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Abstract
Accuracy of taxonomic identifications is crucial to data quality in online repositories of species

occurrence data, such as the Global Biodiversity Information Facility (GBIF), which have accu-

mulated several hundredmillion records over the past 15 years. These data serve as basis for

large scale analyses of macroecological and biogeographic patterns and to document environ-

mental changes over time. However, taxonomic identifications are often unreliable, especially

for non-vascular plants and fungi including lichens, whichmay lack critical revisions of voucher

specimens. Due to the scale of the problem, restudy of millions of collections is unrealistic and

other strategies are needed. Here we propose to use verified, georeferenced occurrence data

of a given species to apply predictive niche modeling that can then be used to evaluate unveri-

fied occurrences of that species. Selecting the charismatic lichen fungus,Usnea longissima,
as a case study, we used georeferenced occurrence records based on sequenced specimens

to model its predicted niche. Our results suggest that the target species is largely restricted to

a narrow range of boreal and temperate forest in the Northern Hemisphere and that occur-

rence records in GBIF from tropical regions and the Southern Hemisphere do not represent

this taxon, a prediction tested by comparison with taxonomic revisions ofUsnea for these
regions. As a novel approach, we employed Principal Component Analysis on the environ-

mental grid data used for predictive modeling to visualize potential ecogeographical barriers

for the target species; we found that tropical regions conform a strong barrier, explaining why

potential niches in the Southern Hemisphere were not colonized byUsnea longissima and
instead by morphologically similar species. This approach is an example of how data from two

of the most important biodiversity repositories, GenBank andGBIF, can be effectively com-

bined to remotely address the problem of inaccuracy of taxonomic identifications in occurrence

data repositories and to provide a filtering mechanism which can considerably reduce the

number of voucher specimens that need critical revision, in this case from 4,672 to about 100.
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Introduction
Accuracy of taxonomic identifications of vouchers is a critical element of data quality in biodi-
versity repositories. While users tend to assume that the underlying taxonomy is correct, spe-
cialists are aware that a substantial proportion of vouchers might be wrongly identified, caused
by lack of expertise of the identifier or by inappropriate species concepts [1–13]. The charis-
matic lichen fungus, Usnea longissima Ach., Methuselah's Beard Lichen, a member of the
megadiverse macrolichen family Parmeliaceae, with its showy, long-pendulous thalli covering
tree branches like garlands, is well-known even to amateurs and frequently collected or
reported. Misidentifications with other long-pendulous species of Usnea are common,
although the obvious differences have been worked out in taxonomic treatments [14–25]. In
addition, lichens of other genera, such as Ramalina usnea, and even non-lichens such as the
common, pendulous bromeliad Tillandsia usneoides, are not rarely mistaken for U. longissima.
Such misidentifications are not trivial, since accurate taxonomy is crucial for studies on the
ecological importance of species and their potential uses: in the case of U. longissima, this spe-
cies is used as an indicator of well-conserved, northern-temperate and boreal forest ecosystems
[25–36].

The potential magnitude of the problem becomes obvious when looking at the most impor-
tant public biodiversity repositories. Over the past 25 years, nearly 180 million sequences were
deposited in GenBank and over 200 million in the Whole Genome Shotgun (WGS) database,
as well as 1.7 quadrillion (1.7 × 1015) open access bases, corresponding to roughly 3.5 trillion
(3.5 × 1012) sequence reads, in The NCBI Sequence Read Archive (SRA) [37–40]. GenBank
sequences are directly linked to taxonomic identifications and, through barcoding initiatives,
serve as direct reference for identification purposes [41–47]. However, especially for fungi,
including lichens, the accuracy of sequence identifications has been questioned, and about 20%
of sequence entries, including approximately 700,000 ITS barcoding sequences, have been esti-
mated to be incorrectly labeled [1, 4, 8, 12–13]. A solution to this are curated ITS databases [1,
48–49].

