REVIEW ARTICLE

Impact of prior antiplatelet therapy on safety and efficacy of alteplase in acute ischemic stroke: a systematic review and meta-analysis

Ahmed Naeem¹ · Hesham Kelani² · Hazem Mohamed Salamah³ · Rowan H. Elhalag⁴ · Hossam Tharwat Ali⁵ · Ayham Mohammad Hussein⁶ · Omar Abdelnasser⁷ · Mostafa Mahmoud Naguib⁸ · Salem Elshenawy⁴ · Abdelrhman M. Abdelwahab⁴ · Nadia Albaramony⁹ · Omar El Sayed Rageh¹⁰ · Abdallah R. Allam¹¹ · Aliaa Bakr¹² · Mohamed Abuelazm¹⁰ · Ahmed Madkoor¹³ · Travis R. Quinoa¹⁴ · Arthur D. Kay² · David P. Lerner² · Lisa R. Merlin^{2,18} · Eytan Raz¹⁵ · Alejandro M. Spiotta¹⁶ · Stephan A. Mayer¹⁷

Received: 22 September 2024 / Accepted: 23 January 2025 / Published online: 22 February 2025 © The Author(s) 2025

Abstract

Background Intravenous thrombolysis (IVT), utilizing the clot-dissolving medications alteplase (rt-PA) or tenecteplase (TNK), is the cornerstone in acute ischemic stroke (AIS) emergency intervention. However, the impact of prior antiplatelet therapy (APT) on post-IVT outcomes when utilizing alteplase remains controversial. We conducted a systematic review and meta-analysis to evaluate the effect of prior APT on the outcomes after using alteplase in AIS patients.

Methods We conducted a systematic review and meta-analysis synthesizing studies, which were retrieved by systematically searching PubMed, Web of Science, SCOPUS, and Cochrane through June 30, 2024. We used the R language V. 4.3. to pool dichotomous data using odds ratio (OR) with a 95% confidence interval (CI). PROSPERO ID: CRD42024495393. **Results** Thirty studies were included in our analysis, with 436,232 patients. Prior APT was significantly associated with increased odds of symptomatic intracranial hemorrhage (sICH) (OR, 1.78; 95%CI [1.48, 2.13]; P < 0.01), any ICH (OR, 1.44; 95%CI [1.16, 1.78]; P < 0.01), mortality (OR, 1.39; 95%CI [1.23, 1.58]; P < 0.01), and poor functional outcomes (modified Rankin Scale score of 3–6 [mRS 3–6]) (OR, 1.81; 95%CI [1.03, 3.19]; P = 0.04). Additionally, prior APT significantly reduced the odds of good functional outcome [mRS 0–2] (OR, 0.85; 95%CI [0.74, 0.97]; P = 0.02).

Conclusion Prior APT increased hemorrhagic complications, mortality, and poor functional outcome, while reducing the odds of good functional outcome after IV alteplase. Future research should focus on identifying adjunctive agents that may decrease hemorrhagic complications and investigate the impact of various APT regimens and alternative thrombolytics beyond alteplase in this specific population.

Keywords IV thrombolysis · Acute ischemic stroke · Prior antiplatelets · Alteplase · Systematic review · Meta-analysis

Introduction

Prompt reperfusion is crucial in acute ischemic stroke (AIS) to minimize brain damage and maximize patient recovery [1, 2]. The primary therapeutic objective revolves around expeditiously reinstating blood circulation to the affected cerebral region by reopening the occluded artery [3]. Intravenous thrombolysis (IVT), utilizing the clot-dissolving medications alteplase (rt-PA) or tenecteplase (TNK), is the cornerstone in

Ahmed Naeem and Hesham Kelani are contributed equally to this work.

Extended author information available on the last page of the article

AIS emergency intervention [4–6]. The effectiveness of IVT is contingent on time, with a short treatment window of 4.5 h from the onset of stroke symptoms, owing to an increased risk of hemorrhage outside this window [7, 8].

Patient comorbidities and baseline medications may also affect IVT post-treatment outcomes [9].

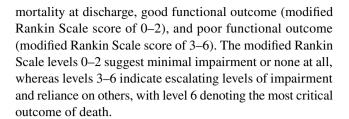
Prior exposure to antiplatelet therapy (APT) such as aspirin or clopidogrel is commonly encountered in AIS patients treated with IVT, occurring in up to 40% [10, 11]. While current guidelines do not consider APT an absolute contraindication to IVT in eligible patients, its impact on post-thrombolytic outcomes remains controversial [12, 13].

The existing literature on the impact of prior APT on the outcomes of AIS patients treated with IV alteplase is

notably inconsistent. Some studies have suggested potential drawbacks of pre-stroke APT on post-thrombolytic safety and efficacy [14]. Conversely, other studies have found no significant effect of prior APT on post-thrombolytic outcomes of AIS patients [10]. Additionally, a third body of research reports an increased risk of antiplatelet-associated symptomatic intracerebral hemorrhage (sICH) alongside improved functional outcomes and early recanalization after IV alteplase in patients on APT [15, 16]. Recently, an analysis of 321,819 patients reported that prior APT was associated with an increased risk of sICH and decreased odds of achieving a modified Rankin Scale score of 0–2. However, sICH rates were comparable to those observed in landmark trials, which may indicate a general clinical benefit of IV alteplase in AIS patients with prior APT [17].

Given the conflicting evidence, we conducted a systematic review and meta-analysis to comprehensively evaluate the impact of prior APT on outcomes after IV alteplase in AIS patients.

Methods


This study was registered in PROSPERO (CRD42024495393) and prepared in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) and the Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guidelines [18, 19]. PRISMA statement checklist 2020 is outlined in (Table S1).

Search strategy

The following databases were systematically searched: Web of Science, SCOPUS, PubMed (MEDLINE), and Cochrane Central Register of Controlled Trials (CENTRAL) on June 30, 2024. The following keywords and their MeSH terms were used to formulate the search strategy: "stroke", "thrombolysis", "antiplatelet", and "prior". The detailed search approach is presented in (Table S2).

Eligibility criteria

The inclusion criteria encompassed randomized control trials (RCTs) and controlled observational studies, including cross-sectional, prospective, or retrospective cohort, and case—control studies published in English, which evaluated the possible impact of prior APT on IV alteplase in patients diagnosed with AIS. Studies were excluded if they were secondary research articles (systematic reviews, meta-analyses, and editorials), case reports; case series, animal-based studies, or studies not reporting any of our outcomes of interest. Primary outcomes of interest were sICH, any ICH,

Study selection process

The results from the databases were imported into Rayyan. ai, where duplicates were automatically identified and eliminated. Title and abstract screening was carried out using Rayyan.ai for the remaining results to assess their relevance to the meta-analysis. Studies deemed relevant were exported to a Microsoft Excel sheet, and their full-text papers were obtained for further evaluation in the full-text screening phase, adhering to our inclusion criteria. Throughout all screening phases, four reviewers worked independently with conflicts resolved by a fifth reviewer [20].

