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Abstract. A recombinant lambdaphage DNA clone 
containing Drosophila melanogaster sequences encod- 
ing the gene for myosin light chain (MLC) two has 
been isolated from a library of randomly sheared 
DNA. The Drosophila MLC2 gene is located in re- 
gion 99E1-3 on the right arm of chromosome 3, 
several bands removed from the site reported for the 
other myosin light chain gene at 98B. The MLC2 se- 
quence at 99E1-3 appears to encode all of the isoforms 
of Drosophila MLC2. 

The polypeptide encoded at 99E was identified as 
MLC2 by the following criteria: the in vitro transla- 
tion product is identical in size to MLC2 isolated from 

Drosophila muscle, and on two-dimensional gels the 
in vitro translation product can be separated into two 
or more peptides that co-migrate with isoforms of lar- 
val and thoracic MLC2. RNA encoding the polypep- 
tide was detected in embryos only after the onset of 
muscle differentiation and was also abundant in adult 
thoracic muscle. The nucleotide sequence of cDNA 
generated from late embryonic RNA would be trans- 
lated to yield a protein sequence with multiple regions 
of homology to vertebrate MLC2. (There are shorter 
regions of homology to vertebrate MLC1). Like a 
number of vertebrate muscle proteins, Drosophila 
MLC2 has an acetylated amino-terminus. 

T 
HE myosin molecule consists of one pair of heavy 
chains and two pairs of light chains. In vertebrates 
myosin light chains (MLCs) ~ have been divided into 

two classes on the basis of their solubility. One class is solu- 
ble in alkali and the other class can be extracted with 5-5'- 
dithiobis(2-nitrobenzoic acid) (DTNB). The alkali-extract- 
able class contains two polypeptides (MLC1 and MLC3), 
while the DTNB class consists solely of MLC2 (42). In some 
types of muscle the DTNB light chains (MLC2) control con- 
traction by regulating the interactions between actin and 
myosin. In other muscles, contraction is controlled by the 
troponin-tropomyosin system associated with actin (37, 41). 
For example, vertebrate smooth muscle has regulatory 
DTNB myosin chains but skeletal muscle contraction is regu- 
lated by the actin-based system (32, 33). In contrast, all of 
the insect muscles studied so far possess both the myosin- 
associated and the actin-associated regulation of muscle con- 
traction (12). In this respect Drosophila has not been analyzed. 

Muscles of Drosophila melanogaster resemble vertebrate 
muscles in that they contain three myosin light chains; how- 
ever the Drosophila polypeptides are significantly larger 
than those of vertebrate muscles. Takano-Ohmuro et al. (38) 
have isolated three classes of myosin light chains from 
purified Drosophila myosin'and have numbered the classes 
on the basis of size as estimated by gel migration. The largest 

1. Abbreviations used in this paper: DTNB, 5-5' dithiobis(2-nitrobenzoic 
acid); MLC, myosin light chain. 

light chain, MLC1, appears to be 34,000 D in fibrillar muscle 
and 31,000 D in tubular muscle. MLC2 appears to be 30,000 
D and MLC3 appears to be 20,000 D in both types of muscle. 
MLC2 has at least two isoforms in each type of muscle and 
the isoforms of tubular muscle differ slightly from those of 
fibrillar muscle. 

Although Drosophila is an especially useful organism for 
genetic analysis of muscle development, no mutants of the 
myosin light chains have been identified, and molecular anal- 
yses of the genes have only begun. We report here our studies 
of a gene encoding MLC2. This cloned sequence is from 
chromosome region 99E1-3. It is a single copy gene that 
produces at least two transcripts and multiple protein iso- 
forms. The nucleotide sequence indicates that the Drosoph- 
i/a MLC2 gene encodes a polypeptide of 24,000 D, although 
both the polypeptide and the in vitro translation product of 
MLC2 RNA appear to be 30,000 D when judged by gel 
migration. The derived protein sequence of Drosophila 
MLC2 has amino acid homologies with regions throughout 
vertebrate MLC2 sequences, suggesting an evolutionary, and 
perhaps a functional, relation between the intermediate- 
sized light chains in these distantly related organisms. 

Materials and Methods 

Isolation of Drosophila Nucleic Acids 
High molecular weight DNA was isolated from embryos or hand-dissected 
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brains of third instar larvae. Embryos were dechorionated in 50% Clorox, 
washed with 0.15 M NaCI, and homogenized in a buffer containing 0.25 M 
sucrose, 50 mM Tris-HCl, and 1 mM EDTA (pH 7.4). The nuclei were 
pelleted by centrifugation, resuspended in buffer containing 0.15 M NaCI, 
0.1 M EDTA, and 0.02 M sodium borate (pH 9.6), and lysed by adding SDS 
to 0.5%. Nucleic acids were extracted with phenol-chloroform and recov- 
ered by ethanol precipitation. The resulting pellet was resuspended in buffer 
containing 0.15 M NaC1, 0.05 M Tris, and 5 mM EDTA (pH 8.0). The solu- 
tion was made 0.5% SDS, 0.1 mg/ml proteinase K, and 0.1 mg/ml RNase 
and incubated at 36"C for 2 h. DNA was extracted with phenol-chloroform 
and ethanol precipitated. Brains were collected directly into buffer contain- 
ing 1% SDS, 0.1 M NaC1, 0.1 M EDTA, 0.01 M Tris, (pH 7.9), and 50 ~tg/ml 
proteinase K, homogenized and incubated at 37°C for 2 h. The DNA was 
extracted as described above. 

Total RNA was isolated from staged embryos and pupae that were frozen 
in liquid nitrogen and ground to a fine powder. The powder was dissolved 
in 100 mM NaCI, 1 mM EDTA, 0.5% DEPC, 113 mM Tris-HC1 (pH 7.4), 
0.5% SDS and extracted with phenol/chloroform/isoamylalcohol (25:24:1) 
followed by two chloroform/isoamylalcohol extractions. Nucleic acids were 
precipitated with ethanol, spun down, and resuspended in water. RNA was 
precipitated with 2.5 M lithium chloride, pelleted, washed twice with 70% 
ethanol and resuspended in water. Poly(A) + RNA was purified on oligo- 
(dT)-cellulose as described by Storti et al. (35). 