About 15 years ago, efforts began to make specimen occurrence data from natural history
collections broadly available through online data repositories [50–53]. By far the largest is the
Global Biodiversity Information Facility (GBIF), set up by the Organization for Economic
Cooperation and Development (OECD), which currently includes 526 million occurrence rec-
ords, more than DNA sequences available through GenBank and the WGS together, and
including nearly 10 million fungal and lichen occurrences [54]. The widely used Consortium of
North American Lichen Herbaria and Bryophyte Herbaria (CNALH, CNABH), based on the
Symbiota platform, currently host over 4 million records [55–56]. A massive effort to digitize
North American natural history collections is being funneled through the iDigBio specimen
portal, which has accumulated more than 25 million records, including over 2.5 million fungi
and lichens [57]. However, even more so than DNA sequence data, occurrence records are
often unreliable, due to incorrect specimen identifications and lack of taxonomic revision espe-
cially of historical collections [5–6, 7, 10–12]. Among fungi and lichens, depending on the
group under study, up to 50% of occurrence data may have incorrect taxonomic labels [8].

As important biodiversity resources, both sequence and occurrence data rely on voucher
specimens and are affected by potentially inaccurate identifications [49, 58]. However, while
DNA sequence data provide intrinsic information as to their correct placement and wrongly
identified entries are readily detected [8, 48], this is not possible for occurrence data, unless
accompanied by high quality specimen images, which allow for remote taxonomic assessment,
such as type specimens digitized through the Global Plants Initiative [59]. Unfortunately, taxo-
nomic revision of millions of specimens is virtually impossible, not just due to the taxonomic
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impediment, the dwindling support for taxonomic studies and the resulting loss of expertise
[60–67], but simply because of the magnitude of the problem. Even if taxonomy were alive and
well, thousands of experts would be needed full-time to provide correct identifications for mil-
lions of specimens within a reasonable time frame. One way to address this problem is a scor-
ing system that attaches quality scores to occurrence data based on label information,
including the taxonomic expertise of the annotator or published citations of the specimen and
links to DNA sequences [12, 68]. Unfortunately, such information is usually not available.

Here, we present a different strategy, which combines DNA sequence data and specimen
occurrence data to potentially identify incorrectly identified specimens in large repositories
such as GBIF. The method applies predictive niche modeling [69–70] to georeferenced speci-
men data that at the same time have been confirmed to represent a single species by DNA
sequence data. As case study, we use Usnea longissima, not only because of its enigmatic status,
but because it is one of the few species for which georeferenced sequence data are currently
available [17]. Indeed, only few fungi and lichens have been studied using predictive niche
modeling [71–72]. We tested our method by comparing GBIF occurrence records falling out-
side the predicted niche with monographic treatments of the genus Usnea in the regions in
question. To that end, we developed a novel PCA ordination approach to delimit the predicted
realized niche within the theoretical niche. This method is a promising tool to address data
quality in specimen occurrence data repositories by filtering and returning a small set of speci-
mens that should be focused upon for critical taxonomic revision. The approach can be used
for any taxon, as long as sequence data are available to allow for establishment of a statistically
supported species concept and the underlying vouchers are (or can be) georeferenced.

Results

Phylogenetic Analysis
In accordance with previous studies [23, 24], based on maximum likelihood analysis of 46 ITS
barcode sequences, including all individual haplotypes corresponding to 1,477 sequenced sam-
ples from 160 georeferenced localities [17], Usnea longissima forms a monophyletic clade sister
to U. trichodeoides, with two sequences from Canada and South Corea being supported sister
to all other haplotypes (Fig 1). There was no distinct geographic signal in the main clade, with
haplotypes from North America, Europe, and Asia mixed in several subclades.

Predictive Niche Modeling
The best fitting MaxEnt model was based on 160 georeferenced localities, which represent a total
of 1,477 sequenced specimens of Usnea longissima [17]. After correction for sampling bias (see
Methods), it predicts the potential niche forUsnea longissima along the coast in the Pacific
Northwest of North America (California to Alaska), along the eastern US-Canadian border
(Great Lakes area) and the eastern Canadian border, Iceland, the British Isles, eastern Scandina-
via, and the Alps, a small area in China south of Mongolia, and the Asian east coast (including
South and North Corea and Russia) and Japan, as well as southern Patagonia (Fig 2).