Data extraction

For the baseline characteristic, a prespecified Excel sheet was used by four authors independently to extract the following data from the eligible studies: author's name, study design, country of study origin, number of participants, age of participants, gender of participants, medical comorbidities as; (hypertension, diabetes, atrial fibrillation, and hyperlipidemia), prior APT use, previous stroke or transient ischemic attack (TIA), baseline National Institute of Health Stroke Scale (NIHSS), IVT agent and dose, onset-to-IVT time, EVT utilization, the definition of sICH, smoking status, and duration of follow up. Safety and efficacy outcomes were extracted in the form of events and total for each treatment group.

Quality assessment

The risk of bias in individual studies was assessed independently by three authors using the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool [21], and conflicts were resolved by the first author.

Statistical analysis

Data were analyzed using the R statistical programming language [22]. Dichotomous data were presented as odds ratio (OR) with the corresponding 95% confidence interval (CI), and a meta-analysis with the Mantel–Haenszel method was performed for each outcome. A p-value of < 0.05 was identified for statistical significance. Heterogeneity was assessed using the tau squared and I^2 statistic, with $I^2\!\geq\!60\%$

indicating a substantial heterogeneity. Sensitivity analysis (leave-one-out test and subgroup analysis) was used to resolve any heterogeneity if detected. Egger's test and funnel plot asymmetry method were used to assess publication bias.

For all outcomes, subgroup analyses based on study design, mean baseline NIHSS scores, and time window from onset to treatment were conducted whenever possible. For sICH, additional subgroup analysis was performed based on different sICH definitions.

Results

Literature search and screening

Searching the four databases yielded 705 articles. After the removal of 98 duplicates, 607 records went through the title and abstract screening phase. Subsequently, 34 studies entered the full-text screening phase, with 15 studies found to fulfill the inclusion criteria. We identified an additional 15 studies through manual search by screening the references of included studies to end up with a total of 30 studies included in our analysis (Fig. 1). References of the included studies are shown in Table S3.

Characteristics of the included studies

Thirty studies were included in our analysis representing 436,232 participants (188,402 with prior APT and 247,830 without prior APT). The mean age of participants ranged from 62.8 to 75 years. Alteplase was the thrombolytic agent used across all studies. Notably, data about specific types of APT and duration were limited. Baseline characteristics of the included studies are outlined in (Table 1).

Quality assessment and publication bias

Four studies had a serious risk of bias, four studies had a low risk of bias, and 22 studies had a moderate risk of bias. The Risk-of-bias plots are presented in (Figure S1). Egger's test of publication bias was insignificant for all outcomes, sICH (P=0.1562), any ICH (P=0.1156), mortality (P=0.5319),

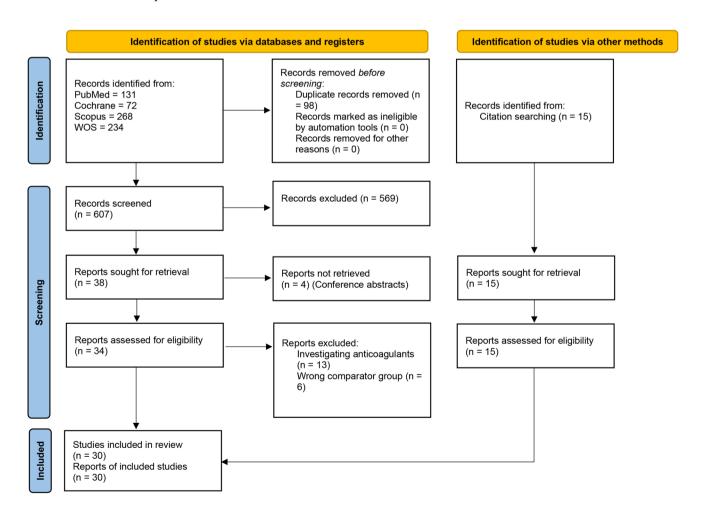


Fig. 1 PRISMA flow diagram of the screening process

Table 1 Baseline characteristics of included studies

1	-		E.				. 9 1 1101	E	2	1	*
Study	Study	Country	IVI			Onset to	sICH defini- Prior API	Prior API	No. of natients	Female sex,	Age, y,
	uesigii		Agent	Dose	Time win- dow	17 1, 111111	non.		paucins	0/	ilical(3D)
Robinson 2017 (ENCHANTED)	Subgroup analysis of RCT	Multina- tional	IV Alteplase	(45.7 ± 14) mg	4.5 h	161.5 [116 - 210]	SITS- MOST, ECASS-2, ECASS-3, NINDS, and IST-3	Yes	752	39	71 (11)
						173 [130 - 220]		No	2533	38	65 (13)
Dharmasaroja 2011	Observa- tional	Thailand	IV Alteplase	0.9 mg/kg	4.5 h	154 (42)	ECASS-2	Yes	52	40	64 (13)
Cucchiara 2009	Observa- tional	Multina- tional	IV Alteplase	NA	3 h	145 (33)	ECASS-2	Yes	337	43	68 (13)
Lindley 2015 (IST 3)	Subgroup analysis of RCT	Multina- tional	IV Alteplase	0.9 mg/kg, maximum dose of 90mg	6 h	252 (72)	IST-3	Yes	775	52	NA
Strbian 2012	Observa- tional	Finland and Switzer- land	IV Alteplase	0.9 mg/kg	4.5 h	120 (100)	ECASS-2	Yes	413	45.7	70 (25)
Tanne 2002	Observa- tional	Multina- tional	IV Alteplase	NA	3 h	NA	NINDS	No Yes	561 386 813	43.8	66.5 (13.7)
Hack 1998 (ECASS-2)	Subgroup analysis of RCT	Multina- tional	IV Alteplase	0.9 mg/kg, maximum dose of 90 mg	6 h	NA	ECASS-2	Yes Yes	884 23	39.4	89
Bluhmki 2009 (ECASS-3)	Subgroup analysis of RCT	Multina- tional	IV Alteplase	0.9 mg/kg, maximum dose of 90 mg	4.5 h	239 [225 - 255]	NINDS	Yes	130	37	64.9 (12.2)
NINDS 1995	Subgroup analysis of RCT	USA	IV Alteplase	0.9 mg/kg	3 h	240 [225 - 255]	NINDS	Yes	127	27.2	68 (11)

Table 1 (continued)