Purification of Larval and Thoracic 
Myosin Light Chains 

Myofibrils were prepared from 50 g of third instar larvae (Canton S strain) 
by the method of Bullard et al. (2) and homogenized in a solution containing 
0.3 M sucrose, 0.1 M KC1, 0.01 M potassium phosphate buffer (pH 7.0), 
1 mM MgCl2, 1 mM EGTA, and 0.01 M sodium azide. The washed 
myofibrils were resuspended in 0.1 M KCI, 0.01 M potassium phosphate 
buffer (pH 7.0), and myosin was extracted in Hasselbach-Schneider-Zebes 
solution containing 1 M KCI, 0.01 M sodium pyrophosphate, 1 mM 
MgCl2, and 0.02 M potassium phosphate buffer (pH 6.5). Residue was re- 
moved by centrifugation, and actomyosin was then precipitated by dialysis 
against 0.25 M KCI and removed by centrifugation. The supernatant was 
dialysed for 12 h against 0.03 M KC1, adjusted to pH 6.5 with NaHCO3, 
and the precipitated myosin was spun down and resuspended in 2 M KC1 
(pH 7.0) to a final concentration of 0.5 M KCI. 

Muscle proteins were prepared from thoraces of adult flies of Drosophila 
melanogaster. Thoraces were separated from adult flies and dissected with 
fine forceps in a drop of Ringer's solution. Muscle tissue from the dissected 
thoraces was then homogenized by hand in O'Farrell lysis buffer. 

Gel Electrophoresis of Proteins 

Proteins were routinely separated on 12.5% (wt/wt) acrylamide/0.36% 
(wt/wt) bis-acrylamide gels (9). Gels were stained with Coomassie Brilliant 
Blue or silver stained as described by Oakley et al. (20). Radioactively la- 
beled proteins were detected by fluorography with Kodak XAR-5 film. Two- 
dimensional gels and samples were prepared by the method of O'Farrell 
(21). Samples were fractionated on a pH gradient of 3.5-10 in the first dimen- 
sion and separated on 12.5 % polyacrylamide gels in the second dimension. 

Acetylation of in vitro translation products was blocked by the method 
of Palmiter (22). Micrococcal nuclease-treated rabbit reticulocyte lysates 
were treated with 1 mM oxaloacetic acid and 50 U/ml citrate synthase at 
20°C for 1.5 h before in vitro translation. Hybrid-selected mRNA and 
35[S]methionine were then added to the lysates which were incubated at 
37°C for I h. Gel-purified larval MLC2 and in vitro translated proteins were 
labeled with dansyl-chloride by the method of Kato and Sasaki (8) and 
visualized by UV light (UVSL 25 lamp; UVP Inc., San Gabriel, CA). 

Restriction Digests and Electrophoresis of DNA 
Restriction endonuclease maps of cloned DNA were generated with single 
and double digests under conditions recommended by the suppliers. Elec- 
tropboresis of the restricted DNA was done in horizontal 1.1% or 0.7% 
agarose gels buffered with 0.08 M Tris-phosphate. For fragment isolation, 
the restricted DNA was fractionated on 0.7% low melt agarose gels buffered 
with 0.04 M Tris-acetate. Fragments were isolated by the Elutip method 
(Schleicher and Schuell, Inc., Keene, NH) and precipitated with ethanol. 

Filter Hybridizations 
DNA was transferred to nitrocellulose filters by the method of Southern 
(34). Filters were baked for 2 h at 70°C and prehybridized in 4× SET-4× 

Denhardt's solution (lx SET: 0.15 M NaCI, 0.03 M Tris, 2 mM EDTA, pH 
8.0) (3, 15) and 100 I~g/ml sheared, denatured E. coli DNA. After pre- 
hybridization, filters were transferred to a fresh solution containing dena- 
tured probe, carder DNA and 4× SET-4× Denhardt's solution. 

Hybridization of 32[p]-labeled probes to nitrocellulose-bound DNA was 
performed overnight at 650C and the filters were then washed three times 
with l× SSC (0.15 M NaCI, 0.015 M sodium citrate, pH 7.0) and 0.5% SDS 
at 65°C. Hybridized filters were exposed to Kodak XAR-5 film with inten- 
sifying screens (10). 

For hybridization-selection experiments total RNA from 18-24-h em- 
bryos (50 ~tg/filter) was hybridized to nitrocellulose-bound DNA by the pro- 
cedure of Riciardi et al. (29). The selected mRNA was translated in 
micrococcal nuclease-treated rabbit reticulocyte lysates (25) containing 
5 ~tCi 35[S]methionine under the conditions described by Storti et al. (35). 

For Northern hybridizations (39), glyoxylated RNA from staged em- 
bryos and pupae was separated on 1.5 % agarose gels and transferred to Gene 
Screen Plus filters (NEN Research Products, Boston, MA). Glyoxylated 
HaeIII-digested tpX174 DNA and Hind III-digested lambda DNA were frac- 
tionated and visualized by UV light after treatment with alkalai and staining 
with ethidium bromide. These fragments were used as size markers. Pre- 
hybridization and hybridization were done at 60°C in 10% dextran sulfate, 
1.0 M NaC1, and 1% SDS overnight. Filters were washed in l× SSC, 0.1% 
SDS at 65°C with three changes of the wash solution. 

In Situ Hybridization 

In situ hybridizations to polytene chromosomes were performed according 
to Pardue and Dawid (23). Total DNA of lambdaphage DmUa was nick- 
translated and DNA (6-7 × 107 counts/min) in 2× TNS ( lx TNS: 0.15 M 
NaC1, 0.01 M Tris-HC1, pH 6.8) plus 50 txg/ml E. coil DNA was hybridized 
to polytene chromosome squashes at 67°C for 12 h. 