Of 3,950 georeferenced GBIF occurrence records of Usnea longissima analyzed, 291 fit the
predicted range at an AUC (Area Under Curve; see Methods) score of 0.90 or higher (with the
highest value = 0.97931 found for 143 occurrence records, corresponding to 131 unique geore-
ferenced localities), 895 at a score of 0.70 or higher, 2,076 at a score of 0.50 or higher, 2,169 at a
score of 0.30 or higher, and 2,349 at a score of 0.10 or higher (S1 Table). Depending on whether
the limit is set at 0.30 or 0.10, this means that between 541 and 2,153 occurrence records are
outside the predicted range, including from northeastern Canada, New Mexico, Mexico, Costa
Rica, Colombia, the eastern Black Sea area, the northwestern border of Siberia, southwestern
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Fig 1. Maximum likelihood tree ofUsnea longissima haplotypes using the fungal ITS barcodingmarker. Bootstrap values are given for supported
branches (> 70). Black dots indicate Asian voucher samples (all others North America and one from Europe). Scale bar indicates rate of changes per site.
The ingroup sequences of the JX978-series are individual haplotypes representing a total of 1477 sequenced specimens, with each sequence representing a
selected specimen corresponding to that particular haplotype.

doi:10.1371/journal.pone.0151232.g001

Fig 2. Best fitting MexEnt model forUsnea longissima based on 1477 sequenced samples corresponding to 160 localities from Rolstad et al.
(2013), indicated by shaded areas ranging from pale blue-green to red. Bright blue areas indicate range of predicted absence. Map is overlayed by
occurrence records from GBIF (white dots), and those falling outside the predicted range are marked with red circles. One dot may include more than one
GBIF record (S1 Table).

doi:10.1371/journal.pone.0151232.g002
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and central China northeast of Nepal (wider Himalaya region), Papua New Guinea, and east-
ern Australia (Queensland to Victoria). Thus, the model would specifically identify the latter
records for taxonomic scrutiny and revision, and particularly those reported from the tropics
and the Southern Hemisphere (Mexico, Costa Rica, Colombia, Papua New Guinea, Australia).

Principal Component Analysis of the bioclim variables and other environmental grid
parameters (see Methods) explained a cumulative variance of 71% on the first two axes, with
most variables having high loadings on the first axis (Table 1), which was positively correlated
with strong seasonality and negatively with high mean and maximum temperature, whereas
the second axis was positively correlated with diurnal temperature range and negatively with
high precipitation (Table 1). While these correlations do not reflect the ecological niche of
Usnea longissima, they determine the internal correlation structure of the underlying bioclim
variables. When setting the point on the first axis that reflects the highest AUC score for the
occurrence of Usnea longissima to zero and transforming the factor scores into absolute dis-
tances from that point (see Methods), the tropics are highlighted as a strong ecogeographical
barrier for the north-south distribution of the species (Fig 3; S2 Table). This finding indicates
that tropical and Southern Hemisphere reports of this species are incorrect, which was subse-
quently tested by analyzing monographic revisions (including unpublished data) of the genus
Usnea in the areas where the outliers occurred, in particular Mexico, Costa Rica, Colombia,
and Australia (see Discussion). All revisions confirm the absence of Usnea longissima in these
regions, highlighting common misidentifications with similarly long, pendulous species which,
however, differ in branching pattern, surface morphology, internal anatomy, and secondary
chemistry [15, 19–21; M. Herrera-Campos, P. Clerc, pers. comm. 2014].

Table 1. Factor loadings of the environmental variables used in the PCA and total variance explained.
High loadings of >0.70 are highlighted in boldface and marked with an asterisk.

Variable Factor 1 Factor 2

tree_cover 0.143366 0.441376

alta 0.155203 -0.005793

bio_1a (annual mean temperature) -0.932586 (*) 0.333335

bio_2a (mean diurnal temperature range) -0.333610 0.711211 (*)

bio_3a (isothermality) -0.912183 (*) 0.047748

bio_4a (temperature seasonality) 0.898851 (*) 0.000346

bio_5a (maximum temperature warmest month) -0.732648 (*) 0.556718

bio_6a (minimum temperature coldest month) -0.959794 (*) 0.175193

bio_7a (temperature annual range) 0.842822 (*) 0.163407

bio_8a (mean temperature wettest quarter) -0.730927 (*) 0.385510

bio_9a (mean temperature driest quarter) -0.890100 (*) 0.264902

bio_10a (mean temperature warmest quarter) -0.793755 (*) 0.489969

bio_11a (mean temperature coldest quarter) -0.956994 (*) 0.229091

bio_12a (annual precipitation) -0.666655 -0.706245 (*)