Study	Study	Country	IVT				SICH defini- Prior APT	Prior APT	No. of	Female sex,	Age, y,
	uesign		Agent	Dose	Time window	1 V 1, mmn	11011		pauents	9	mean(5D)
								No	185		
Watson-fargie 2015	Observa- tional	UK	IV Alteplase	NA	NA	161.3 (57.7)	NINDS, ECASS-2	Yes	132	56	70.1 (13.6)
								No	216		
Xian 2016	Observa- tional	USA	IV Alteplase	0.9 mg/kg	4.5 h	138 [108 - 1 170]	ECASS-2	Yes	38844	49.7	73.7 (13.2)
						138 [107 - 172]		No	46228	51.4	67.2 (15.7)
Mowla 2021	Observa- tional	USA	IV Alteplase	0.9 mg/kg	4.5 h	NA	ECASS-2	Yes	360	47.8	74.3 (13.3)
								No	463	50.1	68.7 (16.1)
Frey 2020	Subgroup analysis of RCT	Germany	IV Alteplase	0.9 mg/kg	4.5 h	186 [150 - 3 228]	SITS- MOST	Yes	75	36.6	70.3 (8.2)
								No	98	34.8	62.8 (12.1)
Uyttenboogaart 2008	Observa- tional	Netherlands	Netherlands IV Alteplase	NA	4.5 h	165 [30 - 3 270]	SITS- MOST	Yes	68	78	73 (11)
						175 [70- 285]		No	212	47	66 (15)
Couture 2021	Observa- tional	France	IV Altel- plase	NA	NA	152.4 (47.8)	HBC	Yes	74	47	72.4 (11.7)
						155.7 (45.2)		No	133	46	67.5 (14.7)
Hermann 2009	Observa- tional	Germany	IV Alteplase	NA	3 h	138 (34)	SITS- MOST	Yes	39	45	71 (11)
								No	24		67 (11)
Lin 2021	Observa- tional	Taiwan	IV Alteplase	$(0.77 \pm 0.15) \text{ mg/}$ kg	3 h	122.4 (58)	NINDS, ECASS-2	Yes	277	38	75 (8.2)
						120.8 (56.6)		No	825	39.5	74.9 (8.6)
Ibrahim 2010	Observa- tional	Canada	IV Alteplase	NA	3 h	140 (34)	SITS- MOST	Yes	104	51.6	71.2 (10.2)
								No	180	78	68.3 (13.9)
Chen 2016	Observa- tional	China	IV Alteplase	g/kg, cimum e of 90	6 h	188.7 (48.4)	ECASS-2	Yes	23	39.1	70 (8.7)
				g				No	122	34.4	63.2 (11.8)

	y,	(OS))
	Age, y,	mean
	Female sex,	%
	No. of	pauents
	sICH defini- Prior APT	llon
	Onset to	IVI, min
		Time win-
		Dose
	IVT	Agent
	Country	
ontinued)	Study	design
Table 1 (c	Study	
<u></u>	Sprii	nger

,											
Study	Study	Country	IVT			Onset to	sICH defini- Prior APT	Prior APT	No. of	Female sex,	Age, y,
	uesign		Agent	Dose	Time window	1 V 1, mun	uon		pauents	9/	mean(SD)
Hang Jing 2020	Observa- tional	China	IV Alteplase	. 0.9 mg/kg	3 h		ECASS-2	Yes	23	27	74.5 (7.7)
						170.1 (58.1)		No	36	34	68.8 (10.6)
Dorado 2010	Observa- tional	Spain	IV Alteplase NA	NA .	NA	145.5 (38)	ECASS-2	Yes	72	37.4	70.5 (9.3)
								No	162		66.9 (13.3)
Bravo 2008	Observa- tional	Spain	IV Alteplase	(67 ± 11.6) mg	3 h		ECASS-2	Yes	137	35	72.2 (7.2)
						151.1 (56.5)		No	468	43.8	66.6 (11.2)
Tsivgoulis 2018	Observa- tional	Greece	IV Alteplase	NA A	NA	154 (56)	SITS- MOST, ECASS- 2, and NINDS	Yes	1043	31.6	70.2 (10.9)
						155 (57)		No	1043	32.1	70 (11.4)
Pan 2015	Observa- tional	China	IV Alteplase	(0.88 ± 0.05) mg/ kg	4.5 h	168 [132 - 198]	SITS- MOST, ECASS- 2, and NINDS	Yes	157	43.7	66 (10.1)
						168 [132 - 198]		No	951	38.2	62.7 (11.2)
Choi 2016	Observa- tional	Korea	IV Alteplase	27%: (0.6 mg/kg), 73%: (0.9 mg/kg)	4.5 h	NA	ECASS-2	Yes	324	40	70.2 (10.9)
				19.7%: (0.6 mg/kg), 80.3%: (0.9 mg/kg)				No	324	41.3	70 (11.4)
Sanak 2012	Observa- tional	Czech Republic	IV Alteplase	NA	3 h	NA	ECASS-2	Yes	56	50	69.8 (9.8)
								No	06	43.3	65.8 (12.5)
Meseguer 2015	Observa- tional	France	IV Alteplase	NA	NA A	160 [130 - 181]	ECASS-2	Yes	288	43.4	74·5 (13·5)
						160 [120 - 185]		No	586	46	65·8 (16·9)

Table 1 (continued)

lable I (collulated)												
Study	Study	Country	IVT			Onset to	SICH defini- Prior APT	Prior APT	No. of	Female sex,	Age, y,	
	design		Agent	Dose	Time window	1 V 1, min	non		patients	9,	mean(SD)	
Diedler 2010	Observa- tional	Germany	IV Alteplase	se NA	3 h	140 (51)	SITS- MOST, ECASS- 2, and NINDS	Yes	3782	35.1	71 (12)	
						140 (50)		No	7954	41.2	65 (12)	
Peng 2024	Observa- tional	USA	IV Alteplase	se NA	4.5 h	135(54.2)	NINDS	Yes	139,475,00	42.14	68.6(15.1)	
								No	182,344,00	50.4		
Study	Prior APT Agent(s), n	gent(s), n	Previous	HTN, %	Diabetes, %	Current	AF, %	Hyperlipi-	SSHIN		EVT, %	Follow-up
			stroke or TIA, %			smoking, %		demia, %	mean (SD)	median [IQR]		ume
Robinson 2017 (ENCHANTED)	NA	NA	33	78	26	16	29	37	6.6)	8 [5 - 14]	75	3 months
			14	75	18	26	16	111			71.7	
Dharmasaroja 2011	NA -	NA A	8.1	61.4	25.3	NA	24.3	29.9	17.3 (27.6)	11 [2 - 39]	NA	3 months
Cucchiara 2009	SAPT DAPT	294 43	13.2	71.6	20.2	22.2	27.8	NA	14	14	NA	3 months
Lindley 2015 (IST 3)	Aspirin	639	NA	49	12	NA	31	NA	NA	NA	NA	6 months
	Clopidogrel Dipyrida- mole	69										
Strbian 2012	Aspirin Aspirin and Dipyrida- mole Clopidogrel	318 48 19	12.5	58.9	14.1	NA	NA	38	10 (13.3)	10 [1 - 19]	Y Y	3 months
Tanne 2002	- Aspirin -	360	13	60.7	20	28.3	21.3	NA	NA	NA	NA	NA