Subcloning 

pSP65LC2 and pSP64LC2 were constructed by subcloning a gel-purified 
Eco RUBam HI fragment of Dmlla DNA into pSP65 and pSP64 linearized 
with Barn HI and Eco RI as described by Melton et al. (16). The ligation 
mixture was transformed into E. coli strain LM 1035 and ampicillin-resis- 
tant colonies were selected. The DNA was isolated as described by Maniatis 
et al. (14). 

Isolation of cDNA Clones 

A lambda gtl0 library containing Drosophila rnelanogaster eDNA (26) was 
screened for sequences homologous to the MLC2 gene by plaque hybridiza- 
tion. cDNA was subcloned from one lambda eDNA clone, gtFlg, by digest- 
ing with EcoRI and ligating the resulting fragment into pBR322. A sub- 
clone, pFlg, containing a 760 bp insert which includes the entire coding 
region of the MLC2 gene was used for subsequent analysis. 

M13 subclones were initially generated by digestion of pFlg with EcoRI 
and ligation of the 760 bp fragment into M13mpl9. A procedure based on 
digestion by Bal31 was used (U) to rapidly sequence the entire insert region. 
Digestion of the linearized M13FIg subclone with the exonuclease Bal31 
resulted in a set of deletions that were subsequently sequenced. 

DNA Sequencing 

DNA sequencing was done by the dideoxy chain termination method (31) 
with M13 phage vectors (19). 

Results 

Isolation and Characterization of the Clone Dmlla 

The clone (Dmlla) containing the MLC2 sequences was iso- 
lated from a genomic library of D. melanogaster DNA con- 
sisting of randomly sheared embryonic Drosophila DNA in- 
serted into the Charon 4 lambdaphage vector with Eco RI 
linkers (15). The clone was selected by screening with a 
32[p]-cDNA probe highly enriched for sequences com- 
plementary to mRNA of mature myotubes. The cDNA was 
synthesized on oligo-(dT)-fractionated cytoplasmic RNA 
isolated from mature pulsating Drosophila myotubes that 
had undergone the complete developmental program of the 
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Figure 1. Analysis of RNA homologous to the Dmlla gene shows 
two developmentally regulated transcripts (1.1 and 1.2 kb) that are 
expressed only during the stages of muscle synthesis (a). A 2.4-kb 
RNA with some homology to the coding sequences is detected in 
RNA from all stages examined and serves as a control for the load- 
ing and transfer of each gel lane. The 2.4-kb RNA shows very little 
binding to oligo-(dT)-cellulose (b) and thus does not appear to be 
a typical poly A- RNA. The 2.4-kb RNA does not yield a transla- 
tion product in hybrid-selection experiments (see text). Denatured 
RNA isolated from Drosophila embryos of different age ranges and 
from late-stage pupae was separated on agarose gels and transferred 
to Gene Screen Plus filters. In a the RNA is from (lane 1) 0-6-; 
(lane 2) 6-12-; (lane 3) 12-18-; (lane 4) 18-24-h old embryos and 
(lane 5) late-stage pupae. In b the RNA is (lane 6) total RNA from 
pupae and (lane 7) poly(A)+RNA from ll-20-h-old embryos. Lanes 
1-6 have 10 lag of total RNA per lane and lane 7has 2 gg of oligo- 
(dT)-fractionated RNA. The filters were probed with single-stranded 
RNA transcribed from the coding region of Dmlla subcloned into 
pSP65. Molecular size markers of the poly(A)+RNAs are in kilo- 
bases. 

primary myogenic cell culture system described previously 
(36). Before the screening procedure, the cDNA had been fur- 
ther enriched for myotube-specific sequences by prehybrid- 
ization with total cytoplasmic RNA, isolated from undif- 
ferentiated cells (Schneider line 2-L), to remove sequences 
coding for general "housekeeping" proteins. 

RNAs Encoded by Dmlla 

The method used to select the clone Dmlla implies that the 
expression of the encoded Drosophila gene should follow the 
developmental pattern of  muscle differentiation and our 
studies confirm this. We have investigated the pattern of ex- 
pression of transcription of RNA homologous to the coding 
region of  Dmlla DNA by analyzing RNA isolated from 
different embryonic stages (0-6, 6-12, 12-18, and 18-24 h af- 
ter egg laying), and from larvae, pupae, and adult thoraces. 
The RNA was probed with 32[p]-labeled single-stranded an- 
tisense RNA transcribed from the coding region of  Dmlla 
DNA subcloned into pSP65 (in some experiments the probe 
was the isolated coding region of the lambda clone). Hybrid- 
ization is seen to a pair of  developmentally regulated RNAs 
of  1.1 and 1.2 kb (Fig. 1). These two RNAs are not detected 

Figure 2. The in vitro translation product of RNA hybrid-selected 
by Dmlla has an apparent molecular mass of 30,000 D and co- 
migrates with Drosophila MLC2 on SDS polyacrylamide gels. (a) 
Autoradiogram of 3~S-labeled products of rabbit reticulocyte ly- 
sates fractionated on a 12.5% SDS-polyacrylamide gel. (Lane 1) 
Lysate containing Ix RNA hybrid-selected by Dmlla (from 25 ltg 
total RNA). (Lane 2) Lysate with no added RNA, showing endoge- 
nous products labeled in the lysate. (Lane 3) Lysate containing 2 x 
RNA hybrid-selected by Dmlla (from 50 lag). (Lane 4) Lysate with 
no added RNA. The migration of unlabeled molecular mass mark- 
ers is noted on the left in daltons. The product of the hybrid-selected 
RNA (arrow) runs just above the 29,000-D marker (carbonic 
anhydrase) and coincides with the larger band of a doublet of en- 
dogenous proteins. (b) The hybrid-selected product of Dmlla co- 
migrates with the 30,000-D Drosophila MLC. (Lane 5) Autoradio- 
gram of 35S-labeled products of a rabbit reticulocyte lysate frac- 
tionated on a 12.5% polyacrylamide gel. The product of Dmlla 
RNA is indicated with an arrow. (Lane 6) Coomassie Blue-stained 
gel lane of Drosophila myofibrillar proteins co-fractionated with the 
lysate in lane 5. The heavy band at 30,000 D is MLC2. Marker sizes 
are indicated to the left of lane 5. 

in the earliest embryonic stages, however there is a low level 
of  hybridization to RNA from 6-12-h embryos and much 
stronger hybridization to RNA from later embryonic stages. 
This pattern of  gene expression correlates well with the tim- 
ing of muscle development in the embryo (27). In addition, 
the temporal expression of  the Dmlla gene also resembles 
that of  other muscle-specific genes, such as those encoding 
the Drosophila tropomyosins (1). Larvae, pupae, and adult 
thoraces all synthesize muscle, and all have RNA com- 
plementary to Dmlla. 

