clinical stage, the idea

to incorporate all the variables that can be measured in a

network goes in the direction of developing treatment accord-

ing to a systems medicine approach (Auffray et al., 2009;
panel), the goal is to distinguish between malignant tumors versus

rint of the physiological situation measured in-vivo, allows for the

e quantification is performed by the assignment of a score to each

the basis of score results. The quantification of treatment efficacy

toxic drug treatment) on the configuration of the network. In this case,

x ante and ex post, leading to the assessment of therapy effects.
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Capobianco, 2012). Consequently, all tumor components are

considered not as single entities but instead together, indeed

interacting according to a “chaotic” orchestra of instruments

designed to play a piece of music. However, it is the music

that counts! Similarly, tumors would not be considered as

an anomaly, rather an active part of the body with some char-

acteristics that interact with other physiological systems

endowed with other characteristics, primarily with the im-

mune system. It is the result of this complex exchange that

makes a difference at the clinical level, and particularly in

prognostic terms.

This new paradigm implies, for instance, that tumor pro-

gression goes into two directions. On one hand, the tumor pro-

motes oncogene expressions and growing factors in order to

invade the hosting tissue. On the other hand, the host tissue

is not able to work against this invasion, and the immune sys-

tem’s response which tries to infiltrates the tumor with mac-

rophages is not effective. Evidence of the tumor invading the

neighbor organs implies that such organs also allow the tumor

to do it.

From a methodological side, we promoted a complex

network approach for modeling the hallmarks of cancer, but

an important remark is that, in reality, it is not possible to

measure all the variables and parameters relevant for tumors,

and then represent them in a network. Some degree of latency

of information remains in such systems, depending on vari-

ables for which experimental measurement is lacking, and/

or computational quantification not accurate enough. To

overcome this problem arising in any kind of physiological

system, statistical inference methods or differential networks

(Cabusora et al., 2005; Ideker and Krogan, 2012) can be applied

to optimize an efficient use of the available information.

Substantial intra-tumor heterogeneity is visible through

anomalies which appear to vary within the tumor, and they

refer to genomic aberrations, for instance. In our context, MI

features could be informative as well, and their variation

would be investigated at the network scale reflecting the

spatial distribution of nodes. We know that from the various

metrics underlying network topology, we can infer about the

relevance of particular patterns which are observed to differ-

entiate. For instance, multiple mechanisms of drug resistance

or sensitivity may be present within the same tumor, and

dictate the response to therapy, determining deviation from

linearity with regard to tumor evolution, as evidenced in he-

matological cancers, renal and breast cancer, and also medul-

loblastoma (Yap et al., 2012). The outcome of this process is

that clonal sub-populations of cancer cells modularize both

genotypically and phenotypically within the same cancer.

In particular, even at single biopsy level, a similar intra-

heterogeneity in genomic number and chromosome numbers

has been observed in breast cancer (Navin et al., 2010; Navin

et al., 2011).

One of the interesting factors that networks could eluci-

date when presented in their differential configurations, is

the scenario in which somatic events present in cancer before

drug treatment, and being suspected to determine the

outcome of it, could be mapped before and after treatment

to verify the contribution to the identification of key

biomarker and to the characterization of the influence coming

from each type of mutation at different times, whether driver
or passenger, in terms of effects on prediction of drug

response. The clonal cell population hierarchies character-

izing intra-tumor heterogeneity have particular relevance for

metastasis. Biological networks are modular objects, and it’s

natural to expect that detecting associations between mod-

ules and sub-structures induced by special signatures could

be achieved. Whether the signal-to-noise ratio can be a crite-

rion for modularization is something that can be either inves-

tigated on the basis of the available data (and in this case, an

integrative data approach would set more power available

for signal deconvolution) or modeled by some approaches

providing multiresoluted modular stratification.

We conclude by proposing that time has arrived to leverage

the information that we have available on cancer fromMImo-

dalities, andwhen this is integratedwithin a complex network

framework, new opportunities can arise for characterizing the

personalization of treatment, not much as the best possible

one according to the clinical assessment of the disease or

pathological condition, but rather as a reflection of the entire

physiological condition of the patient, including primarily the

genetic background.
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