continued)	
Table 1	

Study	Prior APT.	Prior APT Agent(s), n	Previous	HTN, %	Diabetes, %	Current	AF, %	Hyperlipi-	NIHSS		EVT, %	Follow-up
			stroke or TIA, %			smoking, %		demia, %	mean (SD)	median [IQR]		ume
Hack 1998 (ECASS-2)	Aspirin	84	19.3	52.8	21.3	19.3	21.8	NA	NA	11	NA	3 months
Bluhmki 2009 (ECASS-3)	N A	NA	NA	62	15	31	53	NA	10.7 (5.6)	9 [6 - 15]	NA	3 months
NINDS 1995	- Aspirin	- 41	NA	65.7	21.8	NA	18.6	33.3	NA	41	NA	3 months
Watson-fargie 2015	- N A	NA NA	20	54	15	45	24	NA	11.2 (6.7)	NA	NA	NA
Xian 2016	- Aspirin	15116	36.7	82.1	32.2	13.8	25.7	54.4	10.4 (8.4)	10 [5 - 17]	0	At dis- charge
	Aspirin and Clopi- dogrel Clopidogrel Aspirin and Dipyrida- mole	d 2397							31.9			0
	1	1	15.8	99	21.9	20.7	16.7	31.9		10 [5 - 16]		
Mowla 2021	Aspirin (81mg) Aspirin (325mg) Clopidogrel (75mg) Aspirin and Dipyrida- mole Aspirin and Clopi- dogrel	191 58 11 45 11 15 1 15	26.9	6.98	24.7	15.8	26.1	₹ Z	11.5 (6.4)	NA NA	N A	∀ N
	1	,	8.9	64.8	21.6	19.9	17.5					
Frey 2020	Aspirin Clopidogrel	134 1 34	31.7	73.2	26.8	58	16.5	59.8	6.8 (5.3)	5 [4 - 9]	NA	3 months

Table 1 (continued)

idable I (continued,	ſr											
Study	Prior APT Agent(s), n	gent(s), n	Previous	HTN, %	Diabetes, %	Current	AF, %	Hyperlipi-	SSHIN		EVT, %	Follow-up
			Stroke or TIA, %			smoking, %		demia, %	mean (SD)	median [IQR]		ume
	Dipyrida- mole Triflusal DAPT	6 1 11	9.4	43.1	11.2	50	9.4	23.6		6 [4 - 12]		
Uyttenboogaart 2008	Aspirin Aspirin and Dipyrida- mole	52 22	46.1	58.4	19.1	8	24.7	48.3	14.18 (20.3)	12 [2 - 35]	NA	3 months
	Dipyrida- mole Clopidogrel		5.2	38.6	6	36.8	25.5	23.3		13 [2 - 25]		
Couture 2021	Aspirin Clopidogrel Aspirin and Clopi- dogrel	62 7 2	33.3	74.6	23.9	23.3	23.9	23.3	15.8 (6.2)	16 [11–20]	100	3 months
Hermann 2009	Aspirin Aspirin and Clopi- dogrel Aspirin and Dipyrida-	266 3	5.2 NA	51.9 81	10.5	22.6 NA	33	22.6 NA	13.6 (22)	16 [12–20] 10 [1 - 30]	100 NA	X Y
Lin 2021	mote Clopidogrel - Aspirin	6 - 213	Ϋ́ Z	69	51 4	Ą.	15	27.7	13.8 (7)	₹	₹	3 months
	Clopidogrel Aspirin and Clopi- dogrel	37		74.4	30.6		40	35.9				
Ibrahim 2010	Aspirin	92	23	78	37.3	NA	NA	NA	16 (5.5)	16 [11 - 21]	NA	3 months

(continued)
Table 1
<u> </u>

	_											
Study	Prior APT Agent(s), n	gent(s), n	Previous	HTN, %	Diabetes, %	Current	AF, %	Hyperlipi-	NIHSS		EVT, %	Follow-up
			Stroke or TIA, %			smoking, %		demia, %	mean (SD)	median [IQR]		nme
	Clopidogrel	15									-	
		1	5	48.9	16.1							
Meurer 2013	NA	NA	27.6	6.98	28.6	NA	31.4	61.1	12.4 (5.7)	NA	NA	at discharge
	1	1	6	62.4	18.8		14.5	31.2				
Chen 2016	NA	NA	30.4	6.09	21.7	30.4	43.5	43.5	10.8 (5.6)	14 [7 - 16]	NA	3 months
		1	14.8	60.7	19.7	39.5	33.6	23.8		11 [7 - 14]		
Hang Jing 2020	NA	NA	30.4	87	30.4	8.7	43.5	0	7.8 (6.3)	8 [4 -11]	NA	NA
	1	1	8.3	72.2	25	19.4	11.1	11.1		7 [4 - 13]		
Dorado 2010	Aspirin	55	13.9	69.4	24.3	NA	NA	9.09	13.6 (8.2)	14 [8 - 19]	NA	3 months
	Clopidogrel	14										
	Aspirin and	2										
	Clopi-											
	uogiei Taidunal	-										
	ırınusaı	_										
	1		25	54				42.3				
Bravo 2008	Aspirin	106	23.4	63.2	29.2	34.1	44.5	39	NA	14	NA	3 months
	Clopidogrel	24										
	Ticlopidine	1										
	Dipyrida-	1										
	mole											
	Triflusal	5										
	1	1		9	54.3	19.2	30.2	31.4		15		
Tsivgoulis 2018	DAPT	1043	29.7	81.3	30.1	15.2	20.6	57.4	10 (6.5)	9 [6 - 15]	3	3 months
	1	1	26.7	81.4	31	14.9	23.3	59.5		9 [6 - 15]	3.5	
Pan 2015	Aspirin	115	NA	72	26.1	NA	31.9	NA	11.4 (6.7)	12 [8 - 18]	NA	3 months
	Aspirin and	14										
	dogrel											
	1	ı		57.4	16.1		15.5			11 [7 - 16]		
Choi 2016	SAPT	353	40.7	77.5	28.4	18.8	8.44	33	10.1 (7.4)	9 [5 - 16]	0	NA
	DAPT	87										
	Triple APT	1										
	ı	ı	41.4	84	27.2	20.4	46.6	32.7		10 [6 - 15]	0	
Sanak 2012	Aspirin	49	NA	NA	26.8	NA	NA	NA	NA	16	NA	NA
	Clpidogrel											

Table 1 (continued)

(î											
Study	Prior APT Agent(s), n	gent(s), n	Previous	HTN, %	Diabetes, %	Current	AF, %	Hyperlipi-	NIHSS		EVT, %	Follow-up
			stroke or TIA, %			smoking, %		demia, %	mean (SD) median [IQR]	median [IQR]		time
	Aspirin and Dipyrida- mole	9										
	1	1			15.6					15		
Meseguer 2015	NA	NA	NA	74	16.7	41.9	NA	53.7	11.5 (9.3)	12 [6 - 18]	13.2	3 months
	1			41.8	14	37.3		18.8		11 [5 - 18]	15.7	
Diedler 2010	Aspirin	3016	21.9	74.1	20.8	17.9	32.3	51.4	12 (8.9)	NA	NA	3 months
	Clopidogrel	243										
	Aspirin and Dipyrida-	175										
	mole											
	Aspirin and 151 Clopi- dogrel	151										
	1	1	4.7	52	13.7	26.9	18.1	26.5				
Peng 2024	SAPT	117670	53,808	114,526	50,631	NA	26,300	82,026	9.85(7.55)	7 [4 -14]	89	3 months
	DAPT	21805										
	ı	ı	26,221	114,294	41,271		19,171	59,661			6	
											6	

atrial fibrillation, NIHSS National Institute of Health Stroke Scale, IQR interquartile range, ENCHANTED Enhanced Control of Hypertension and Thrombolysis Stroke Study, RCT randomized controlled trial, SITS-MOST Safe Implementation of Thrombolysis in Stroke-Monitoring Study, ECASS European Cooperative Acute Stroke Study, NINDS National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group, IST international stroke trial, mg milligram, kg kilogram, NA not available, SAPT single antiplatelet therapy, DAPT dual antiplatelet therapy Abbreviations: IVT intravenous thrombolysis, sICH symptomatic intracranial hemorrhage, APT antiplatelet therapy, SD standard deviation, TIA transient ischemic attack, HTN hypertension, AF