There is a 2.4-kb RNA that is present throughout all de- 
velopmental stages and appears to share homology with the 
Drosophila MLC2 gene. This RNA is not a typical poly 
(A) + RNA; very little of  it is retained by oligo-(dT) cellu- 
lose (Fig. 1 b, lanes 6, 7). Furthermore, the 2.4-kb RNA 
does not direct the synthesis o fa  Dmlla-encoded protein. A1- 
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Figure 3. Autoradiogram of the in vitro translation product of Dmlla 
labeled with [35S]methionine and [3H]alanine and separated on a 
two-dimensional gel. The spots framed by brackets are the isoforms 
of the 30,000-D in vitro translation product. The small arrow points 
to an 18,000-D polypeptide that is an artifact of the in vitro transla- 
tion system. All other spots are endogenous proteins of the rabbit 
reticulocyte lysate that are labeled in vitro. RNA was hybrid- 
selected from late-stage pupae. 

though there is abundant hybridization of the 2.4-kb RNA 
from the earliest embryonic stages to Dmlla, this RNA can- 
not be translated in vitro to yield a polypeptide. Dmlla 
hybrid-selects translatable RNA only from stages that have 
the 1.1- and the 1.2-kb RNAs. These results imply that the 
2.4-kb RNA, which is abundant at all stages, is not a mes- 
senger RNA. The 2.4-kb RNA is probably not a transcript 
of  the gene on Dmlla: hybridization to this 2.4-kb RNA is 
more stable when complementary RNA to the MLC2 gene 
is used to probe Northern blots than when MLC2 cDNA is 
used as probe. RNA-RNA hybrids are more stable than the 
corresponding R NA -D N A  hybrid, suggesting that Dmlla 
forms an imperfect cross-hybrid with the 2.4-kb RNA which 
must be a transcript of  another region of the genome. 

The two developmentally regulated RNAs that show ho- 
mology to the Dmlla coding sequence, the 1.1- and the 1.2-kb 
RNA, are found in all stages that are expected to be syn- 
thesizing muscle products. The ratio of  these two RNAs is 
relatively constant at the different stages, suggesting that the 
two transcripts are both present in the different types of mus- 
cle that appear in larvae and adults. 

Characterization of  the Dmlla Gene Products 

The clone Dmlla efficiently hybrid-selects RNA from any 
muscle-containing tissue. Hybrid-selected RNA can be 
translated in vitro to yield a 30,000 D polypeptide that co- 
migrates on SDS polyacrylamide gels with the medium-sized 
Drosophila myosin light chain, MLC2 (Fig. 2). One, or 
sometimes multiple, smaller polypeptides are seen along 
with the 30,000-D translation product (Fig. 3); however the 
smaller polypeptides appear to be artifacts of the reticulocyte 
in vitro translation system (see Discussion). These smaller 
polypeptides do not co-migrate with any fibrillar muscle pro- 
teins. 

On two-dimensional gels Drosophila MLC2 can be sepa- 
rated into several isoforms. On some gels the isoforms ap- 

Figure 4. On two-dimensional PAGE gels the Drosophila MLC2 
shows multiple isoforms in both larval (tubular) and pupal (pre- 
dominantly fibrillar) muscle. (a) Silver-stained myofibrillar pro- 
teins purified from adult thoraces and separated in a PAGE gel. The 
region in the box is enlarged below. (b) Silver-stained pattern of 
muscle proteins purified from third instar larvae (tubular muscle). 
Shown is an enlargement from a two-dimensional gel in the area 
of MLCl and MLC2 (an enlargement corresponding to the area in- 
dicated by brackets in both a and d). A, actin; TM, tropomyosin; 
Ltl, tubular MLCI. The arrows indicate the two tubular isoforms 
of MLC2 that co-migrate with the in vitro-synthesized isoforms in 
Dmila (shown in the autoradiogram in d). (c) Silver-stained gel of 
muscle proteins purified from adult thoraces (primarily fibrillar 
muscle). This is an enlargement of the boxed region in a and is to 
be compared with the section from the gel of larval proteins in b. 
The under-representation of Lfl in this photograph is due to pref- 
erential breakdown of this protein during purification (38). Lfl, 
fibrillar MLCI. The arrows indicate the two isoforms of MLC2 that 
co-migrate with the in vitro-synthesized isoforms of Dmlla (shown 
in the autoradiograms in d and e). (d) Enlargement of the MLC2 
region of an autoradiogram showing isoforms of MLC2 produced 
by hybrid-selected RNA from 18-24-h embryos, translated in vitro 
and separated on a two-dimensional gel. (e) Enlargement of the 
MLC2 region of an autoradiogram showing isoforms of MLC2 
translated from late stage pupal RNA treated as in d. RNA from 
both stages produces two isoforms. In neither case is the complete 
set of isoforms produced by the reticulocyte lysate. 
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Figure 5. Restriction map of Drosophila DNA contained in clone 
DmUa. The map was derived by single and double digests with re- 
striction enzymes and by hybridization of in vitro labeled RNA to 
Southern transfers of restriction digests of the lambdaphage, Dmlla. 
Restriction sites are indicated by the symbols in the key. LL and 
LR denote the left and right arms of lambda DNA, respectively. 
The coding region of the MLC2 gene is indicated by a thin black 
line and the direction of transcription is indicated by the arrows. 
There are no Kpn I, Sal I, Xba I or Xho sites in the cloned DNA. 