bio_13a (precipitation wettest month) -0.701093 (*) -0.475273

bio_14a (precipitation driest month) -0.292179 -0.798126 (*)

bio_15a (precipitation seasonality) -0.256584 0.603328

bio_16a (precipitation wettest quarter) -0.699481 -0.512586

bio_17a (precipitation driest quarter) -0.327346 -0.806890 (*)

bio_18a (precipitation warmest quarter) -0.465097 -0.614460

bio_19a (precipitation coldest quarter) -0.483883 -0.624403

Explained variance 9.840462 5.099666

Proportion of total 46.8593% 24.2841%

doi:10.1371/journal.pone.0151232.t001
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Discussion
Usnea longissima is an excellent case study to analyze the causes and consequences of incorrect
taxonomic identifications in species occurrence data. The species is generally characterized by
its long-pendulous thalli, covering tree branches like garlands, forming cylindrical main
branches with vertical, short branchlets resembling fish vertebrae [14, 17, 18, 22]. Many other
species resemble U. longissima in the long-pendulous thalli (see below) and hence have been
mistaken for that species; however, morphological, anatomical and chemical details clearly set
them apart and make the species readily identifiable by trained lichenologists [14–22].

Usnea longissima is very sensitive to environmental changes and is considered an indicator
species of well-conserved, humid temperate forest ecosystems, being on the decline or having
become extinct from many areas [25–36]. As a consequence, when using historical and modern
occurrence data to analyze past and present distributions patterns of such a species, the correct
identification of voucher specimens is of critical importance. In the present case, georeferenced
GBIF occurrence data would place the species virtually all over the global map and define it as
a cosmopolitan taxon. Yet, based on ITS barcoding sequences [17, 24] and regional taxonomic
revisions (see below), the species is restricted to the Northern Hemisphere north of the Tropic
of Cancer. This is likely a common scenario for other species, particularly among fungi and
lichens, where the true ecogeographical distribution of a taxon is often obscured by incorrectly
identified collections, either through lack of experience with a group or changing species con-
cept. Similar cases have been reported for other charismatic and presumably widespread
macrolichens, such as Letharia vulpina in the Parmeliaceae, Sticta fuliginosa in the Lobariaceae
and Cora glabrata in the Hygrophoraceae [43–44, 73–74].

Fig 3. Global mapping of absolute distance scores derived from the first axis of a PCA ordination of environmental grid parameters used for the
predictive niche modeling. Distances were computed from an optimal environmental parameter set defined by the highest AUC values for grids with
predicted distribution ofUsnea longissima. Blue areas indicate zero or short ecological distances from the optimal grid whereas red areas indicate far
distances (ecogeographical barriers). The tropics emerge as a strong barrier for the north-south distribution of the species.

doi:10.1371/journal.pone.0151232.g003
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In the case of Usnea longissima, existing taxonomic revisions helped to clarify most of the
far outliers identified by our predictive niche modeling. Revision of the pendulous species of
Usnea fromMexico showed that U. longissima is not present in the area and common misiden-
tifications are based on other long-pendulous species, especially U. angulata Ach. and U.mexi-
cana Vain., but also U. ceratina Ach., U. subgracilis Vain., and U. transitoriaMotyka [15].
Pendulous species of Usnea from Costa Rica were also revised by M. Herrera-Campos (unpubl.
data) and the presence of U. longissima was not confirmed, whereas the report from Colombia
represents a previously unrecognized taxon, U. crenulata Truong & P. Clerc [21]. Other lichens
often mistaken for U. longissima are found in the Ramalina usnea complex [75], especially
when based on voucherless occurrence data. Molecular phylogenetic revision of pendulous spe-
cies of Usnea from South America further confirmed the absence of U. longissima from the
continent [21]. Taxonomic revision of Usnea in Australasia [19–20] also demonstrated the
absence of U. longissima; common misidentifications in the Southern Hemisphere, particularly
in the Old World tropics and in Oceania, include U. himantodes Stirt., U. hossei Vain., U.misa-
minensis (Vain.) Motyka, and U. trichoideoides Vain. [19–20; P. Clerc, pers. comm. 2014], as
well as U.mekista (Stirt.) D. D. Awasthi. Many of these species were originally described as
infraspecific taxa of U. longissima, emphasizing the likelihood of potential confusion; according
to Index Fungorum [76], U. longissima has over 20 listed infraspecific synonyms.

Thus, among the outliers identified by the predictive model, those from the Neotropics
(Mexico to Colombia) and from Australasia (Papua New Guinea, Australia) were confirmed
by independent studies to not represent Usnea longissima. This leaves occurrence data from
NewMexico, the eastern Black Sea area, the northwestern border of Siberia, and the wider
Himalaya region for scrutiny. Asian records are in need to be compared to names such as U.
hossei, U.mekista, U.misaminensis, and U. trichoideoides. Since the number of these records is
reasonably small (less than 100 compared to a total of 4,672 GBIF records originally analyzed),
detailed and targeted taxonomic revision of the vouchers within a short time frame would be
feasible. Critical revision of these records would be recommended to assess uncertainties of the
model prediction, with the inclusion of subsequently confirmed records representing the spe-
cies but falling outside the boundaries of the current model. In contrast, revision of the well
over 4,000 remaining GBIF records that fall within the narrow model boundaries is not a prior-
ity, since even wrongly identified specimens would not affect the model in principle, as they
correspond to data points in which Usnea longissima occurs or is likely to occur.

Our study thus supports the notion that predictive niche mapping based on confirmed,
georeferenced occurrence records is a suitable tool to identify outliers and to considerably nar-
row down the number of voucher specimens that would require critical revision in order to
obtain accurate occurrence data. Obviously, setting up such a study is not trivial, as it requires
a large number of confirmed and georeferenced records to be available for a group in question.
Ideally, as in the present case [17], such data are directly linked to GenBank sequences, which
allows for phylogenetic testing of species concepts. However, modern taxonomic revisions also
serve as source for such data, as long as specimen records are georeferenced or can be georefer-
enced a posteriori. The proposed protocol should work for any organism, as long as its ecologi-
cal niche can be reasonably well predicted; however, it cannot take into account factors such as
human-induced distributions or invasive species, which often occupy different ecological
niches in alien ecosystems.

To make best use of strategies to increase the quality of occurrence data, we propose to gen-
erate curated specimen data, as already done for fungal ITS barcoding sequence data [1, 48–
49]. Since the separate maintenance of such curated databases provides a logistic challenge, a
feasible solution would be to annotate occurrence data in existing repositories with a quality
score, which indicates whether a particular record has been scrutinized and what the
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underlying methods were. The type and specimens with sequence data would receive high
scores, followed by specimens cited in modern revisions or with annotation labels by a known
expert in the field. Additionally, one could implement automated scoring, using high-scored
records as templates to highlight unrevised records as likely correct or questionable based on
geographic and ecological proximity or distance to high-scored records, including automated
background niche modeling [7].

While predictive niche mapping is a useful tool in this context, it also has its limitations.
Spatial bias within the sampling area (sampling bias) might lead to false negatives, i.e. sampling
points in which the species occurs but has not been sampled, which makes the model bound-
aries more diffuse. This problem is being addressed by background manipulation and spatial
filtering [85–89] and, while sampling bias introduces uncertainties to the boundaries of the
model, it will not affect the identification of far outliers, as long as the sampling size is large
enough. Spatial bias neglecting areas outside the sampling area (geographical bias) might also
generate problems: in the present case, Usnea longissima occurs across northern-temperate
and boreal forests but only samples from North America and Europe went into the model, dis-
regarding Asia in lieu of georeferenced samples with molecular sequence data. However, the
model and the PCA ordination still predicted Asia as part of the theoretical and realized niche.
One of the strengths and aims of niche modeling is indeed geographical extrapolation [69–70,
90]; therefore, geographical sampling bias is not necessarily a limitation, as long as the niche is
properly represented by sampling size.

The main challenge of niche modeling is the distinction of the potential and the realized
niche for the identification of outliers among occurrence data. Since niche mapping is based on
environmental parameters, other factors that delimit the realized range of a species, such as
ecogeographical barriers, are not taken into consideration. Without these factors, it is impossi-
ble to determine whether an occurrence record far outside the known range of a species, but fit-
ting its predicted niche, is a potential misidentification or a range extension. For instance, our
model predicts a suitable niche for Usnea longissima in Patagonia, and yet the species is absent
from South America [21]. Here, we employed PCA ordination of environmental grid parame-
ters and computed the absolute distance to the score representing the optimal set of variables
defined by the AUC values to visualize potential barriers. While niche mapping applies a uni-
formly low score to the area outside the best-fitting grids (blue areas on the heat map), PCA
allows to further differentiate the blue area, highlighting areas that are far outside the ecological
range of a species. This approach appears promising and could be further enhanced by includ-
ing estimates of species age and speed of population expansion to compute probability values
for potential dispersal over ecogeographical barriers.

Material and Methods

Data Sets
We obtained several datasets for this study. First, we downloaded all available ITS barcoding
sequences from GenBank labeled Usnea (Dolichousnea) longissima, including as outgroup U.
trichodeoides (Table 2). This included a set of unique haplotypes corresponding to a total of
1,477 samples from 160 locations in North America and Europe [17]. Second, we obtained the
corresponding list of the 160 georeferenced locality data for sequenced Usnea longissima speci-
mens from the supplemental material of the study by Rolstad et al. [17]. Finally, we down-
loaded 4,672 georeferenced occurrence records labeled as U. longissima from GBIF present at
the time of accessing the repository. Of these, only 3,950 had valid coordinates (S1 Table),
whereas the remaining samples had no values or double zero values in the decimallatitude and
decimallongitude fields and were removed from the data set.
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Table 2. GenBank Accession numbers and voucher information for specimens of Usnea longissima used in the phylogenetic and predictice
modeling analysis.