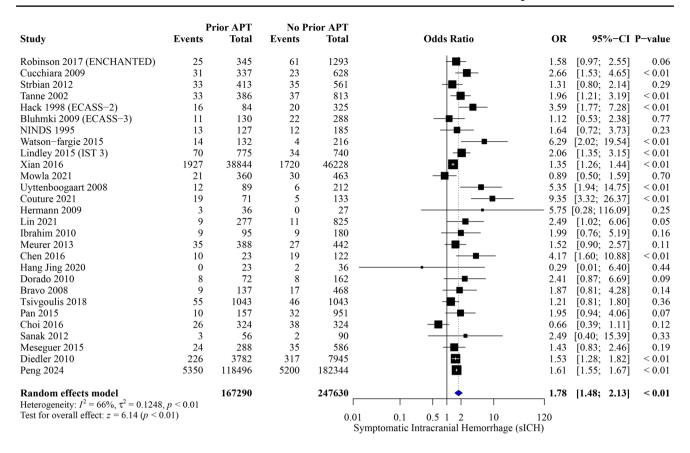


Fig. 2 Forest plot of meta-analysis for symptomatic intracranial hemorrhage outcome

and mRS0-2 (P = 0.069). Funnel plots for all outcomes are presented in (Figures S2-S5).

Safety outcomes

Symptomatic ICH

Among 414,920 patients, prior APT significantly increased the odds of sICH (OR, 1.78; 95% CI [1.48, 2.13]; P < 0.01), with notable heterogeneity between studies ($I^2 = 66\%$, P < 0.01) (Fig. 2). The pooled results were robust through sensitivity analysis, and heterogeneity was best resolved by the exclusion of the study by Xian et al. [16] ($I^2 = 56\%$) (OR, 1.82; 95% CI [1.50, 2.22]; P < 0.01) (Figure S6). The pooled studies analyzed based on different sICH definitions showed consistent associations between prior APT and an increased sICH risk (Figure S7).

Upon subgroup analyses based on study design and baseline NIHSS scores, the association between prior APT and increased sICH risk remains significant. Notably, a baseline NIHSS score of ≥ 10 was associated with a higher risk of sICH among those with APT exposure (OR, 1.96; 95% CI [1.42, 2.70]; P < 0.01) than a baseline NIHSS score < 10 (OR, 1.53; 95% CI [1.33, 1.76]; P < 0.01) (Figures S8–S9).

In subgroup analysis according to time window from onset to treatment, sICH rates demonstrated a significant increase in risk associated with prior APT use across all time windows. At 3 h, the OR for sICH was 1.73 (95% CI [1.16, 2.57], P < 0.01). Similarly, at 4.5 h, the risk remained elevated (OR: 1.37, 95% CI [1.13, 1.67], P < 0.01), and the association was even stronger at 6 h (OR: 2.56, 95% CI [1.81, 3.64], P < 0.01). A test for subgroup differences across the time windows was significant (P = 0.01), highlighting the differential impact of prior APT on sICH risk depending on the time window. (Figure S10).

Any intracranial hemorrhage

Among 9,129 patients, prior APT significantly increased the odds of any ICH (OR, 1.44; 95% CI [1.16, 1.78]; P < 0.01), with notable heterogeneity ($I^2 = 63\%$, P < 0.01) (Fig. 3). The pooled results were robust through sensitivity analysis, and heterogeneity was best resolved by exclusion of the study by Watson-Fargie et al. [23] ($I^2 = 53\%$) (OR, 1.34; 95% CI [1.12, 1.61]; P < 0.01) (Figure S11). Subgroup analysis based on baseline NIHSS is outlined in (Figure S12).

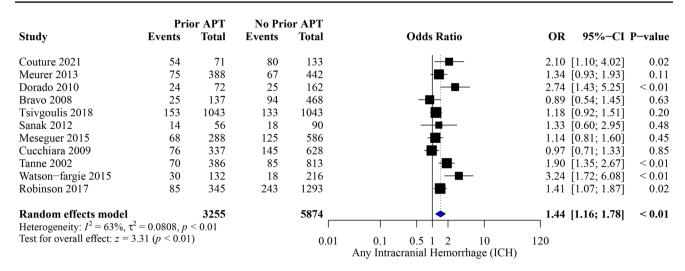


Fig. 3 Forest plot of meta-analysis for any intracranial hemorrhage outcome

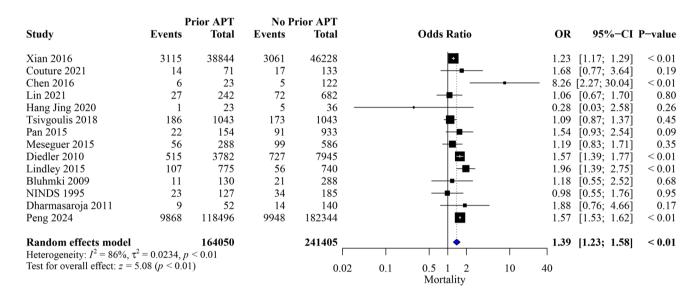


Fig. 4 Forest plot of meta-analysis for mortality outcome

Mortality

Among 405,455 patients, prior APT significantly increased the odds of mortality (OR, 1.39; 95% CI [1.23, 1.58]; P < 0.01), with notable heterogeneity ($I^2 = 86\%$, P < 0.01) (Fig. 4). The pooled results were robust through sensitivity analysis, and heterogeneity was best resolved by the exclusion of the study by Xian et al. [16] ($I^2 = 57\%$) (OR, 1.43; 95% CI [1.24, 1.65]; P < 0.01) (Figure S13). Subgroup analyses based on baseline NIHSS score and study design are presented in (Figure S14-S15). Mortality outcomes showed a more complex pattern. At 3 h, the OR was 1.23 (95% CI [0.87, 1.73], P = 0.23). However, at 4.5 h, the odds of mortality were significantly higher for patients with prior APT (OR: 1.41, 95% CI [1.18, 1.69], P < 0.01). At the 6-h mark,

the OR increased substantially (OR: 3.49, 95% CI [0.88, 13.95], P=0.08), although this did not reach statistical significance. (Figure S16).

Efficacy outcomes

Good functional outcome

Among 355,452 patients, we found that prior APT was associated with lower odds of achieving a good functional outcome (OR, 0.85; 95% CI [0.74, 0.97]; P=0.02), with notable heterogeneity ($I^2=89\%$, P<0.01) (Fig. 5).