pear as an irregularly shaped elongated spot which has been 
identified as spots 147, 148, and 149 on the two-dimensional 
gels of Drosophila myofibrillar proteins of Mogami et al. 
(18). Takano-Ohmuro et al. (38) report that fibrillar muscle 
contains both more acidic and more basic forms of MLC2 
than does tubular muscle. We see similar differences be- 

tween preparations of larval muscle, which is tubular, and 
thoracic muscle, which contains predominantly fibrillar mus- 
cle (Fig. 4, b and c). In spite of the differences in the arrays 
of isoforms found in different muscles, all of the MLC2 iso- 
forms appear to be encoded by the sequence cloned in Dmlla 
since the genome has only one copy of the sequence (see be- 
low). The Dmlla sequence hybrid-selects RNA equally well 
from late-stage embryos, from pupae, and from adult 
thoraces. In each case the hybrid-selected RNA is translated 
by the rabbit reticulocyte cell-free system to yield two iso- 
forms that co-migrate on two-dimensional gels with Dro- 
sophila MLC2 (Fig. 4, d and e). In each case, the more basic 
of the in vitro translation products is the more abundant 
form. The in vitro translation products do not include the 
complete array of isoforms, perhaps because the reticulocyte 
lysate cannot carry out all of the necessary posttranslational 
modifications (see Discussion). 

Characterization of Coding Sequences in Dmlla DNA 

Analysis of DNA fragments after restriction enzyme cleav- 
age allowed for the construction of the map shown in Fig. 
5. The Drosophila DNA cloned in Dmlla is 12.5 kb long. 
The coding region of the clone was identified by hybridiza- 
tion of end-labeled pupal and ll-20-h embryo poly (A) + 
RNA to restriction enzyme-digested Dmlla DNA. The re- 
gion indicated is the smallest restriction fragment that in- 
cludes all detectable hybridization. The identification was 
confirmed by using the 3.5-kb Eco RI/Hind III fragment of 

ATC~GCCGATGAGAAGAAGAAGGTTAAGAAGAAGAAGACCAAGGAAGAGGGTGGTAcTTCcGAAAcCGcTTCTGAGG~ATC~ 

I ......... + ......... + ......... + .................... + ......... + .................... + ......... + 

MetAlaAspGluLysLysLysVa 1 LylLysLysLyJThrLysGluGluGlyGlyThrSerGluThrA1 aSerGluAlaAlaSerGluA1 a 
90 

GCAACCC(h~GCAC~&C~cTC~cCACTCCTC'CcCCGGCCC~C~TCTGcCACTGGTT~T~AAGAGAGCGTCGGGCGGAT~CG~~G 

91 ......... + ......... + ......... + .................... + ......... + .................... + ......... + 

A l a T h r P r o A l a P r o A l a A l a T h r P r o A l a P r o A l a A l a S e r A l a T h r G l y S e r L y s A r g A l a S e r G l y G  lySe rArqGlySe rArqLys  
180 

T C G A A ~ C C T C ~ T G T T C T C C C A G A A G C A G A T t h $ C C G A G T T C A A G G A G G C C T T C C A A C T C A T G G A ~ C C G A C  

181 ......... + ......... + ......... + .................... + ......... + .................... + ......... + 

SerLysAzyAl aGlySerSerVa I PheSerVal PheSerGlnLysGlnI leAlaGluPheLFmGluAlaPheG I nLeuMe~spAl aAsp 

270 

AAGGACGGTATTATTGC~CAAGAACGATCTGCGCGCTGCCTTCGACTcCG~GATCG~CAACGA~AAGGAGTTGGA~C~ATG ~ 

271 ......... + ......... + ......... + .................... + ......... + .................... + ......... + 

LysAspGIFI  l e I  1 eGIyLysAsnAspLeuArgA1 aAlaPheAspSerVa 1GlyLysI  l eAlaAsnAspLysGluLe~spA1  aMet ~ u  
360 

GC~CGAGG~CTCGGGTCCGATCAACTTCA~CAGTTC~CTGA~CTGTTCGCcAA~CGCATGG~CA~CT~GG~ATG~GACG~ 

361 ......... + ......... + ......... + .................... + ......... + .................... + ......... + 

GIyGIuAI aSerGlyProl I eAsnPheThrGl nLeuLeuThrLeuPheAlaAsnArgMetAl aThrSerGlyAl aAsnAspGl ~ s ~ l u  

450 

451 

GTTGTTATTGCTG•CTTCAAAA•ATTCGATAACGATGGTCTCATCGACGGTGA•AAATTC•GCGAAATGCTCATGAACTTCGGTGACAAG 
. . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . . . . . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . . . . . . . . . . . . .  + . . . . . . . . .  + 

Va•Va•••eA•aA•aPheL••ThrPheA•pA••A•pG••LeuI•eA•pG•yAspLysPheArgG•uMetLeuMetAsnPheG••AspL•s 
540 

541 

TTCACCATGAAGGAGGTTGATGATGCCTACGATCAGATGGTGATCGACGACAAGAACCAGATCGATACCGCCGCCCTGATCGAGATGCTC 
......... + ......... + ......... + .................... + ......... + .................... + ......... + 

PheThr•etLysG•u•a•As•As•A•aTyrAspG•nMetVa1I•eAspA•pLysAsnG•nI•eAspThrA•aA•aLeuI•eG1uMetLeu 
630 

ACCGGCAAGGGTGAAGAGGAGGAGGAGGAGGCCGCCTAA 

631 ......... + ......... + ......... + ......... 669 

ThrGlyLysGlyGluGluGluGluGluGluAlaAlaEnd 

Figu~ ~ Predicted amino ac~ sequence of the inse~ in pF~. The nucleotide sequence was determined as described in Materi~s and 
Methods. 
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Figure 7. Comparison of the predicted amino acid sequence of Dro- 
sophila MLC2 with the amino acid sequences of rabbit MLC2 and 
rabbit MLC1. (A) The Drosophila sequence was aligned with the 
rabbit MLC2 sequence, using the ALIGN program with the default 
stringency. (B) The alignment of the Drosophila sequence with rab- 
bit MLC1 using the same method. (C) Comparison of the Drosoph- 
i/a protein with rabbit MLCI in which amino acids are compared 
in stretches of eight and a positive score is noted by a dot if five 
of the eight amino acids match. (D) Comparison of the Drosophila 
protein with rabbit MLC2, scoring matches of five out of eight 
amino acids. 

the clone to hybrid-select RNA for in vitro translation. The 
products of this translation were the MLC2 isoforms. 