Genus Species GB Accession Country Collector Number

Usnea trichodeoides AB051665 Japan Ohmura 2911

Usnea longissima JX978183 Canada Rolstad et al. U0001

Usnea longissima JX978184 Canada Rolstad et al. U0002

Usnea longissima JX978185 Canada Rolstad et al. U0006

Usnea longissima JX978188 Canada Rolstad et al. U0039

Usnea longissima JX978189 Canada Rolstad et al. U0056

Usnea longissima JX978190 Canada Rolstad et al. U0100

Usnea longissima JX978191 Canada Rolstad et al. U0116

Usnea longissima JX978192 Canada Rolstad et al. U0170

Usnea longissima JX978201 Canada Rolstad et al. U0594

Usnea longissima JX978210 Canada Rolstad et al. U0918

Usnea longissima KF461130 Canada McMullin sn

Usnea longissima AJ748109 Canada KL 68

Usnea longissima JX978186 USA Rolstad et al. U0015

Usnea longissima JX978187 USA Rolstad et al. U0035

Usnea longissima JX978193 USA Rolstad et al. U0366

Usnea longissima JX978194 USA Rolstad et al. U0426

Usnea longissima JX978195 USA Rolstad et al. U0437

Usnea longissima JX978197 USA Rolstad et al. U0482

Usnea longissima JX978198 USA Rolstad et al. U0487

Usnea longissima JX978199 USA Rolstad et al. U0551

Usnea longissima JX978200 USA Rolstad et al. U0560

Usnea longissima JX978202 USA Rolstad et al. U0601

Usnea longissima JX978203 USA Rolstad et al. U0657

Usnea longissima JX978204 USA Rolstad et al. U0708

Usnea longissima JX978205 USA Rolstad et al. U0737

Usnea longissima JX978206 USA Rolstad et al. U0742

Usnea longissima JX978207 USA Rolstad et al. U0776

Usnea longissima JX978208 USA Rolstad et al. U0783

Usnea longissima JX978209 USA Rolstad et al. U0841

Usnea longissima JX978211 USA Rolstad et al. U1009

Usnea longissima JX978212 USA Rolstad et al. U1086

Usnea longissima JX978213 USA Rolstad et al. U1590

Usnea longissima JX978214 USA Rolstad et al. U1592

Usnea longissima JX978196 Sweden Rolstad et al. U0456

Usnea longissima AJ748108 India KL 88

Usnea longissima DQ383647 SouthKorea Hur CH050148

Usnea longissima DQ001304 SouthKorea Hur 040001

Usnea longissima AB051642 Japan Ohmura 2877

Usnea longissima AB051643 Japan Ohmura 2881

Usnea longissima AB051644 Japan Ohmura 3250

Usnea longissima AB051645 Japan Ohmura 3664

Usnea longissima AB051646 Japan Ohmura 3816A

Usnea longissima AB051647 Japan Ohmura 3816B

Usnea longissima AB051648 Japan Ohmura 3844

Usnea longissima FJ494936 Taiwan Shen L00004685

doi:10.1371/journal.pone.0151232.t002
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Phylogenetic Analysis
ITS barcoding sequences of 46 specimens and unique haplotypes of U. longissima and one
specimen of the outgroup, U. trichodeoides, were assembled in BioEdit 7.09 [77] and automati-
cally aligned with MAFFT using the—auto option [78]. Unaligned sequences were also sub-
jected to analysis of ambiguously aligned regions using the GUIDANCE webserver [79, 80]
and all columns were found to be aligned with high confidence (> 0.95). This resulted in an
alignment length of 498 bases. The alignment was subjected to maximum likelihood (ML)
search using RAxML 8.0.4 [81], with non-parametric bootstrapping using 1,000 replicates
under the universal GTRGAMMAmodel.

Predictive Niche Modeling
For the predictive modeling, we used the 160 georeferenced data points [17] corresponding to
sequenced specimens of Usnea longissima in North America (Alaska: 43; Pacific Northwest: 62;
California: 9; Minnesota: 4; Newfoundland and Nova Scotia: 17) and Scandinavia (Norway: 21;
Sweden: 4). We employed the bioclim and altitude layers fromWorldClim [82] in 2.5 arc min-
utes (Table 1). Usnea longissima in the strict sense as defined here has been reported mainly
from old northern-temperate and boreal forest stands [25–36], prompting the inclusion of
Global Land Cover Facility land and Landsat Vegetation Continuous Fields (VCF) tree cover
layers from GLCF for modeling [83]. To account for spatial sampling bias (false negatives), we
applied background manipulation via a bias layer as well as spatial filtering [84–89]. Layers
were edited using ArcGIS 10.3 (ERSI). To build ENMs, we used MaxEnt 3.3.3k [90]. For back-
ground manipulation of data [84], we ran 100 replicates and withheld 25% of the presence data
for testing. To generate 100 spatially filtered datasets, we created a 2x2 degree grid and ran-
domly selected one occurrence from each square in the grid. MaxEnt was then run on each of
these datasets and with the same testing parameters. The resulting spatially filtered models
were combined to create a composite model. All models were evaluated using the AUC and the
Kappa coefficient [91]. While the AUC has been discussed controversely [91], it proved useful
for the purpose of the present study.

We used the grids corresponding to the georeferenced occurrence data with the highest
AUC values (0.97931) to derive an "optimal" set of bioclim, altitude and land and tree cover
layer variables for Usnea longissima by computing the median for each parameter from these
grids (S1 Table: original grids with AUC values, S2 Table: hypothetical GR_OPTIM with medi-
ans). The entire dataset of analyzed grid parameters for the total of 43,967 global grids, includ-
ing the hypothetical grid, was then subjected to Principal Component Analysis (PCA),
extracting two main axes. For both axes, the "optimal" hypothetical grid was used as midpoint
and the distance was computed between the midpoint and all other axis scores and then con-
verted into the absolute distance for each grid (S2 Table). The distance values were transformed
into color-coded scores and visualized on a global map. While the predictive modeling heat-
map only highlights grids based on threshold values, leaving the remainder of the map unifor-
mely blue, PCA ordination visualizes relative "ecological" distances from the optimal niche,
thus aiding in detecting potential ecogeographical barriers that would explain differences
between the predicted theoretical and and the predicted realized niche.

Supporting Information
S1 Table. List of 3,950 georeferenced GBIF occurrence records labeled Usnea longissima.
Georeferenced occurrence records contain associated environmental grid data and were used
for comparison with the niche model obtained from 160 georeferenced locations in North
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America and Europe [17], with AUC values indicated.
(XLS)

S2 Table. Environmental grid data for the total of 43,967 global grids. Environmental grid
data and corresponding raw factor scores derived from PCA analysis for the first and second
axis, converted into absolute distance values for each axis (last four columns), together with the
hypothecial 'optimal' grid parameters (first row 'GR_OPTIM) derived as medians from all
grids with maximum AUC values (0.97931).
(ZIP)
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