The pooled results were robust through sensitivity analysis, however, the heterogeneity was not resolved (Figure S17). Subgroup analyses based on baseline NIHSS

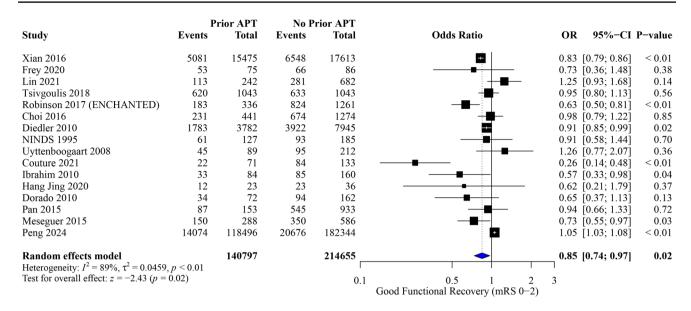


Fig. 5 Forest plot of meta-analysis for good functional outcome (mRS 0-2)

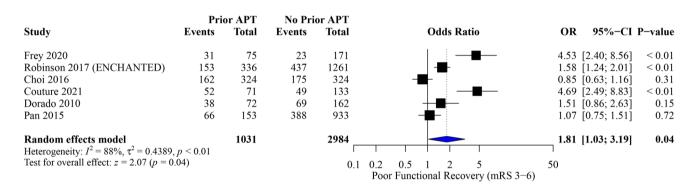


Fig. 6 Forest plot of meta-analysis for poor functional outcome (mRS 3-6)

score and study design are presented in (Figures S18 – S17 S19). In subgroup analysis according to time window from onset to treatment, no significant differences were observed between the prior APT and no prior APT groups. At 3 h, the OR for good recovery was 0.91 (95% CI [0.72, 1.16], P = 0.46), and at 4.5 h, it was 0.90 (95% CI [0.77, 1.05], P = 0.18). (Figure S20).

Poor functional outcome

Among 4,015 patients, prior APT significantly increased the odds of poor functional outcome (mRS 3–6) (OR, 1.81; 95% CI [1.03, 3.19]; P = 0.04), with notable heterogeneity ($I^2 = 88\%$, P < 0.01) (Fig. 6). The pooled results were inconsistent through sensitivity analysis, and heterogeneity wasn't resolved (Figure S21).

Discussion

Our analysis investigated the safety and efficacy outcomes associated with prior APT in stroke patients treated with IV alteplase. Although there were reviews on using prior APT in AIS cases eligible for IVT, to the authors' knowledge, this is the largest systematic review and meta-analysis including up-to-data of both subgroup analysis of clinical trials and observational studies and evaluating both efficacy and safety outcome events [10, 24, 25].

In our analysis of 436,232 patients, we found that for AIS patients treated with IV alteplase, pretreatment with APT significantly increased the odds of sICH, any ICH, poor functional outcome, and mortality. Additionally, our subgroup analysis based on time window from onset to treatment showed that prior APT use is associated with an increased risk of sICH, particularly at longer time windows,

and may also contribute to higher mortality at 4.5 h, although the evidence for mortality remains inconclusive at 6 h. However, no significant impact of prior APT on good functional recovery was observed across any of the time windows.

Our findings of increased hemorrhagic events and mortality are consistent with the outcomes reported in previous meta-analyses. The observed higher risk of sICH among patients with prior APT was translated into increased poor functional recovery (mRS 3-6) which was not reported in any previous meta-analysis. Furthermore, our analysis revealed a significant association between prior APT and decreased odds of good functional recovery. The existing meta-analyses were heterogeneous regarding the good functional outcomes, with some studies reporting a decreased good functional recovery [14] (OR: 0.86, 95% CI: 0.80— 0.93), [26] (OR: 0.69, 95% CI: 0.56—0.85), and [10] (OR: 0.91, 95% CI: 0.88—0.94)], and some other studies reporting no significant association [25] (OR: 0.86, 95% CI: 0.73 - 1.01) and [27] (OR: 0.95, 95% CI: 0.76 - 1.20)] [10, 14, 24, 25, 27].

While the main purpose of thrombolysis therapy is to restore perfusion, up to 10% of patients develop serious adverse effects, of which the sICH is the most feared and can lead to clinical deterioration and poor long-term outcomes [25, 26, 28]. Prior APT, causing inhibition of platelet aggregation, that can continue to the thrombolysis period may be accounted for the higher rates of sICH among prior APT groups [25, 29]. However, due to the lack of experimental and translational research and the complexity of sICH, it might be difficult to elucidate this phenomenon at the mechanistic level fully [14]. A prior study has proposed that recanalization is essential for the occurrence of sICH in the damaged blood vessels beyond the initial blockage sites. This suggests that the increase in sICH might be attributed to reperfusion caused by thrombolysis, which, when combined with platelet inactivation, could elevate the risk of bleeding [30].

Patients using APT often present with a range of comorbidities and risk factors that can influence clinical outcomes. Additionally, the diverse baseline characteristics across populations in the included studies may contribute to the observed effect estimate and partially account for the observed heterogeneity in our analysis. In our subgroup analysis by stroke severity, as measured by the baseline NIHSS, a baseline NIHSS score greater than 10 was associated with higher odds of sICH compared to a baseline NIHSS score of less than 10. This finding suggests that higher baseline stroke severity may amplify the risk of sICH, highlighting the need to consider stroke severity when evaluating the bleeding risks associated with APT in AIS candidates for IV alteplase.

Among the relevant demographic factors, the APT regimen was observed as a significant predictor of hemorrhagic

complications after IV alteplase. In the meta-analysis by [27], the highest hemorrhagic risk after IV alteplase among APT users was observed (OR: 2.26, 95CI% [1.39, 3.67], P = 0.001) [27]. This could be explained by the fact that this study included only research studies that investigated prior dual antiplatelet therapy (DAPT). DAPT usually targets more than one pathway for platelet inactivation, hence, increasing the risk of bleeding [16]. This observation warrants a subgroup analysis of the APT regimen and duration; however, we could not do that due to insufficient relevant data. As more antiplatelet agents have become more popular in clinical practice and given the variability in bleeding risk associated with different agents, it is essential to thoroughly evaluate regimens beyond the commonly used regimens aspirin and clopidogrel [31]. Recently, two case reports of successful recanalization using IV alteplase with no bleeding complications in patients on ticagrelor were reported [32]. Therefore, exploring the safety and efficacy of alternative antiplatelet therapies in the context of IV alteplase could provide valuable inputs to better inform clinical decision-making.

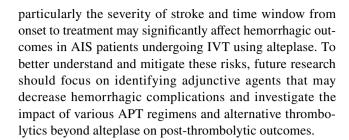
Besides the acute timely intervention in AIS cases, good functional outcomes also depend on the sustained patency of cerebral vessels [25, 33]. After the cerebrovascular incident, patients can be at higher risk for platelet aggregation and vascular re-occlusion especially within the first 24 h [34]. Thus, antiplatelet therapy was hypothesized to maintain vascular patency and thus not only sICH but also good functional outcomes. However, previous meta-analyses revealed no significant association between prior APT and recanalization rate with controversial results in improving the functional outcomes [14, 25, 35, 36].