The orientation of transcription of the MLC2 gene was de- 
termined by subcloning the 4-kb Eco RI/Bam HI fragment 
containing the coding sequences into two vectors, pSP64 and 
pSP65, which contain polylinker sequences oriented in op- 
posite directions and a promoter for the SP6 polymerase 
adjacent to the site at which the Drosophila DNA was in- 
serted (16). The two resulting plasmids, pSP64LC2 and 
pSP65LC2, were each cleaved at the restriction site on the 
end of the MLC2 insert farthest from the SP6 promoter. The 
two linearized plasmids were then used as templates for the 
synthesis of single-stranded RNA transcribed from the SP6 
promoter. Only the RNA transcribed from pSP65LC2 hy- 
bridized to pupal RNA, indicating that only this strand is 
complementary to mRNA. The direction of transcription is 
as indicated by the arrow on the map in Fig. 5. 

Nucleotide Sequence Analysis of  c D NAs 

We have isolated cDNA clones that are homologous to the 
cloned chromosomal gene in Dmlla in order to analyze the 

encoded protein sequence. A late embryo cDNA library (26) 
was screened with a probe containing the 3.5-kb Eco RI/ 
Hind III fragment of Dmlla. One clone with a large insert, 
pFlg, was used for sequence analysis. The insert of pFlg is 
760 nucleotides long and contains the entire coding region 
of the MLC2 gene as well as some of the 5' and 3' untrans- 
lated flanking sequences. While sequence analysis was un- 
derway, Parker et al. (24) reported the nucleotide sequence 
of this MLC2 gene and of two late pupal cDNA sequences 
from the chromosomal gene. The nucleotide sequence of the 
coding region that we have obtained from the embryonic 
clone is in complete agreement with that of the pupal cDNA 
reported by Parker et al., indicating that at least one mRNA 
is used in both stages. Since the sequence of our embryonic 
cDNA is identical to that of pupal cDNA, we have ascer- 
tained the complete nucleotide sequence of our clone in only 
one direction. 

Analysis of the cDNA sequence revealed an open reading 
frame starting with an ATG codon and, as reported by Parker 
et al. (24), this reading frame is 666 nucleotides long (Fig. 
6). Comparison of the predicted amino acid sequence of the 
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Drosophila protein with vertebrate MLC2s shows stretches 
of considerable homology throughout these polypeptides 
(Fig. 7), as previously noted by Parker et al. The Drosophila 
protein is ,050 amino acids longer than the vertebrate pro- 
teins. The additional residues lie predominantly at the amino- 
terminal end, however the protein begins with a lysine-rich 
segment that shows homology to the amino-terminal regions 
of both vertebrate MLC1 and MLC2. There are other regions 
of homology between the Drosophila sequence and verte- 
brate MLC1, as there are between the MLC1 and MLC2 
sequences of vertebrates, but the homology with MLC2 is 
clearly more significant. 

One segment of the Drosophila sequence that shows nota- 
ble homology to both the vertebrate MLC1 and MLC2 is the 
region of the presumed calcium-binding site. The homology 
was first detected when we used a fragment of a rabbit MLC2 
cDNA clone to probe restriction fragments of the Drosophila 
clone. The rabbit sequence, encoding amino acids 26-37 of 
rabbit skeletal muscle MLC2 (28), hybridized with the Dro- 
sophila sequence at relatively high stringency. Sequence 
analysis showed that this 36-nucleotide fragment had >75 % 
homology with the Drosophila sequence encoding amino 
acids 77-88: 

A T C G C C G A G T T C A A G G A G G C C T T C C A A C T C A T G G A T  Dwsophi~ 
III IIIit1111111111111 IIII  III 
A T C C A G G A G T T C A A G G A G G C C T T C A C C G T C A T C G A T  rabbit 

The amino acid homology in this region is also >75 %. This 
region is also the site of one of the major regions of homol- 
ogy between the Drosophila sequence and rabbit MLC1 
(amino acids 48-59). In the two vertebrate MLCs the homol- 
ogy is at a site thought to have once been a calcium binding 
site. In each case the greatest homology is in the residues of 
the adjacent alpha helix. 

The molecular mass of the protein predicted from the 
nucleotide sequence is 24,000 D. In contrast, both purified 
Drosophila MLC2 and the in vitro translation product of 

Figure 8. In situ hybridization to polytene chromosomes localizes 
the MLC2 gene to region 99E1-3. Polytene chromosomes from sali- 
vary glands of Drosophila melanogaster third instar larvae of the 
genotype gtXII/gtl were hybridized in situ with a nick-translated 
3H probe from the entire chimeric phage of clone Dmlla. 19 d of 
exposure. Bar, 10 ttm. 

Figure 9. Whole genomic analysis of 
the MLC2 gene shows hybridization 
to only one fragment of Drosophila 
genomic DNA. High molecular 
mass DNA from Canton S embryos 
was digested to completion with 
(lane 1 ) Eco RI or (lane 2) Hind III, 
separated in agarose gels, and trans- 
ferred to nitrocellulose filters. Filters 
were hybridized with a gel-purified 
32p-labeled 3.5-kb Eco RI/Hind III 
restriction fragment of clone DmUa 
which carries most of the coding re- 
gion of the Drosophila MLC2 gene. 
Hybridization and washing were 
done under highly stringent condi- 
tions. Molecular size standards are 
indicated at the left. 

RNA hybrid-selected by the cloned MLC2 gene migrate 
at 30,000 D on SDS-polyacrylamide gels (Fig. 2, lanes 5 
and 6). 

The Genomic Localization of MLC Genes 
The DNA of Dmlla hybridizes to region 99E1-3 of polytene 
chromosomes (Fig. 8). The autoradiograrn shown in Fig. 8 
was exposed for 19 d. Even after 490 d of exposure we have 
seen no evidence of hybridization to other sites. Since simi- 
lar experiments with clones carrying ¢t-tubulin genes show 
cross-hybridization to the sites of the other a-tubulin genes 
after much shorter exposure times (17), we conclude that 
there are no closely related MLC2 genes outside the 99E1-3 
region. Hybridization to Southern transfers of restriction 
enzyme-cleaved genomic DNA also indicates that the MLC2 
gene does not belong to a large multigene family. The 3.5-kb 
Eco RI/Hind III fragment carrying most of the MLC2 coding 
region hybridizes to only one restriction fragment of DNA 
from the Canton S stock after digestion with any restriction 
enzyme that does not cleave within the gene (Fig. 9). This 
is evidence that there is only one copy of this restriction frag- 
ment in the genome. 

Amino-Terminal Acetylation of Drosophila MLC2 
Acetylation of amino-terminal ends is characteristic of ver- 
tebrate myosin light chains as well as many other vertebrate 
proteins. We find acetylation of the amino-terminal ends of 
both gel-purified larval MLC2 and the in vitro translation 
product of RNA selected by Dmlla. Both the larval protein 
and the in vitro translation product show only a little fluores- 
cent labeling with dansyl-chloride, a dye that binds specifi- 
cally to free amino groups. However, when the reticulocyte 
lysate used for the in vitro translation was treated with oxal- 
acetic acid and citrate synthase before translation, thus pre- 
venting acetylation by the reticulocyte lysate (22), the in 
vitro translation products showed significantly increased flu- 
orescent labeling by dansyl-chloride. Densitometer tracings 
of photographic negatives and autoradiograms allowed com- 
parison of dansyl-chloride labeling with the amount of in 
vitro translation product detected by [35S]methionine incor- 
poration. Results were (units of fluorescence per units of 
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[35S]methionine incorporation): treated 0.35/1.29 = 0.2; 
untreated 0.20/1.65 = 0.12. Although the residual dansyl- 
chloride labeling of the in vivo proteins and the untreated 
translation products might indicate that there is a low level 
of unacetylated products, it seems more likely that reactions 
of other free amino groups with dansyl-chloride, at least in 
part, may be responsible for the small amount of fluores- 
cence observed both in the in vitro reaction and on isolated 
MLC2 (data not shown). 

Discussion 

Our initial identification of the MLC2 gene cloned in Dmlla 
was based on its homology to a relatively abundant myotube 
RNA. This RNA could be translated in vitro to produce a 
polypeptide apparently identical in size and charge to iso- 
forms of a protein that has been identified as a Drosophila 
myosin light chain on the basis of its association with myosin 
heavy chain (38). In Drosophila (38), both fibrillar and tubu- 
lar muscle contain a myosin light chain with an apparent 
molecular mass of 30,000 D that has been designated MLC2 
because it is intermediate in size between the other myosin 
light chains, MLC1 (apparent molecular mass 34,000 D in 
fibrillar muscle, and 31,000 D in tubular muscle) and MLC3 
(apparent molecular mass 20,000 D in both types of muscle). 
Further evidence for the identification of the cloned Dro- 
sophila gene was ascertained from the derived amino acid 
sequence of the gene. We have sequenced a eDNA clone pre- 
pared from embryonic RNA. The sequence is identical to the 
sequence of pupal eDNA clones from the same region re- 
cently reported by Parker et al. (24), indicating that the same 
sequence is used in the different developmental stages. As 
noted by those authors, the sequence has numerous short 
regions of homology to vertebrate MLC2 scattered along the 
polypeptide. The homologies are stronger in the amino-ter- 
minal half of the vertebrate peptide and include, but are not 
limited to, the presumed calcium-binding site of these mole- 
cules. The Drosophila MLC2 does differ from the known 
vertebrate MLC2 polypeptides in length. When amino acid 
sequences are aligned, the Drosophila sequence has an 
amino-terminal insertion of some 50 amino acids. The most 
amino-terminal segment of the Drosophila MLC2 is, how- 
ever, a lysine-rich segment with homology to both rabbit 
MLC1 and MLC2. Parker et al. (24) have pointed out that, 
within the extra 50 amino acids, the Drosophila MLC2 se- 
quence contains a segment of 13 amino acids with a 10 amino 
acid homology to chick MLC1. There is a region of similar 
homology (9 of 13 amino acids) between Drosophila MLC2 
amino acids 77-88 and rabbit MLC1 amino acids 48-59. 
This is part of a site thought to have been a calcium-binding 
site in an ancestral protein. Still, the bulk of the sequence 
homology is seen between the intermediate-sized Drosophila 
MLC and the intermediate-sized vertebrate MLC. For both 
vertebrates and Drosophila, these polypeptides were named 
MLC2 on the basis of their size relative to the other myosin 
light chains in the same species. The sequences now suggest 
that the name MLC2 is also appropriate in terms of evolu- 
tionary relationship and probably also in terms of function. 

It is interesting to note that the molecular mass of the 
MLC2 protein, as derived from the nucleotide sequence, is 
only 24,000 D yet MLC2 migrates on polyacrylamide gels 
as a 30,000-D protein (see also Fig. 6). RNA encoding 

MLC2 is translated in vitro by rabbit reticulocyte lysates to 
give a product that co-migrates exactly with purified MLC2 
in our experiments. This translation product has been esti- 
mated as 26,000 D by Parker et al. (24), although it runs well 
above the 25,000-D marker on their gels. The large discrep- 
ancy between the predicted molecular mass and the actual 
migration of the protein on SDS polyacrylamide gels may be 
due to tertiary structure or possibly aggregation. Variability 
in the electrophoretic migration of the myosin light chains 
has been noted in a number of studies on vertebrate muscle 
proteins (6, 13) and may reflect an aspect of their structure. 

