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Abstract: Background and Objectives: The gut microbiota has been increasingly recognized as a
relevant factor associated with metabolic diseases. However, directly measuring the microbiota
composition is a limiting factor for several studies. Therefore, using genetic variables as proxies
for the microbiota composition is an important issue. Landmark microbiome–host genome-wide
association studies (mbGWAS) have identified many SNPs associated with gut microbiota. Our aim
was to analyze the association between relevant microbiome-related genetic variants (Mi-RSNPs)
and fasting glucose and type 2 diabetes in a Mediterranean population, exploring the interaction
with Mediterranean diet adherence. Materials and Methods: We performed a cross-sectional study
in a high-cardiovascular-risk Mediterranean population (n = 1020), analyzing the association of
Mi-RSNPs (from four published mbGWAS) with fasting glucose and type 2 diabetes. A single-variant
approach was used for fitting fasting glucose and type 2 diabetes to a multivariable regression
model. In addition, a Mendelian randomization analysis with multiple variants was performed as a
sub-study. Results: We obtained several associations between Mi-RSNPs and fasting plasma glucose
involving gut Gammaproteobacteria_HB, the order Rhizobiales, the genus Rumminococcus torques
group, and the genus Tyzzerella as the top ranked. For type 2 diabetes, we also detected significant
associations with Mi-RSNPs related to the order Rhizobiales, the family Desulfovibrionaceae, and the
genus Romboutsia. In addition, some Mi-RSNPs and adherence to Mediterranean diet interactions
were detected. Lastly, the formal Mendelian randomization analysis suggested combined effects.
Conclusions: Although the use of Mi-RSNPs as proxies of the microbiome is still in its infancy, and
although this is the first study analyzing such associations with fasting plasma glucose and type 2
diabetes in a Mediterranean population, some interesting associations, as well as modulations, with
adherence to the Mediterranean diet were detected in these high-cardiovascular-risk subjects, eliciting
new hypotheses.

Keywords: glucose; genetics; microbiome; Mendelian randomization; diet; Mediterranean

1. Introduction

In the last decade, research into the effects of the gut microbiota (microorganisms)/
microbiome (genome of these microbial populations) on health has intensified. Hundreds
of papers have shown the enhancing or detrimental effects of the microbiota on health
(depending on the type of microorganisms present in the intestine). These effects have
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been shown in a wide range of diseases, related to aging in general [1], as well as car-
diovascular diseases [2,3], diabetes [4,5], obesity [5–8], neurodegenerative diseases [9–11],
depression [12,13], and others [14–17].

Compared to the human genome, the gut microbiome is much more abundant (tens of
times higher). It is estimated that there are more than 100 trillion microorganisms residing
in our intestines [18]. Basically, the most studied microorganisms in the intestine have been
bacteria, but there are also other types of microorganisms such as fungi, protozoa, and
viruses, which require more research [19].

In humans, the composition of the gut microbiota is highly diverse and varies accord-
ing to geographic origin, diet, age, drug use, and other factors related to lifestyle and health
status [20–22]. The gut microbiota performs many host-friendly functions. It is widely
documented that the microbiota is necessary to carry out functions related to the regulation
of host immunity, protection against intestinal pathogens, strengthening gut integrity, func-
tions related to the digestion and absorption of certain nutrients, and many others [21–23].
Thus, altered gut bacterial composition (so-called dysbiosis) has been associated with the
pathogenesis of several diseases [22,23]. However, the composition of the microbiota is not
easy to determine. The gut microbiota varies according to intestinal anatomical regions [22].
For this reason, it is important to standardize the collection of samples for microbiota
determinations so that they are comparable between studies. In general, in epidemiological
studies, feces are used for the analysis of the intestinal microbiota. The analysis of the
microbiota in feces has gone from the use of very labor-intensive methods based on culture
to other faster culture-independent approaches consisting of isolating microbial DNA and
using high-throughput, low-cost sequencing methods [22,24]. These methods include 16S
ribosomal RNA (rRNA) amplicon sequencing and shotgun sequencing [24]. Targeting of
the bacterial 16S rRNA gene is the most used approach as it is faster and cheaper. However,
16S rRNA sequencing only profiles taxonomical composition (so-called metataxonomics),
while shotgun metagenomic sequencing (so-called metagenomics) provides additional
information about diverse species and functional annotations [24,25].

The Human Microbiome Project and Metagenomics of the Human Intestinal Tract
(MetaHit) have provided important data on human-associated microbial composition [26,27].
These studies identified more than 2000 species isolated from humans, classified into 12 dif-
ferent phyla, of which 93.5% belonged to Proteobacteria, Firmicutes, Actinobacteria, and
Bacteroidetes. The gut bacteria of healthy adults principally consist of six phyla: Firmicutes,
Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria and Verrucobacteria. Data from
microbiome DNA sequencing allow for the quantification of taxa or genetic functions in
stool samples. For example, hundreds of operating taxonomic units (OTUs) per individ-
ual can be characterized, and these OTUs can be collapsed into higher taxonomic levels
throughout their phylogeny (genus, family, order, etc.). Likewise, amplicon sequence vari-
ants (ASVs) can be analyzed depending on the DNA sequencing method and the platform
used [28,29]. Several studies have been carried out in humans using the 16S rRNA metatax-
onomics or the shotgun metagenomics methods to identify the microbiome profiles most
associated with type 2 diabetes and insulin resistance [30–37]. Larsen et al. [35] in a pioneer
and small study in Europeans reported that the phylum Firmicutes and class Clostridia
were significantly reduced in diabetic subjects compared to nondiabetics. Furthermore,
they observed that the ratios of Bacteroidetes to Firmicutes correlated directly with plasma
glucose levels. Later, Zhang et al. [36] reported that the abundance of Bacteroides in type 2
diabetes subjects was only half that in nondiabetic groups. Moreover, they observed that
butyrate-producing bacteria (e.g., Akkermansia muciniphila and Faecalibacterium prausnitzii)
had a higher abundance in nondiabetics. This observation was consistently reported
by subsequent studies; currently, one characteristic of the microbiome associated with
type 2 diabetes is the moderate degree of gut microbial dysbiosis and the decrease in the
abundance of some butyrate-producing bacteria. Other studies have reported an increase
in various opportunistic pathogens, as well as other microbiome alterations [30–34,37].
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However, consistency is still low, and more studies are needed in diverse populations to
characterize the type 2 diabetes signature.