Finally, the existing literature is limited by a lack of evidence regarding the effects of prior APT on outcomes following the use of thrombolytic agents other than alteplase, such as tenecteplase. Considering the unavoidable necessity of APT in patients with cardiovascular and cerebrovascular risk factors, it is imperative to further explore the safety and efficacy profiles of tenecteplase in this specific population.

Our study leveraged an extensive dataset by incorporating the largest population ever analyzed to examine the relationship between prior APT and IV alteplase outcomes. Additionally, by including the most recent studies, we were able to investigate the association between prior APT and poor functional outcomes. To the best of our knowledge, this is the first meta-analysis to report such an association. Furthermore, we performed a comprehensive systematic review and meta-analysis including observational studies that resemble real-world data besides data from subgroup analysis of clinical trials.

The current review does have some limitations. Because of insufficient data, we did not include the outcome of the recanalization rate, and we did not perform subgroup

analysis based on the ethnicity of the patients which was proven to affect the outcome of APT administration [10]. Furthermore, there was marked heterogeneity among the studies in certain outcomes although we tried to reduce the heterogeneity using the leave-one-out technique which resolved heterogeneity on some occasions. Although some studies reported agents of prior APT, none provided discrete outcome data for each antiplatelet agent. This limits our ability to fully assess the impact of DAPT on outcomes and highlights a potential area for improvement in future research. The variation in APT doses, regimens, and duration should be considered in future studies. The inherent limitations of observational studies cannot be overcome by meta-analysis as well. Including observational studies, although important to give insights about real-world data, can produce lower-quality evidence. Despite the large included population, almost 93% of them originated from two large-scale studies [16, 17]. The dominance of these two studies may influence the generalizability of our findings and could underrepresent other smaller studies with diverse population. Another important limitation is the utilization of different alteplase doses across the included studies which could impact the outcome results. Insufficient data was the reason behind not being analyzed in our study. Relation between the dose of the IVT agent and hemorrhagic transformation should be assessed in the upcoming studies.


Additionally, A limitation of this study is the incomplete reporting of endovascular thrombectomy utilization across the included studies, with only 13 studies providing this data. This limited our ability to assess the impact of EVT on hemorrhagic transformation and related outcomes. Finally, some included observational studies had an overall high risk of bias which could impact the findings of our study.

Implications for future research

Despite robust evidence indicating a significant increase in the risk of sICH among patients with prior APT undergoing IVT utilizing alteplase, this relationship needs to be further explored in different APT regimens and other thrombolytics than alteplase. This underscores the need for well-designed research studies with detailed documentation of prior APT duration and regimen. Future research endeavors should also focus on adding adjunctive agents, which might include novel antiplatelets.

Conclusion

Prior APT was found to significantly increase the risk of sICH, any ICH, mortality, and poor functional outcome, while reducing the likelihood of good functional outcome after IV alteplase. Our findings indicate that specific factors,

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10072-025-08024-x.

Authors contribution AN and HK initiated the study. AN, HK, HMS, RHE, HTA, AMH, OA, MMN, SE, AMA, NA, OER, ARA, and AB performed data extraction and analyses and drafted the first version of the manuscript. TRQ, MA, AM, ADK, DPL, LRM, ER, AMS, and SAM critically reviewed the manuscript and revised it. The authors read and approved the final manuscript.

The authors of this review received no funds from any individuals or organizations.

Data Availability All data generated or analysed during this study are included in this published article [and its supplementary information files].

Declarations

Ethical approval Not required as the study doesn't include human participants.

Consent to participate Not applicable.

Conflicts of interest All authors of this review declare no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Herpich F, Rincon F (2020) Management of Acute Ischemic Stroke. Crit Care Med 48(11):1654–1663. https://doi.org/10.1097/ CCM.0000000000004597
- Mosconi MG, Paciaroni M (2022) Treatments in Ischemic Stroke: Current and Future. Eur Neurol 85(5):349–366. https://doi.org/10. 1159/000525822
- Broderick JP, Hacke W (2002) Treatment of Acute Ischemic Stroke. Circulation 106(12):1563–1569. https://doi.org/10.1161/ 01.CIR.0000030406.47365.26

- Grotta JC (2023) Intravenous Thrombolysis for Acute Ischemic Stroke. CONTINUUM: Lifelong Learn Neurol 29(2):425–442. https://doi.org/10.1212/CON.000000000001207
- (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333(24): 1581–1588. https://doi.org/10.1056/NEJM1 99512143332401
- Abuelazm M et al (2022) The efficacy and safety of tenecteplase versus alteplase for acute ischemic stroke: an updated systematic review, pairwise, and network meta-analysis of randomized controlled trials. J Thromb Thrombolysis 55(2):322–338. https://doi. org/10.1007/s11239-022-02730-5
- Jia X, Wang W, Wu B, Sun X (2021) Intravenous thrombolysis for acute ischemic stroke with extended time window. Chin Med J (Engl) 134(22):2666–2674. https://doi.org/10.1097/CM9.00000 00000001781
- Maïer B, Desilles JP, Mazighi M (2020) Intracranial hemorrhage after reperfusion therapies in acute ischemic stroke patients. Front Neurol 11. https://doi.org/10.3389/fneur.2020.599908
- Barow E et al (2023) Effect of Comorbidity Burden and Polypharmacy on Poor Functional Outcome in Acute Ischemic Stroke. Clin Neuroradiol 33(1):147–154. https://doi.org/10.1007/s00062-022-01193-8
- Sun C, Song B, Jiang C, Zou J-J (2019) Effect of antiplatelet pretreatment on safety and efficacy outcomes in acute ischemic stroke patients after intravenous thrombolysis: a systematic review and meta-analysis. Expert Rev Neurother 19(4):349–358. https:// doi.org/10.1080/14737175.2019.1587295
- Qureshi AI et al (2006) High prevalence of previous antiplatelet drug use in patients with new or recurrent ischemic stroke: Buffalo metropolitan area and Erie County stroke study. Pharmacotherapy 26(4):493–498. https://doi.org/10.1592/phco.26.4.493
- Frey BM et al (2020) Safety and efficacy of intravenous thrombolysis in stroke patients on prior antiplatelet therapy in the WAKE-UP trial. Neurol Res Pract 2(1):40. https://doi.org/10. 1186/s42466-020-00087-9
- Koga M et al (2023) Intravenous Alteplase at 0.6 mg/kg for unknown onset stroke with prior antithrombotic medication: THAWS randomized clinical trial. J Atheroscler Thromb 30(1):63337. https://doi.org/10.5551/jat.63337
- Luo S, Zhuang M, Zeng W, Tao J (2016) Intravenous thrombolysis for acute ischemic stroke in patients receiving antiplatelet therapy: a systematic review and meta-analysis of 19 studies.
 J Am Heart Assoc 5(5). https://doi.org/10.1161/JAHA.116.003242
- 15. Šaňák D et al (2012) Prior use of antiplatelet therapy can be associated with a higher chance for early recanalization of the occluded middle cerebral artery in acute stroke patients treated with intravenous thrombolysis. Eur Neurol 67(1):52–56. https://doi.org/10.1159/000333064
- Xian Y et al (2016) Risks and benefits associated with prestroke antiplatelet therapy among patients with acute ischemic stroke treated with intravenous tissue plasminogen activator. JAMA Neurol 73(1):50. https://doi.org/10.1001/jamaneurol.2015.3106
- Peng TJ et al (2024) Contemporary prestroke dual antiplatelet use and symptomatic intracerebral hemorrhage risk after thrombolysis. JAMA Neurol 81(7):722. https://doi.org/10.1001/jamaneurol. 2024.1312
- Brooke BS, Schwartz TA, Pawlik TM (2021) MOOSE reporting guidelines for meta-analyses of observational studies. JAMA Surg 156(8):787. https://doi.org/10.1001/jamasurg.2021.0522
- Page MJ et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ n71. https://doi. org/10.1136/bmj.n71
- Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5(1):210. https://doi.org/10.1186/s13643-016-0384-4