On two-dimensional gels the in vitro translation products 
of MLC2 mRNA are seen to contain multiple isoforms that 
co-migrate exactly with isoforms of the polypeptide identi- 
fied by Takano-Ohmuro et al. (38) as MLC2. These isoforms 
are spots 147, 148, and 149 on the two-dimensional gels of 
Mogami et al. (18), which are frequently used as the standard 
reference for Drosophila myofibrillar proteins. Parker et al. 
(24) identify the product of in vitro translation as spot 181, 
apparently on the basis of its molecular mass as estimated 
by gel migration. Spot 181 migrates significantly ahead of 
both MLC2 and the in vitro translation product of Dmlla 
when these proteins are fractionated together in a gel. 

A second polypeptide is also synthesized in vitro by RNA 
hybrid-selected by the MLC2 coding region. This polypep- 
tide is smaller (18,000 D) and has the same isoelectric focus- 
ing point as MLC2, but, unlike the 30,000-D in vitro transla- 
tion product, it does not co-migrate with any fibrillar muscle 
protein on two-dimensional gels. Parker et al. (24) have also 
noted the synthesis of a smaller polypeptide in cell-free 
translations. These authors suggest that this protein is identi- 
cal to spot 184, again apparently on the basis of gel migration 
in one-dimensional gels. However, we find that the smaller 
translation product does not co-migrate with spot 184 on 
two-dimensional gels. As mentioned earlier, the 30,000- and 
18,000-D in vitro translation products have identical isoelec- 
tric points, whereas spot 184 is somewhat more acidic than 
spots 147, 148, and 149, the spots with which the 30,000-D 
polypeptide isoforms co-migrate. 

There is strong evidence that this second polypeptide is an 
artifact of the in vitro translation system. The 18,000-D pro- 
tein is not always synthesized in vitro and occasionally multi- 
ple smaller polypeptides with the same isoelectric focusing 
point as the 30,000-D protein are observed. The synthesis of 
extra polypeptides varies with the rabbit reticulocyte lysate 
used. These products could result either from premature ter- 
mination of translation or from preferential breakdown in the 
lysate. 

We detect no differences between the nucleotide sequences 
of embryonic MLC2 cDNAs and the sequence reported for 
pupal MLC2 eDNA (24). This result suggests that the MLC2 
isoforms encoded by the pupal and embryonic hybrid- 
selected RNAs are identical in amino acid sequence and 
probably arise through posttranslational modifications. 

Our experiments show that Drosophila MLC2 resembles 
vertebrate light chains in having a blocked amino-terminal 
end. Apparently this posttranslational modification of the 
Drosophila MLC2 can be accomplished by the rabbit 
reticulocyte lysate since dansyl-chloride binding to the 
amino-terminal ends of the in vitro translation products is 
quite low unless acetylation is blocked in the lysate. This evi- 
dence that the reticulocyte lysate can perform at least one ap- 
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propriate posttranslational modification of the Drosophila 
MLC2 raises the question of whether the two isoforms of 
MLC2 seen in our in vitro translation experiments represent 
different primary translation products or different posttrans- 
lational modifications. Takano-Ohmuro et al. (38) have iso- 
lated two isoforms of MLC2 from Drosophila tubular muscle 
and two forms from fibrillar muscle. All of the isoforms have 
an apparent mass of 30,000 D but differ slightly in pI. The 
authors report that preliminary studies of partial protzolytic 
digests suggested that the MLC2 isoforms are produced by 
posttranslational modification in vivo. The cDNA sequence 
results strongly support this suggestion. The coding region 
of our embryonic cDNA is identical to the coding region of 
the pupal cDNAs (24), although Takano-Ohmuro et al. (38) 
report that there are different isoforms in these stages. If 
there is posttranslational modification in vivo, the rabbit 
reticulocyte lysate must be able to perform some similar 
modifications in our in vitro translations. On the other hand, 
since hybrid-selections do not yield the exact set of isoforms 
seen in vivo, there must be posttranslational modifications 
that the rabbit reticulocyte lysate cannot make. 

Our experiments indicate that the Drosophila MLC2 gene 
is not a member of a dispersed multigene family such as the 
actins or the tubulins (5, 7, 17, 30, 40). The clone Dmlla hy- 
bridizes to a single site, at 99E1-3 on chromosome 3, even 
after extremely long autoradiographic exposure times. In 
contrast, the additional members of the a- and 13-tubulin 
multigene families were readily detected after much shorter 
exposures in similar experiments when one member of the 
gene family was used as the hybridization probe (17; Val- 
geirsdottir, K., D. Mischke, and M. L. Pardue, unpublished 
observations). Thus, any genes with significant homology to 
the Dmlla coding sequence must lie in the 99E1-3 region. 
Since restriction maps and nucleotide sequences do not indi- 
cate the presence of other MLC2 genes in 99E1-3, we con- 
clude that MLC2 is encoded by a single gene in D. melano- 
gaster. Our experiments show no homology of the MLC2 
sequences with those of the Drosophila MLC3 gene at 98B 
(4). Although both 98B and 99E are close to the end of the 
right arm of chromosome 3, the two genes must be separated 
by several hundred kilobases of DNA. In vertebrates, each 
molecule of myosin has one pair of alkalai light chains 
(MLC1 and MLC3) and one pair of MLC2 chains, suggest- 
ing that there is coordinate control of expression of myosin 
light chains. If the same situation holds in Drosophila, the 
myosin light chain genes are another example of coordinately 
expressed Drosophila genes that are not clustered at a single 
chromosomal site and hence must be regulated over some 
distance. 
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