Unfortunately, the measurement of the microbiota is still difficult, and many epidemi-
ological cohorts do not have stool analysis data. Therefore, other indirect measurements
of the microbiota composition are being used more and more every day. These instru-
mental variables are microbiota-related human genes and are characterized by so-called
single-nucleotide polymorphisms (Mi-RSNPs). Accumulating evidence is showing that
host genetics may play a relevant role in gut microbial composition across species [38,39].
On this basis, many studies have been carried out to find out which genetic variants of
the host are associated with the composition of the microbiota. Thus, several microbiome
genome-wide association studies (mbGWAS) in different populations have reported dozens
of host SNPs associated with the gut microbiome composition at the taxon, family, genus, or
species level [40–51]. The use of these SNPs as Mi-RSNPs allows us to undertake so-called
Mendelian randomization studies [52,53]. Mendelian randomization uses gene variants,
which are fixed at conception, to support causal inferences about the effect of modifiable
exposures (or risk factors) that can overcome some types of confounding and/or reverse
causality [54,55]. However, we must be cautious when stating that there are causal asso-
ciations as Mendelian randomization studies (one-sample or two-sample) [56] also have
many drawbacks and limitations [57]. Moreover, population stratification and geographical
origin are relevant factors influencing bias in genetic associations [58], and more studies
in understudied populations are needed. Therefore, our aims were (1) to analyze the
association between relevant Mi-RSNPs and fasting plasma glucose and type 2 diabetes in
a Mediterranean population, exploring the interaction with Mediterranean diet adherence,
and (2) to undertake a formal two-sample Mendelian randomization study based on a
published mbGWAS predicting microbiota composition in a European population (sam-
ple 1) and testing the effect of multiple instruments on fasting glucose in the Mediterranean
population (sample 2).

2. Materials and Methods
2.1. Participants and Study Design

First, a cross-sectional study on 1020 elderly high-cardiovascular-risk Mediterranean
subjects was undertaken. Second, a two-sample Mendelian randomization was performed.
The recruited white European subjects were participants in the PREDIMED (Prevención
con Dieta Mediterránea) Valencia study [59], from the Valencia field center, located on the
Mediterranean coast of the Iberian Peninsula (Spain). These participants were recruited
in primary healthcare centers, with the following inclusion criteria: elderly (between
55 and 80 years old for men and between 60 and 80 years old for women) and having a
high cardiovascular risk, even though they were free of cardiovascular disease at baseline
and had plasma fasting glucose determined, as well as successful DNA high-density DNA
genotyping for this study (in addition to the other covariates). The specific inclusion
criteria were to have either type 2 diabetes or three or more major cardiovascular risk
factors, out of the following: current smoking, hypertension, dyslipidemia, body mass
index (BMI) ≥ 25 kg/m2, and /or family history of premature cardiovascular disease [60].
Participants provided written informed consent, and the study was conducted according
to the guidelines of the Declaration of Helsinki and approved by the Human Research
Ethics Committee of Valencia University, Valencia (ethical approval code H1491427097983,
8 May 2017).

Summary data of the association between gut microbiota composition and genetic
variants were obtained from four published mbGWAS [43,45,46,51]. For the two-sample
Mendelian randomization analysis (referring to the application of Mendelian randomiza-
tion methods to association results estimated in two nonoverlapping sets of individuals)
we used, as one sample, the summary level data obtained in the published study by
Qin et al. [51] on a large-scale population-based cohort of 5959 individuals with matched
gut microbial metagenomes from the FINRISK study. FINRISK is a large Finnish population
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survey on risk factors in chronic diseases, including subjects aged between 25 and 74 years
from six geographical areas of Finland. The study protocol of this study was approved by
the Coordinating Ethical Committee of the Helsinki and Uusimaa Hospital District (Ref.
558/E3/2001). For analyzing available summary data from this and from the other already
published studies [43,45,46], no additional permission was required. The second sample
was our Mediterranean population.

2.2. Baseline Anthropometric, Clinical, Biochemical, and Lifestyle Variables

In our Mediterranean population, we assessed demographic variables, cardiovascular
risk factors, and clinical and lifestyle variables by validated questionnaires as previously
reported [59]. Anthropometric variables and blood pressure were determined at baseline
by trained staff. Weight and height were measured with light clothing and no shoes with
calibrated scales and a wall-mounted stadiometer, respectively. BMI was calculated as
the weight (in kg) divided by the height (in m2). Blood samples were collected after a
12 h overnight fast. Fasting glucose, total cholesterol, triglycerides, and HDL cholesterol
(HDL-C), were measured using standard enzymatic automated methods as previously
described [61]. type 2 diabetes was defined as previously reported [60]. We analyzed
adherence to the Mediterranean diet pattern in our Mediterranean population using the
validated 14-item scale [62], also administered at baseline. Detailed items of that scale with
their response options have been published elsewhere [60,62]. Briefly, the scale consisted
of 12 questions on food consumption frequency and two questions on food intake habits
considered characteristic of the Mediterranean diet. Each question was scored 0 or 1. The
final score ranged from 0 to 14. One point was given for reaching the adherence to the
Mediterranean diet recommendation for each item in terms of amount and frequency
(olive oil, preferring white meat over red meat, two or more servings of vegetables/day;
three or more pieces of fruit/day; <1 serving of red meat or sausages/day; <1 serving of
animal fat/day; <1 cup of sugar-sweetened beverages/day; moderate consumption of red
wine; three or more servings of pulses/week; three or more servings of fish/week; fewer
than two commercial pastries/week; three or more servings of nuts/week; two or more
servings/week of “sofrito” (traditional sauce of tomatoes, garlic, onion, or leeks sautéed in
olive oil). If the condition was not met, 0 points were recorded for the category. A higher
score indicated a greater the adherence to the Mediterranean diet. The degree of adherence
was later dichotomized into low or high adherence depending on the population mean
(9 points).

2.3. DNA Isolation, Genotyping and GWAS in This Mediterranean Population

Genomic DNA was isolated from blood. The quantity of double-stranded DNA was
measured using PicoGreen (Invitrogen Corporation, Carlsbad, CA, USA), and high-density
genotyping at the genome-wide level using the Infinium OmniExpress-24 BeadChip geno-
typing array (v1.0 and v1.1) (Illumina Inc., San Diego, CA, USA) was undertaken. This
array captures approximately 720,000 markers (the number varies depending on the ver-
sion: 730,000 for v.1.0 and 716,000 for v.1.1, with 699,221 markers that are common to
both versions of the array). Genome-wide genotyping was performed at the University of
Valencia according to the manufacturer’s protocol with appropriate quality standards as
previously reported [59]. Data cleaning was performed using standard analysis pipelines
implemented in Python programming language using the Numpy library modules com-
bined with PLINK [63,64]. SNPs not mapped on autosomal chromosomes were filtered out.
In addition, SNPs with a minor allele frequency (MAF) < 0.01, those that deviated from
the expected Hardy–Weinberg equilibrium (p < 1.0 × 10−4), and SNPs with a low call rate
(<90%) were removed. The overall call rate in these subjects exceeded 99% genotyping.
The minor allele frequency (MAF) was obtained for each SNP in this population. Using
genome-wide genotyping, we undertook various GWASs (crude and adjusted for several
confounders) to identify which gene variants were most associated with plasma fasting
glucose and type 2 diabetes. Additive genetic models were fitted. General linear models
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were used for fasting glucose as the dependent variable, and regression coefficients and SE
were estimated. Models were sequentially adjusted for sex, age, type 2 diabetes, BMI and
diabetes medication. Beta coefficients for the minor allele were obtained. These analyses
were performed on the whole population and stratified by type 2 diabetes when indicated.
Moreover, the statistical significance of the genome-wide SNP × Mediterranean diet pattern
(low vs high) interaction term was computed, as well as the interaction term SNPs × sex.
With type 2 diabetes as the dependent variable, we used logistic regression analysis (unad-
justed and adjusted for the indicated potential confounders). Odds ratios (ORs) and the
corresponding 95% confidence intervals (CI) were estimated. Although all the participants
were white Caucasians, and no ethnicity bias or population stratification was expected,
we checked this potential influence by calculating the genomic inflation factor (lambda
coefficient), and it was equal to 1, indicating no genomic inflation. The quantile–quantile
plots (Q–Q plots) comparing the expected and observed p-values were performed in the R
statistical environment [65].

Later, from these summary statistics we selected the SNPs corresponding to the
microbiome-related genes (the Mi-RSNPs) identified from the previously selected mbG-
WASs [43–46,51] and extracted the association coefficients (beta, SE, and p-values) for
further analyses. Only the results corresponding to the selected Mi-RSNPs were included
in this paper.

2.4. Selection of the Mi-RSNPs from Previously Published mbGWAS and Statistical Analysis

Summary data of the association between gut microbiota composition and genetic
variants were obtained from four published mbGWASs [43,45,46,51]. These studies were
so-called STD1 [45], STD2 [46], STD3 [51], and STD4 [43] for the purposes of data analysis
and tables in this manuscript. Although these studies listed several SNPs as Mi-RSNPs
in the reported results, we selected SNPs on the basis of the study p-value (p < 5 × 10−8

as the preferred p-value or p < 1 × 10−5 when very few SNPs reached the GWAS level
of significance) and the MAF of the corresponding SNP in the Mediterranean population
(MAF > 0.05). We also considered the coverage of our Illumina Human OmniExpress Array,
due to the fact that no imputations were carried out in our Mediterranean population. STD1
was undertaken by Hughes et al. [45] in Germany. The authors analyzed fecal-derived
16S rRNA gene sequences and host genotype data from the Flemish Gut Flora Project
(n = 2223) and two German cohorts (FoCus, n = 950, PopGen n = 717), and identified Mi-
RSNPs involving multiple microbial traits. STD2 was undertaken by Kurilshikov et al. [46],
analyzing the effect of host genetics on gut microbiome composition (16S fecal microbiome
data) from 18,340 individuals (24 cohorts). STD3, carried out by Qin et al. [51], analyzed
a population-based cohort consisting of 5959 participants in the FINRISK study. Genome-
wide genotyping and metagenome data from stools were obtained. STD4, undertaken by
Davenport et al. [43], examined the association host genotypes with the relative abundance of
fecal bacterial taxa in the Hutterites (n = 186 samples). Table S1 shows the list of the selected
Mi-RSNPs (and the microbial trait) extracted from these studies [43,45,46,51] according to
the abovementioned criteria and used in the statistical associations with fasting glucose and
type 2 diabetes in our Mediterranean population. Analyses were undertaken for the whole
population and stratified by type 2 diabetes when indicated. All tests were two-tailed, and
p-values <0.05 were considered statistically significant for these associations.

2.5. Two-Sample Mendelian Randomization Analysis for Microbiome Effects on Fasting Glucose

For the two-sample Mendelian randomization analysis, we used, as population 1
(for the association between the instrumental variables and the exposure), the summary-
level data obtained in the mbGWAS undertaken in 5959 participants from the FINRISK
study [51] (STD3). Taxonomic profiling in the FINRISK study was performed according to
the taxonomic nomenclature updated in the Genome Taxonomy Database (GTDB) release
89, and gut microbial composition was represented as the relative abundance of taxa. For
each metagenome at phylum, class, order, family, genus, and species level, the relative
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abundance was computed as the proportion of reads assigned to the clade among the
total reads [51]. The second sample was our Mediterranean population, and we tested the
association between the instrumental variables and the outcome (plasma fasting glucose;
expressed in mg/dL per allele). Population 1 was selected because information related to
the effect allele, regression coefficient (beta estimations per effective allele), and SE were
uniformly presented in tables. In addition, the authors used the Human OmniExpress
array for genotyping, as we did in our Mediterranean population. No information from
the other studies was combined in the Mendelian randomization approach to minimize
the population heterogeneity bias and the methodological differences in the coefficient
estimations. We selected the Mi-RSNPs as instrumental variables from Table S1 on the basis
of the strength of the association (p-value and F statistics) between the Mi-RSNPs and the
microbiome trait in population 1, as well as those top ranked in population 2 (excluding
SNPs with MAF <0.1 in population 2), excluding previously reported pleiotropic SNPs [66].
Exposure and outcome were harmonized to ensure that both datasets were identically
coded regarding the effect allele to reduce issues with palindromic variants. First, the effect
allele and the corresponding beta were oriented to the risk-increasing alleles in dataset1
corresponding to the exposure (microbiome). Then, the same allele was considered to
compute the beta corresponding to the outcome in dataset2 [67]. Different Mendelian
randomization methods were used to estimate the so-called “causal” effect: the simple
median [68], the weighted median [69], the inverse variance weighted method (IVW) [70],
and the Mendelian randomization Egger method (MR-Egger) [71,72]. Additionally, robust
methods in Mendelian randomization via penalization of heterogeneous causal estimates
were computed [73]. Heterogeneity statistics and sensitivity analyses were performed.
Statistical analyses were conducted using the R package “TwoSampleMR” [73–75].

3. Results
3.1. General Characteristics of the Participants

The demographic, anthropometric, clinical, biochemical, and lifestyle characteristics
of the study participants at baseline are presented in Table 1. We analyzed 1020 subjects
(371 men and 649 women). They consisted of elderly men and women from a Mediterranean
population (mean age 67.9 ± 0.2 years) at a high cardiovascular risk.
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Table 1. Demographic, clinical, and biochemical characteristics of the study population according to sex.

Total
(n = 1020)

Men
(n = 371)

Women
(n = 649) p

Age (years) 66.9 ± 0.2 66.4 ± 0.3 67.2 ± 0.2 0.054
Weight (kg) 77.1 ± 0.4 81.8 ± 0.6 74.4 ± 0.5 <0.001

BMI (kg/m2) 30.6 ± 0.2 29.6 ± 0.2 31.2 ± 0.2 <0.001
SBP (mmHg) 147.2 ± 0.7 148.5 ± 1.1 146.4 ± 0.9 0.127
DBP (mmHg) 81.8 ± 0.3 82.5 ± 0.6 81.4 ± 0.4 0.106

Total cholesterol (mg/dL) 208.3 ± 1.2 200.5 ± 1.9 212.7 ± 1.6 <0.001
LDL-C (mg/dL) 129.5 ± 1.1 125.2 ± 1.8 131.9 ± 1.4 0.004
HDL-C (mg/dL) 52.7 ± 0.4 48.3 ± 0.6 55.2 ± 0.5 <0.001

Triglycerides 1 (mg/dL) 131.3 ± 2.2 135.1 ± 3.6 129.2 ± 2.7 0.191
Fasting glucose (mg/dL) 120.1 ± 1.2 126.4 ± 2.1 116.5 ± 1.5 <0.001

Total energy intake (kcal/day) 2203.6 ± 19.7 2336.9 ± 33.9 2127.3 ± 23.7 <0.001
Physical Activity (MET-min/day) 170.0 ± 5.4 228.6 ± 11.5 136.5 ± 5.0 <0.001

Adherence to MedDiet (P14) 2 8.5 ± 0.1 8.6 ± 0.1 8.4 ± 0.1 0.147
High Adherence MedDiet 3 (≥9) 505 (49.5) 187 (50.4) 318 (49.0) 0.666

Current smokers: n, % 128 (12.5) 99 (26.7) 29 (4.5) <0.001
type 2 diabetes: n, % 474 (46.5) 199 (53.6) 275 (42.4) 0.001

Values are the mean ± SE for continuous variables and number (%) for categorical variables. BMI: body mass
index; SBP: systolic blood pressure; DBP: diastolic blood pressure; LDL-C: high-density lipoprotein cholesterol;
HDL-C: low-density lipoprotein cholesterol; MET: metabolic equivalent (1 MET is equivalent to 1 kcal·kg−1·h−1,
with the oxygen cost of sitting quietly measured as 3.5 mL/kg/min); p: p-value for the comparisons (means or
percentages) between men and women. Student’s t-test was used to compare means, and chi-squared tests were used
to compare categories. 1 Triglycerides were ln-transformed for statistical testing. 2 Quantitative 14-item questionnaire
for adherence to Mediterranean diet. 3 High adherence represents a score ≥9 points on the P-14 scale.

BMI was high (mean 30.6 ± 0.2 kg/m2), with differences per sex. Prevalence of type 2
diabetes was 46.5%, being higher in men than in women (p < 0.05). Diabetes medications
included insulin analogs (15%) and oral glucose-lowering drugs. Mean adherence to
the Mediterranean diet according to the P-14 scale was 8.5 ± 0.1 points. No statistically
significant sex-specific differences in the Mediterranean diet adherence were detected per
sex (p = 0.147).

3.2. Association between the Microbiome and Fasting Plasma Glucose

First, we investigated the association between the microbiome and fasting plasma
glucose in the whole population using the selected Mi-RSNPs (n = 209, listed in Table S1)
as proxies involving one phylum, seven classes, seven orders, five families, 69 genera, and
11 species. First, we fitted a crude model (model 1), and we later sequentially adjusted
for additional covariates (sex, age, type 2 diabetes, BMI, and diabetes medication). We
observed a high consistency in the top-ranked SNPs across the different models. Table 2
shows the associations (regression coefficient and p-values) between the selected Mi-RSNPs
and fasting plasma glucose in the whole population (n = 1020) for the most significant SNPs
(top-ranked) in a model adjusted for sex, age, type 2 diabetes, BMI, and diabetes medication.
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Table 2. Association between the top-ranked microbiota-related SNPs and fasting glucose in the
whole population 1.

Chr SNP Beta p MAF Gene Microbial Trait

13 rs9569095 −7.917 0.00099 0.144 LOC105370213 C_Gammaproteobacteria_HB
10 rs17103336 4.563 0.00593 0.219 BTBD16 order_Rhizobiales
4 rs11940694 −3.685 0.00918 0.499 KLB genus.Ruminococcustorquesgroup.id.14377

14 rs10498633 4.845 0.01025 0.153 SLC24A4 genus.Ruminococcustorquesgroup.id.14377
1 rs10752747 3.258 0.03628 0.497 MMEL1 genus.Tyzzerella3.id.11335

17 rs2716882 3.737 0.05294 0.131 Intergenic genus_Sporacetigenium
20 rs6108958 2.758 0.05605 0.359 LOC105372529 genus_Abiotrophia
20 rs6030140 −4.860 0.05747 0.139 PTPRT G_Holdemanella_HB
2 rs1004787 2.674 0.06220 0.197 LOC107985879 genus.Allisonella.id.2174
4 rs2736990 −2.748 0.06539 0.393 SNCA phylum.Actinobacteria.id.400

10 rs860912 3.173 0.07632 0.276 LOC105378531 G_Subdoligranulum_HB
1 rs867426 −2.812 0.07730 0.476 Intergenic G_unclassified_P_Proteobacteria_HB
2 rs7580217 4.193 0.09186 0.242 KCNK12 g__Parabacteroides
9 rs1014306 −2.481 0.09196 0.184 DAPK1 O_Rhodospirillales_RNT

12 rs987019 −3.049 0.09574 0.193 PPM1H s__Romboutsia ilealis
2 rs182549 −2.375 0.09772 0.163 MCM6 s__Bifidobacterium adolescentis

14 rs1951597 2.368 0.10150 0.480 LOC105370413 G_Odoribacter_HB
3 rs6766789 −3.874 0.10630 0.306 FHIT g__CAG-448
6 rs3010562 2.291 0.12010 0.334 Intergenic genus_Anaerofilum
6 rs2854275 −3.225 0.12090 0.065 HLA-DQB1 genus.Streptococcus.id.1853

1 N = 1020 subjects. Model adjusted for sex, age, type 2 diabetes, BMI, and medication. Chr: chromosome. SNP:
Single nucleotide polymorphism. Beta: the effect for the minor allele on fasting plasma glucose. p: p-value
obtained in the multivariable linear regression model adjusted for sex, age, type 2 diabetes, BMI, and medication
for each SNP using a genetic additive model. MAF: minor allele frequency in this population. BMI: Body
mass index.

Very few Mi-RSNPs reached the nominal statistical significance (rs9569095, rs17103336,
rs11940694, rs10498633, rs2269706, rs17085775, and rs10752747). The hit was the Mi-RSNP
rs9569095 located at LOC105370213, in chromosome 13. This gene is a still uncharacterized
RNA gene and is affiliated with the noncoding (nc) RNA class. The SNP was reported
in STD1 (45) to be associated with class Gammaproteobacteria_HB. In our Mediterranean
population, we found that the minor allele of this SNP was associated with less fasting
glucose (p = 0.00099). The other hits at p < 0.01 were Mi-RSNPs previously related to
the order Rhizobiales and the genus Rumminococcus torques group. Lastly, we detected at
p = 0.0363 the Mi-RSNP rs10752747 in the membrane metalloendopeptidase like 1 (MMEL1)
gene, previously related to abundance of the genus Tyzzerella (subgroup 3). Considering
the potential interest for subsequent meta-analysis, in Table S2, we present the results for
the other Mi-RSNPs not reaching a statistically significant association (from p > 1.2090 to
p ≤ 0.3350) with fasting plasma glucose in the whole population.

In addition, we studied the association between the selected Mi-RSNPs and fasting
plasma glucose concentrations in nondiabetic subjects (n = 546). Table S3 shows the
results for the top-ranked SNPs. The hit was the rs6890044 in chromosome 5 (intergenic).
This Mi-RSNP was related to Massiliomicrobiota species. The second top-ranked SNP
was the rs910633, also intergenic in chromosome 1, related to the genus Faecalibacterium.
Interestingly, the rs17103336 in the BTB domain-containing 16 (BTBD16) gene, a proxy for
the order Rhizobiales and previously identified as top ranked for the whole population
(Table 2), reached statistical significance as the third hit in nondiabetic subjects.

3.3. Association between the Microbiome and type 2 Diabetes Prevalence

Furthermore, we analyzed the association between the Mi-RSNPs (listed in Table
S1) and type 2 diabetes prevalence in this Mediterranean population. Table 3 shows the
obtained results listing the top-ranked SNPs sorted in ascending order in terms of their
p-value.
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Table 3. Association between the top-ranked microbiota-related SNPs and type 2 diabetes in the
whole population 1.

Chr SNP OR p MAF Gene Microbial Trait

10 rs17551124 0.775 0.00906 0.255 Intergenic order_Rhizobiales
18 rs7235005 1.249 0.01406 0.443 LOC105372112 G_unclassified_F_Erysipelotrichaceae_HB
4 rs17063777 0.640 0.01939 0.162 Intergenic F_Desulfovibrionaceae_HB
8 rs10090365 1.228 0.02043 0.403 Intergenic genus.CandidatusSoleaferrea.id.11350
8 rs10091895 1.289 0.02241 0.428 CSMD1 genus.Romboutsia.id.11347

13 rs9569095 1.364 0.04048 0.144 LOC105370213 C_Gammaproteobacteria_HB
9 rs10780691 0.835 0.04640 0.345 NTRK2 family.Oxalobacteraceae.id.2966
4 rs11947461 1.200 0.04968 0.336 Intergenic o__Chloroflexales

10 rs10994397 0.645 0.05116 0.160 ANK3 order.Gastranaerophilales.id.1591
5 rs10064431 1.191 0.05420 0.411 FAM172A genus.Romboutsia.id.11347

20 rs1035177 0.818 0.05659 0.315 MACROD2 g__Holdemania
4 rs7654391 0.687 0.06058 0.096 Intergenic F_Desulfovibrionaceae_HB
2 rs1507705 1.244 0.06471 0.380 DTNB genus_Desulfovibrio

12 rs10777875 0.819 0.06689 0.472 RMST genus.Ruminococcus1.id.11373
8 rs6468721 0.827 0.06831 0.152 Intergenic c__Syntrophorhabdia

17 rs228770 0.691 0.07381 0.053 NAGS G_Parasutterella_HB
20 rs6108958 1.176 0.07503 0.359 LOC105372529 genus_Abiotrophia

1 N = 1020 subjects. Model adjusted for sex, age, and BMI. Chr: chromosome. SNP: Single nucleotide polymor-
phism. OR: odds ratio; ORs were calculated for the minor allele effect on type 2 diabetes risk. p: p-value obtained
in the multi-variable logistic regression model adjusted for sex, age, and BMI for each SNP using a genetic additive
model. MAF: minor allele frequency. BMI: Body mass index.

In the model adjusted for sex, age, and BMI, the hit Mi-RSNP was rs17551124 (p = 0.009)
intergenic in chromosome 10, a proxy for the order Rhizobiales. We also detected significant
associations at the nominal p-value with the proxies for the family Desulfovibrionaceae
(rs17063777; intergenic chromosome 4) and rs10091895 in the CUB and Sushi multiple
domains 1 (CSMD1), a proxy for the genus Romboutsia.

3.4. Interactions between the Mi-RSNPs and Adherence to the Mediterranean Diet in Determining
Fasting Plasma Glucose

The mbGWASs from which the previously analyzed Mi-SNPs were obtained were
carried out fundamentally in non-Mediterranean populations [43,45,46,51]. Although,
in these previous GWAS, the degree of adherence to the Mediterranean diet was not
characterized, the influence of milk consumption on the effect of SNPs close to the lactase
gene (LCT) was reported. Therefore, we considered it interesting to explore whether
the level of adherence to the Mediterranean diet in our population could modulate the
associations of the Mi-RSNPs on plasma fasting glucose. We considered this approach as an
exploratory study due to the fact that the sample size has to be larger to better characterize
gene–diet interactions.

Two levels of adherence to the Mediterranean diet were considered (low adherence
and high adherence) on the basis of the P-14 scale described in Section 2. Table 4 shows the
top-ranked Mi-SNPs ordered by the statistical significance of the interaction term between
adherence to the Mediterranean diet and the SNP on plasma fasting glucose.
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Table 4. Interaction between the top-ranked microbiota-related SNPs and Mediterranean diet on
plasma fasting glucose in the whole population 1.

Chr SNP Beta 1 SE 1 Beta 2 SE 2 p_GenexDiet MAF Gene Microbial Trait

17 rs2716882 12.440 3.485 −0.451 3.142 0.0060 0.1312 Intergenic genus_Sporacetigenium
10 rs10823909 −4.936 3.900 7.916 3.563 0.0150 0.0379 ANAPC16 g__CAG-776
1 rs16833405 −5.816 3.839 5.812 3.202 0.0200 0.2568 Intergenic O_Rhodospirillales_HB
2 rs7580217 7.420 4.211 −6.183 4.368 0.0250 0.2422 KCNK12 g__Parabacteroides
2 rs6717477 −3.776 2.605 3.563 2.299 0.0347 0.3391 Intergenic genus_Acinetobacter
2 rs6546314 6.379 3.711 −4.390 3.577 0.0367 0.2274 DTNB genus_Desulfovibrio
11 rs7104796 −6.851 8.103 15.920 7.374 0.0376 0.0986 LDLRAD3 F_Sutterellaceae_HB
4 rs10520163 3.063 2.722 −4.335 2.337 0.0392 0.4655 CLCN3 genus.Allisonella.id.2174
6 rs7773795 −10.310 4.327 1.553 3.979 0.0436 0.0962 RTN4IP1 g__Achromobacter
9 rs11141878 4.587 2.693 −2.560 2.419 0.0483 0.4209 DAPK1 O_Rhodospirillales_RNT
16 rs12597384 13.820 6.666 −2.754 5.129 0.0488 0.0519 Intergenic G_Odoribacter_HB
13 rs9569095 1.127 4.270 −10.350 4.022 0.0504 0.1442 LOC105370213 C_Gammaproteobacteria_HB

1 N = 1020 subjects. Chr: chromosome. SNP: Single nucleotide polymorphism. Beta: effect for the minor allele on
fasting plasma glucose concentrations SE: Standard error. Beta 1 and SE 1 indicate the regression coefficients and
SE for the low adherence to Mediterranean diet strata (50%). Beta 2 and SE 2 indicate the regression coefficients
for the high adherence to Mediterranean diet strata, based on the population mean (9 points). p_GenexDiet:
indicates the p-value for the interaction term between each SNP and adherence to the Mediterranean diet in the
corresponding hierarchical general linear regression model including the main effects and interaction terms in the
whole population. MAF: minor allele frequency.

Regression coefficients and SE for the effect in subjects with low (strata 1) and high
(strata 2) adherence are presented. The most significant p-value (p = 0.006) for an Mi-
RSNP and the Mediterranean diet interaction was detected with rs2716882, intergenic in
chromosome 17.

This SNP is a proxy for the genus Sporacetigenium. According to this interaction, the
effect of this SNP on plasma fasting glucose differed depending on the adherence to the
Mediterranean diet. When adherence was low (strata 1), the minor allele was associated
with increased fasting glucose (beta = 12.4 mg/dL), whereas when the adherence was high,
the minor allele was not associated with such an increase (beta = −0.45 mg/dL). We also ob-
tained statistically significant interactions with nine other Mi-RSNPs (rs16833405, rs7580217,
rs6717477, rs6546314, rs7104796, rs10520163, rs7773795, rs11141878, and rs12597384) involv-
ing several genera (Acinetobacter, Desulfovibrio, Allisonella, etc.), suggesting a relevant role of
the dietary pattern when analyzing the host–microbiome associations.

3.5. Interactions between the Mi-RSNPs and Sex in Determining Fasting Plasma Glucose

Another potential modifier of the association effects between the microbiota and
the outcome was sex. In our study analyzing a Mediterranean population, we had the
advantage of being able perform sex-specific analyses, since, instead of using summary
data only, we undertook genetic studies in our population. For this reason, we had more
flexibility to carry out analyses stratified by sex. However, instead of delving into these
stratified analyses in which the sample size was smaller and the number of comparisons
made also increased, we chose to perform an exploratory analysis examining gene–sex
interactions. Table S4 shows the top-ranked Mi-SNPs ordered by the statistical significance
of the interaction term between sex and the corresponding SNP on plasma fasting glucose.
Regression coefficients and SE for the effect in men (strata 1) and women (strata 2) are
presented. The most significant p-value (p = 0.0019) for an Mi-RSNP and sex interaction was
detected with rs367480 SNP located in the solute carrier family 22 member 18 (SLC22A18)
gene, a proxy for the order Gastranaerophilales. This sex–gene interaction suggested
opposite effects in men and women. We also detected statistically significant sex–gene
interactions at the nominal level with 12 other Mi-RSNPs (rs7129903, rs13132148, rs11865270,
rs9401713, rs12530266, rs1490359, rs4479964, rs11940694, rs1699103, rs12597384, rs639648,
and rs4756282) related to the Enterobacteriaceae family and to several genera (Blauntia,
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Clostridium, Dialister, Odoribacter, etc.). This sex–gene interaction results support a more
detailed sex-specific analysis in the ongoing and future research in the field.

3.6. Mendelian Randomization Sub-Study including Multiple Mi-RSNPs in Determining Plasma
Fasting Glucose

Above, we analyzed the Mi-RSNPs separately. However, the microbiota can exert its
effects jointly, such that it is a combination of taxa that enhances the favorable or detrimen-
tal effects on the studied outcome. Due to the fact that the previously selected Mi-RSNPs
(Table S1) came from several studies carried out in different populations [43,45,46,51] and
with different methodologies, to perform the Mendelian randomization analysis, we pre-
ferred to consider only a single mbGWAS carried out uniformly in a European population,
the FINRISK study [51]. From this European population (n = 5959), we selected genetic in-
struments as detailed in Section 2 and obtained the instrument–exposure associations. Then,
we performed a two-sample Mendelian randomization study [67] using our Mediterranean
population as the second population (n = 1020) to test the instrument–outcome associations.
We preselected the first (n = 12) top-ranked Mi-RSNPs from the FINRISK study on fasting
glucose in our population and tested if these Mi-RSNPs were a good instrument according
to Mendelian randomization core assumptions [52,58]. The p-value for the associations
between each of them with the exposure (microbial trait) was very significant (ranging
from 4 × 10−8 to 8 × 10−9), and the F statistics were >10. In addition, genetic variants
would be excluded if the MAF was less than 0.1. We detected and excluded two SNPs
with MAF <0.10. Therefore, the first assumption, relating to the strength of the association
with the exposure, was confirmed. The second Mendelian randomization assumption was
related with pleiotropy, and we excluded the MCM6 SNP, as previously reported [66]. Later,
the MR-Egger regression slope was tested to confirm the absence of pleiotropy. Thus, nine
Mi-RSNPs were preselected as good instrumental variables for the Mendelian randomiza-
tion study with multiple instruments. Table S5 shows the nine preselected instruments,
the related microbial trait and the coefficients for the two populations after the required
harmonization, as detailed in Section 2. Different Mendelian randomization methods were
used to estimate the so-called “causal” effect, as detailed in Section 2. Figure 1 shows the
scatter plot of genetic associations with gut microbiome against the genetic association with
outcome (fasting plasma glucose) for the nine preselected instruments (indicated SNPs).

Table 5 shows the Mendelian randomization estimates for each method of the so-called
“causal” effect of the gut microbiome for the nine preselected instruments (Mi-RSNPs) on
plasma fasting glucose concentrations.

The simple median (p = 0.065), weighted median (p = 0.099), and IVW (p = 0.233)
showed no statistically significant results. Only the penalized IVM (p = 0.038) and the
penalized robust IVM (p = 0.002) found significant evidence for the association. In these
methods, penalization of heterogeneous causal estimates was computed. MR-Egger regres-
sion further suggested no horizontal pleiotropy (slope: 0.351; p = 0.488).

Figure 2 shows the scatter plot and the regression lines of genetic associations with
gut microbiome against genetic associations with fasting glucose.
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Table 5. Mendelian randomization estimates for each method of the so-called “causal” effect of gut
microbiome (nine selected instruments on fasting plasma glucose).

Method Estimate SE 95%_CI p-Value

Simple_median −35.841 19.400 −73.863 2.182 0.065
Weighted_median −25.292 15.332 −55.342 4.759 0.099

Penalized_weighted_median −29.185 15.782 −60.117 1.747 0.064

IVW −17.198 14.415 −45.451 11.055 0.233
Penalized_IVW −25.517 12.300 −49.626 −1.409 0.038

Robust_IVW −19.300 13.537 −45.832 7.232 0.154
Penalized_robust_IVW −25.811 8.198 −41.879 −9.743 0.002

MR-Egger −21.692 26.192 −73.027 29.644 0.408
(intercept) 0.351 1.657 −2.896 3.598 0.832

Penalized_MR-Egger −21.692 26.192 −73.027 29.644 0.408
(intercept) 0.351 1.657 −2.896 3.598 0.832

Robust_MR-Egger −23.403 18.326 −59.321 12.515 0.202
(intercept) 0.363 1.287 −2.159 2.885 0.778

Penalized_robust_MR-Egger −23.403 18.326 −59.321 12.515 0.202
(intercept) 0.363 1.287 −2.159 2.885 0.778

CI: confidence interval. IVW: inverse variance weighted method. SE: Standard error. MR: Mendelian randomization.

The slope of the lines represents the so-called “causal” association for each method
indicated in the legends. Heterogeneity statistics and sensitivity analyses were performed.
The MR-Egger heterogeneity test (p = 0.063) suggested some heterogeneity.

The leave-one-out sensitivity analysis (Figure 3) was performed to ascertain if the
global Mendelian randomization association was influenced by a single SNP. Each point
and the error lines for each SNP represents the Mendelian randomization association (using
the IVW method) excluding that particular SNP. The overall analysis including all SNPs is
also shown for comparison. We detected that the rs987019 SNP was an influential SNP.
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This SNP was detected as a potential outlier in Figure 1, due to the fact that the
association between the increases in the exposure level was associated with less fasting
glucose for many SNPs, except the rs987019 SNP. This Mi-RSNP was related to increased
levels of Romboutsia ilealis [51], and, although the evidence is not consistent, some studies
related increased abundance of Romboutsia to an increased risk of insulin resistance and
obesity [76,77]. Hence, we recalculated the “causal” effect estimate after removing the
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rs987019 SNP considered as an outlier. The Mendelian randomization analysis with the
remaining eight instrumental variables showed statistically significant results using the
simple median method (p = 0.031) and using all the IVW methods: IVW (p = 0.016),
penalized IVW (p = 0.016), robust IVW (p < 0.001), and penalized robust IVW (p < 0.001).
The heterogeneity MR-Egger test was improved (p = 0.340), and no horizontal pleiotropy
was detected (slope MR-Egger = 0.310; p = 0.888).

Figure 4 shows the so-called “causal” estimates for the association between the mi-
crobiome and fasting glucose using the eight finally selected instruments and presents
estimations for the individual SNPs, as well as the global association using the IVM method.
According to this estimation, an increasing number of effect alleles for these SNPs was re-
lated to a rise in the corresponding taxa abundance related to these SNPs, and this increase
was associated with less fasting plasma glucose in the host (IVM method: −28.8; 95%CI:
−52.4 to −5.4; p = 0.016).
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4. Discussion

To our knowledge, this paper represents the first study performed to examine the inter-
play among host genetics, the gut microbiota, and fasting glucose and type 2 diabetes using
Mi-RSNPs as proxies for microbiome composition in a high-cardiovascular-risk Mediter-
ranean population. In the last decade, the number of studies analyzing the association
between the composition of gut microbiota and different health phenotypes has increased
exponentially, both in animal models and in humans [78,79]. Every day, new results are
published on the influence of the gut microbiota, fundamentally bacterial, in different
phenotypes of cardiometabolic diseases, as well as other diseases [1–17]. Therefore, it is not
surprising that researchers from different areas of health are interested in incorporating
the influence of the intestinal microbiota in their analyses from a multifactorial point of
view. However, the study of the gut microbiota is complex and requires the collection of
feces from the study participants. In addition, there are different platforms and analysis
methodologies that add complexity to the comparison of results [24,25,28,29]. For this
reason, the possibility of using some genomic markers of the host as indicator variables
of the composition of the intestinal microbiota is arousing great interest in the scientific
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community. However, these studies are still very preliminary and need further extension
and replication in different populations.

Some studies in several species (including Drosophila, Caenorhabditis elegans, mice,
and other animals) have shown significant heritability, specific to different microbial fam-
ilies and genera [79]. In humans, the influence of host genetics on the microbiome was
less recognized in early studies; however, currently, several landmark mbGWASs have
identified many human genetic variants associated with gut microbiota [41–43,45–51,80].
These variants, so-called Mi-RSNPs, could serve as valid instruments for the microbiota
composition (exposure) in epidemiological studies and in formal one-sample or two-sample
Mendelian randomization analyses [67]. Although other studies have examined the associ-
ations between several Mi-RNPs and different phenotypes (cardiovascular diseases, mental
diseases, intestinal diseases, diabetes, etc.) using two-sample Mendelian randomization
approaches [44,51,66,81–86], we used a different approach. In our study, instead of using
summary data both for population 1 (testing the instrument–exposure association) and for
population 2 (testing the instrument–outcome association), we undertook a new study in
population 2 and were, therefore, able to obtain novel unexplored associations between
Mi-RSNPs in a Mediterranean population (in addition to those reported in the UK Biobank
or in other large consortia with publicly available summary data). This is important be-
cause it is known that genetic associations may differ depending on the geographical
origin on the analyzed population [87], and more studies in diverse and understudied
populations, such as the Mediterranean population, are needed. In addition, having the
individual-level data for obtaining more results is an important advantage when perform-
ing genetic association studies because additional gene × diet or gene × sex interactions
can be analyzed [67,68,70].

In our study, we focused on fasting plasma glucose and type 2 diabetes prevalence
as outcomes to analyze the association between the host genetic variables previously re-
ported to be related with gut microbiota taxa in four selected studies [43,45,46,51]. In this
Mediterranean population, we observed some statistically significant associations at the
nominal p-value between the selected Mi-RSNPs and fasting plasma glucose and type 2
diabetes. For fasting glucose, we analyzed the whole population, including nondiabetic
subjects and type 2 diabetic subjects, adjusting for diabetes, medications, and other poten-
tial confounders such as sex, age, and BMI. In addition, we analyzed the associations only
in nondiabetic subjects. For these analyses, we first examined the Mi-RSNPs as individual
instruments, and no combined instruments, such as polygenic risk scores, were tested. The
reason for this analysis is based on the existence of high heterogeneity in reporting the
associations across the different publications and on the difficulties involved in deriving
the effect allele and the direction of the effect across the studies [46]. Although very few
Mi-RSNPs reached statistically significant associations with fasting plasma glucose or dia-
betes in our Mediterranean population, we detected some interesting associations. The hit
associated with fasting glucose in the whole population was the Mi-RSNP rs9569095 located
at a still uncharacterized gene (ncRNA gene), in chromosome 13, which has been related to
the class Gammaproteobacteria_HB [45]. This class has been associated with diabetes in other
studies directly analyzing the microbiome [88–90], but the results are not consistent. The
other hit for fasting plasma glucose was an Mi-RSNP related to the order Rhizobiales [43].
This order is interesting because others Mi-RSNPs related with it [43] have reached statisti-
cal significance in determining fasting glucose in nondiabetic subjects and type 2 diabetes
risk in this population. There are very few studies analyzing this order with diabetes-related
traits [91,92]. This order, most abundant as free-living bacteria, is interesting as some stud-
ies have revealed an important role of this order in relevant pathways such as amino-acid
metabolism, energy production and conversion, and carbohydrate metabolism [93]. Previ-
ous Mendelian randomization studies analyzing the association between Mi-RSNPs and
type 2 diabetes have reported inconsistent results [51,66,84]. Yang et al. [66] analyzing the
role of 27 genera of the human gut microbiota on type 2 diabetes and ischemic heart disease
using Mendelian randomization, identified Acidaminococcus, Aggregatibacter, Anaerostipes,
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Blautia, Desulfovibrio, Dorea, and Faecalibacterium as being nominally associated with type 2
diabetes, whereas Xiang et al. [84] suggested that only Streptococcaceae was associated
with higher type 2 diabetes risk in European populations after analyzing 28 gut microbiome
families using a Mendelian randomization approach. This lack of consistency among the
few studies analyzing the association between the Mi-RSNPs and type 2 diabetes may be
due to the heterogeneity in the populations analyzed. We examined a high-cardiovascular-
risk Mediterranean population, but some differences may exist when examining a healthy
young population from the same Mediterranean area. In addition, we detected some
sex × Mi-RSNP interactions, highlighting the need to better analyze the possible differ-
ences between men and women [94]. In addition, we observed some statistically significant
Mi-RSNP × diet interactions in determining plasma fasting glucose when considering
adherence to Mediterranean diet. Previous studies have reported the influence of diet on
the effects of some Mi-RSNPs. This has been widely reported in the association between
milk intake and the MCM6 Mi-RSNPs associated with different Bifidobacterium species and
abundance [46,51]. Likewise, a high-fiber diet has been associated with the effect of ABO
Mi-RSNPs on the abundance of F. lactaris [46]. More studies are needed to better analyze
the dietary modulation of the Mi-RSNPs. Moreover, several studies directly analyzing
microbiota composition and type 2 diabetes and related traits have been published, obtain-
ing diverse results depending on the population studied [34–37,95]. Wang et al. [96], in a
recent investigation performed in China, constructed a healthy microbiome index (HMI)
and examined the relationship between the HMI and type 2 diabetes incidence. In our
study, we also examined the effect of several genetic instruments on fasting glucose using a
two-sample Mendelian randomization approach [67]. Selecting instrumental variables in
the case of SNPs related to the microbiota is complex because the increase in the abundance
of each microbial taxa can be beneficial or detrimental depending on the microorganism. As
the effects of many of the taxa are still poorly understood, it is difficult to create combined
instruments as genetic proxies. We analyzed a combination of eight Mi-RSNPs associ-
ated with significantly lower plasma fasting glucose in the Mediterranean population as
the abundance of the microbial species represented by the Mi-RSNPs increases. Among
them is the rs234545 Mi-RSNP, related with Faecalibacterium prausnitzii [51], a butyrate-
producing bacteria that has been previously associated with lower type 2 diabetes risk.
Additional studies focused not only on taxa SNPs but also on SNPs related to functionality
are needed in different populations that also take into account sex, age, diet, and other
lifestyle characteristics.

5. Conclusions

This work represents the first study carried out in a high-cardiovascular-risk Mediter-
ranean population testing the association between Mi-RSNPs and plasma fasting glucose
and type 2 diabetes. Our results identified a number of Mi-RSNPs significantly associated
with fasting plasma glucose and type 2 diabetes contributing to the improvement of our
understanding of the potential mechanisms driving these phenotypes. Moreover, we de-
tected some Mi-RSNP interactions with adherence to the Mediterranean diet and with sex
modulating the association between the Mi-RSNPs and fasting glucose, thereby eliciting
new research hypotheses to be tested in future studies.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/medicina58091238/s1: Table S1. Microbiome-related SNPs selected
for this study: initial mbGWAS generating the association (STD#), SNP location, and microbial trait;
Table S2. Association between the ordered (by p-value) microbiota-related SNPs and fasting glucose
in the whole population1 (continuation of Table 2); Table S3. Association between the microbiota-
related SNPs and diabetes in nondiabetic subjects; Table S4. Interaction between the top-ranked
microbiota-related SNPs and sex on plasma fasting glucose in the whole population; Table S5. Selected
instruments for the two-sample Mendelian randomization analysis on plasma glucose.
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