- Sterne JA et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ i4919. https:// doi.org/10.1136/bmj.i4919
- Balduzzi S, Rücker G, Schwarzer G (2019) How to perform a meta-analysis with {R}: a practical tutorial. Evid Based Ment Health 22:153–160
- Watson-Fargie T, Dai D, MacLeod MJ, Reid JM (2015) Comparison of predictive scores of symptomatic intracerebral haemorrhage after stroke thrombolysis in a single centre. J R Coll Physicians Edinb 45:127–132. https://doi.org/10.4997/JRCPE.2015.208
- 24. Tsivgoulis G et al (2017) Antiplatelet pretreatment and outcomes in intravenous thrombolysis for stroke: a systematic review and meta-analysis. J Neurol 264(6):1227–1235. https://doi.org/10.1007/s00415-017-8520-1
- 25. Pan X, Zhu Y, Zheng D, Liu Y, Yu F, Yang J (2015) Prior antiplate-let agent use and outcomes after intravenous thrombolysis with recombinant tissue plasminogen activator in acute ischemic stroke: a meta-analysis of cohort studies and randomized controlled trials. Int J Stroke 10(3):317–323. https://doi.org/10.1111/ijs.12431
- Tsivgoulis G, Kargiotis O, Alexandrov AV (2017) Intravenous thrombolysis for acute ischemic stroke: a bridge between two centuries. Expert Rev Neurother 17(8):819–837. https://doi.org/10. 1080/14737175.2017.1347039
- Malhotra K et al (2020) Safety and efficacy of dual antiplatelet pretreatment in patients with ischemic stroke treated with IV thrombolysis. Neurology 94(7). https://doi.org/10.1212/WNL. 00000000000008961
- 28. Wahlgren N et al (2007) Thrombolysis with alteplase for acute ischaemic stroke in the safe implementation of thrombolysis in stroke-monitoring study (SITS-MOST): an observational study. The Lancet 369(9558):275–282. https://doi.org/10.1016/S0140-6736(07)60149-4
- Multicentre Acute Stroke Trial—Italy (MAST-I) Group (1995) Randomised controlled trial of streptokinase, aspirin, and combination of both in treatment of acute ischaemic stroke. Lancet 346(8989):1509–1514. https://doi.org/10.1016/S0140-6736(95)92049-8
- Hallevi H, Grotta JC (2008) Antiplatelet therapy and the risk of intracranial hemorrhage after intravenous tissue plasminogen activator therapy for acute ischemic stroke. Arch Neurol 65(5). https:// doi.org/10.1001/archneur.65.5.575
- Del Giovane C, Boncoraglio GB, Bertù L, Banzi R, Tramacere I (2021) Antiplatelet drugs for secondary prevention in patients with ischemic stroke or transient ischemic attack: a systematic review and network meta-analysis. BMC Neurol 21(1):319. https://doi.org/10.1186/s12883-021-02341-2
- Landzberg DR, English S, Frankel M, Navalkele D (2021) Stroke thrombolysis in patients taking ticagrelor –two successful cases and a review of the literature. J Stroke Cerebrovasc Dis 30(2):105520. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105520
- Rha J-H, Saver JL (2007) The impact of recanalization on ischemic stroke outcome. Stroke 38(3):967–973. https://doi.org/ 10.1161/01.STR.0000258112.14918.24
- Saqqur M et al (2007) Clinical deterioration after intravenous recombinant tissue plasminogen activator treatment. Stroke 38(1):69–74. https://doi.org/10.1161/01.STR.0000251800.01964.f6
- Zinkstok SM, Roos YB (2012) Early administration of aspirin in patients treated with alteplase for acute ischaemic stroke: a randomised controlled trial. Lancet 380(9843):731–737. https:// doi.org/10.1016/S0140-6736(12)60949-0
- Zinkstok SM, Beenen LF, Majoie CB, Marquering HA, de Haan RJ, Roos YB (2014) early deterioration after thrombolysis plus aspirin in acute stroke. Stroke 45(10):3080–3082. https://doi.org/ 10.1161/STROKEAHA.114.006268

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Ahmed Naeem¹ · Hesham Kelani² · Hazem Mohamed Salamah³ · Rowan H. Elhalag⁴ · Hossam Tharwat Ali⁵ · Ayham Mohammad Hussein⁶ · Omar Abdelnasser⁷ · Mostafa Mahmoud Naguib⁸ · Salem Elshenawy⁴ · Abdelrhman M. Abdelwahab⁴ · Nadia Albaramony⁹ · Omar El Sayed Rageh¹⁰ · Abdallah R. Allam¹¹ · Aliaa Bakr¹² · Mohamed Abuelazm¹⁰ · Ahmed Madkoor¹³ · Travis R. Quinoa¹⁴ · Arthur D. Kay² · David P. Lerner² · Lisa R. Merlin^{2,18} · Eytan Raz¹⁵ · Alejandro M. Spiotta¹⁶ · Stephan A. Mayer¹⁷

- ☐ Travis R. Quinoa
 Trq3@njms.rutgers.edu

 Ahmed Naeem
 ahmed.naeem3090@gmail.com
- Al-Azhar Faculty of Medicine, Asyut, Egypt
- Neurology Department, SUNY Downstate Health Science University at One Brooklyn Health, New York City, NY, USA
- ³ Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Qena Faculty of Medicine, South Valley University, Qena, Egypt
- Faculty of Medicine, Al-Balqa' Applied University, Salt, Jordan
- ⁷ Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
- ⁹ Neurology and Neurocritical Care Department, Mayo Clinic, Jacksonville, FL, USA

- Faculty of Medicine, Tanta University, Tanta, Egypt
- Faculty of Medicine, Menoufia University, Menoufia, Egypt
- ¹² Al-Azhar Faculty of Medicine for Girls, Cairo, Egypt
- Burke Neurological Institute, Weill Cornell Medical College, New York City, NY, USA
- Department of Neurosurgery, Rutgers New Jersey School of Medicine, Newark, NJ, USA
- Department of Neurosurgery, NYU Langone Health, New York City, NY, USA
- Neurosurgery Department, Medical University of South Carolina, Charleston, SC, USA
- Westchester Medical Center Health Network, Departments of Neurology and Neurosurgery, New York Medical College, Valhalla, NY, USA
- Departments of Neurology, Physiology, and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA

