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ABSTRACT
We have developed an algorithm coupling mesoscopic simulations on different levels in a hierarchy of Cartesian meshes. Based on the mul-
tiscale nature of the chemical reactions, some molecules in the system will live on a fine-grained mesh, while others live on a coarse-grained
mesh. By allowing molecules to transfer from the fine levels to the coarse levels when appropriate, we show that we can save up to three orders
of magnitude of computational time compared to microscopic simulations or highly resolved mesoscopic simulations, without losing signif-
icant accuracy. We demonstrate this in several numerical examples with systems that cannot be accurately simulated with a coarse-grained
mesoscopic model.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5095075., s

I. INTRODUCTION

Spatial stochastic modeling of reaction-diffusion kinetics is a
popular tool to study the fine-grained molecular details of intracel-
lular regulation. By being able to capture the inherent spatial aspects
of signal transduction as well as the discrete and stochastic nature of
molecular interaction in the low-copy number regime, these types
of models offer the possibility of insights not attainable by either
more detailed molecular dynamics models (due to their computa-
tional cost) or phenomenological macroscopic models (due to the
deterministic description).1–6

Spatial stochastic simulation algorithms (SSA) used in systems
biology have to carefully balance the need for high spatial reso-
lution with the need for a low computational cost, in order to
study regulatory processes over physiologically relevant time scales
(entire cell cycles). Two model formalisms have attracted particular
attention in the field: the mesoscopic on-lattice Reaction-Diffusion
Master Equation (RDME) and the microscopic off-lattice Collins-
Kimball-Smoluchowski (CKS) model. In the former, proteins are
modeled as point particles and are diffusing on the grid accord-
ing to a discrete jump process, and they are able to react when
finding themselves in the same voxel, whereas in the latter, reacting

proteins are modeled as individual hard spheres and diffuse continu-
ously in space according to Brownian motion. Due to the popularity
of these modeling frameworks, several capable open-source soft-
ware frameworks have been developed to support spatial stochastic
modeling both for the RDME7–9 and the particle-based model.10–12

Some software support simulation on multiple levels and integrate
one or more spatial stochastic simulators, such as VCell13 and
StochSS.14

The CKS model is generally considered being a more accu-
rate model than the RDME, although there is no formal relationship
between these two models in the sense that one arises as an approxi-
mation of the other. By choosing reaction rates in the RDME so that
the properties of the microscopic model are captured, it is possible
to relate the two models to each other formally.15–17 With the choice
of mesoscopic rate constants from Ref. 15, it is possible to match
the mean binding time between two molecules in the two models,
down to a critical size of the mesh.16 For meshes finer than this crit-
ical size, the on-lattice RDME deteriorates in accuracy compared to
the CKS model and thus cannot capture the microscopic dynamics
accurately.

The mesoscopic on-lattice model offers superior simulation
speed, assuming sufficient accuracy can be obtained with a relatively
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coarse mesh. However, studies have highlighted scenarios where
a very high spatial resolution is necessary to capture microscopic
properties such as the rebinding time distributions accurately, in
order to capture the correct macroscopic behavior.3,17,18 For these
systems, the computational cost becomes substantial both for micro-
scopic particle-based methods and for on-lattice simulations with
high spatial resolution.15

The reason for the rapid growth in computational cost differs
in simulation based on the CKS and RDME models. Implementa-
tions of the microscopic model, being a many-body problem, scales
poorly with the number of particles in the simulation. The Green’s
Function Reaction Dynamics (GFRD) algorithm improves perfor-
mance over naive Brownian dynamics for sparse systems with rela-
tively few particles,19 but the computational cost still becomes over-
whelming for systems with many interacting particles. If the mesh
used in the RDME can be chosen relatively coarse, simulations on
the mesoscopic scale is typically orders of magnitudes faster than
simulations based on the CKS model and scales linearly with the
number of particles. However, the on-lattice RDME suffers from
stiffness, leading to a quickly growing computational cost as the
mesh is refined. The number of diffusive jumps per time unit of
simulation time is proportional to D/h2, where D is the diffusion
constant and h is the length of a voxel.20 This means that, even if
a good accuracy can be obtained with the RDME for mesh sizes
close to the critical mesh size discussed above, the simulations might
be prohibitively expensive if the entire system is simulated at this
scale.

The problem for practical modeling is that spatial models often
have at least a few reactions that are diffusion limited and hence
require a high spatial resolution, but on the same time species that
are present in relatively large copy numbers (in the hundreds or
thousands). This results in a situation where neither method per-
forms well. A natural way to approach these multiscale systems is
to blend mesoscopic and microscopic methods in one single sim-
ulation. Previous work on such hybrid methods has highlighted
the large computational savings made possible by a multiresolu-
tion approach.21 A challenge is to partition the system into its
microscopic and mesoscopic part without prior knowledge about
the system dynamics. In previous work, Hellander et al. demon-
strated how analysis from Ref. 20 can be used for automatic system
partitioning.21

In addition to speeding up simulations with multiscale reaction
properties, mesoscopic-microscopic hybrid methods can be applied
to split simulation accuracy in different parts of the domain22–24 and
to augment mesoscopic models for situations where the mesoscopic
framework is not well defined, such as for interactions between
molecules and surfaces, and for 2D-3D interactions.22

Hybrid methods can achieve good speedups, but a distinct
disadvantage is the relatively large complexity in their implemen-
tation and overhead caused by switching between data structures
optimal for the respective algorithms. In this paper, we present a
new pure on-lattice multiscale and multilevel method for spatial
stochastic simulations. Based on our previous analysis of the accu-
racy of the RDME on different spatial resolutions,15,16 we design
a hierarchical simulation algorithm that employs several meshes
of different resolution in order to capture the fine scale dynam-
ics of highly diffusion-limited reactions while avoiding the need to
resolve the entire systems on that same high level. In a series of

numerical examples of increasing complexity, we demonstrate an
accuracy comparable with pure GFRD simulations at a simulation
cost up to three orders of magnitude below state-of-the-art GFRD
implementations.

II. BACKGROUND
In Sec. III, we describe a method that allows reactions to take

place on different mesh resolutions depending on the degree of dif-
fusion control. This hierarchical algorithm for the RDME (hRDME)
allows for high accuracy at a much reduced cost compared to a fully
microscopically resolved system, for models with multiscale prop-
erties. In this section, we first describe the underlying mesoscopic
model and then briefly review the microscale model. We consider
the more fine-grained microscale as the correct model later when
computing the error of the mesoscopic simulations.

A. Reaction-diffusion master equation
The reaction-diffusion master equation is the natural spatial

extension of the popular well-mixed Markov process description of
chemical kinetics.25,26 This model formalism is widely used in sys-
tems biology and models the state x of the system as a vector con-
sisting of the discrete number of molecules of each chemical species.
Formally, chemical species Xi, i = 1 . . . N participate in M chemical
reactions Rj, j = 1 . . .M. For example, a bimolecular reaction where
species X1 react with X2 to form X3 can be written as

X1 + X2
kÐ→ X3, (1)

where k is the reaction rate parameter for the reaction. Using mass
action kinetics, the propensity function for reaction (1) is a function
of the rate constant and the copy number of the reactants X1, X2,
a(x) = kx1x2. In the Markov process formalism, the inverse of the
propensity 1/ar(x) gives the transition rate for changing states from
[x1, x2, x3] to [x1 − 1, x2 − 1, x3 + 1].

The time evolution of the probability density of the system
is governed by the forward Kolmogorov equation, or the chemical
master equation (CME), but since this equation is infeasible to solve
for systems with a large number of chemical species, kinetic Monte
Carlo simulation using the direct stochastic simulation algorithm
(SSA),27 or one of its many optimized or approximate variants,26 is
normally used to analyze the system.

In the spatial stochastic case, the computational domain is par-
titioned into K voxelsVk using a mesh. Molecules move by diffusion,
modeled as discrete jump events between adjacent voxels, according
to a linear event

Xij
dijkÐ→ Xik. (2)

The rate dijk depends on the diffusion constant of Xi and on the
shape and size of the voxels.28 Chemical reactions are modeled as in
the well-mixed model, but now locally confined to individual voxels.
Compared to simulation of well-mixed systems, the computational
cost grows quickly with the size of the mesh. If h is a measure of the
length scale of the voxel, the total number of diffusion events in a
simulation scale like 1/h2. This stiffness problem causes RDME sim-
ulations to become highly computationally expensive if a high spatial
resolution is needed.
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B. Next-particle method
There are different methods for generating trajectories of the

RDME. Widely used is the Next-Subvolume Method (NSM) in
which the population count of each species is tracked inside the vox-
els.4 While the specific choice of solver is not critical for the hRDME
method, we here choose a different approach for practical reasons. It
will be useful to know for how long each molecule has existed within
the system, and therefore, we implement the hRDME with the Next-
Particle Method (NPM)21 as the underlying mesoscopic solver. In
this section, we describe the method as implemented on a single
mesh, and then, in Sec. III, we describe how it can be adapted to
the case of multiple meshes.

The method is initialized by sampling a voxel for each molecule
in the system. Usually, the initial distribution of molecules is uni-
form, in which case we sample a voxel from a uniform distribution,
but this is not a necessary requirement. Just as in the case of the
NSM, we will maintain an event queue sorted in descending order
based on the time for each event (so that the next event in the
queue is also the event that fires next). For each molecule in the
system, we therefore sample tentative events and add them to the
queue.

1. Initialization
1. For each molecule, add a tentative next diffusion event.
2. For all molecules participating in a unimolecular event, add the

tentative next unimolecular event. Note that we only add one
tentative event for each molecule, as later unimolecular events
could never fire.

3. For all molecules participating in a bimolecular event, add the
tentative next bimolecular event.

4. In addition, we add tentative events of the type 0/→ S. For each
reaction of that type, we add one tentative next reaction.

2. Propagation
After the system has been initialized, the algorithm proceeds by

executing the events in order.

1. If the next event is a diffusion event, move the molecule
accordingly. If the molecule participates in any bimolecular
reactions, remove those from the queue. Unimolecular events
are not affected by diffusion events, so they are left on the
queue. Finally, sample new tentative bimolecular events and a
new diffusion event.

2. If the next event is a unimolecular event, remove all ten-
tative events involving the reacting molecule. Initialize new
molecules inside the same voxel as the reacting molecule and
finally sample new tentative diffusion and reaction events for
each new molecule.

3. If the next event is a bimolecular event, remove all tenta-
tive events involving either of the reacting molecules. Initial-
ize products inside the same voxel and sample new tentative
events for all the products.

4. If the next event is of the type 0/→ S, initialize a new molecule of
species S into the system. Unless otherwise specified, its initial
position will be uniform. Update tentative new reaction events
depending on species S.

5. Repeat until the final time T.

C. Microscopic scale
On the mesoscopic scale, particles are restricted to nodes on

a computational grid. In contrast, on the microscopic scale, parti-
cles diffuse freely in continuous space according to normal diffu-
sion. On the mesoscopic scale, particles are point particles, while
on the microscopic scale, reacting molecules are modeled by hard
spheres. Here, reactions occur with some probability when the
molecules collide. The reaction dynamics is governed by the prob-
ability density function solving the Collins-Kimball-Smoluchoski
partial differential equation (PDE).19,29,30

Let r be the distance between two reactive molecules A and B,
D is the sum of the diffusion constants, σ is the sum of the reaction
radii, and kr is the reaction rate. The probability for the distance r at
time t, given that the distance was r0 at t0, is given by p(r, t|r0, t0),
solving the equation

∂p
∂t
= DΔp(r, t∣r0, t0) (3)

with boundary condition

K
∂p
∂n
∣
r=σ
= krp(r, t∣r0, t0), (4)

where

K =
⎧⎪⎪⎨⎪⎪⎩

4πσ2D (3D),

2πσD (2D).
(5)

There exist several popular implementations of solvers of this
model. Prominent examples are Smoldyn,31 MCell,11 and eGFRD.19

The former two, Smoldyn and MCell, take a similar approach in that
they select a fixed time step and proceed by propagating the system
one time step at a time. An alternative approach is implemented in
eGFRD where the system is propagated in continuous time. This
approach tends to be more efficient if very high accuracy is required
and if the system is reasonably sparse, while Smoldyn and MCell can
be significantly more efficient in other cases.

In this paper, we determine the accuracy of our simulations
by comparing to the corresponding simulations on the microscopic
scale. To ensure the highest possible accuracy on the microscopic
scale, we have compared to the results obtained with the eGFRD
algorithm, as well as another efficient implementation of a similar
algorithm.32,33

D. Reaction rates
For reference, we provide the formula used to convert micro-

scopic reaction rates for bimolecular reactions to the corresponding
mesoscopic reaction rates. Here, we use the formula derived in Refs.
15 and 16.

Assume that the microscopic reaction rate is kr , the sum of the
reaction radii is σ and the sum of the diffusion constants is D. On a
Cartesian mesh with voxels of width h, the mesoscopic reaction rates
are given by

kmeso
a = ka

hd
(1 +

ka
D
G(h, σ))

−1

, (6)
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where

G(h, σ) =
⎧⎪⎪⎨⎪⎪⎩

1
2π log(π− 1

2 h
σ ) − 1

4( 3
2π + C2) (2D),

1
4πσ − C3

6h (3D),
(7)

Cd ≈
⎧⎪⎪⎨⎪⎪⎩

0.1951, d = 2,

1.5164, d = 3,
(8)

and d is the dimension (d = 2 or d = 3).

III. METHOD
We are often interested in simulating systems displaying

dynamics on widely different scales. Parts of the system require
a high spatial resolution, while other parts can be simulated on a
coarse-grained mesh to satisfactory accuracy.

Instead of simulating the whole system on the fine-grained
level, we will here describe an approach to coupling several mesh res-
olutions. Some molecules will be simulated on a fine-grained mesh,
while others can be simulated to high accuracy on a much more
coarse-grained mesh. Molecules can also be initialized on a fine-
grained mesh and, after diffusing for a sufficiently long time, be
transferred to a more coarse-grained mesh.

A. A hierarchy of meshes
Here, for simplicity, we will consider Cartesian meshes only.

The coarsest possible mesh is a single voxel. This corresponds
to a fully well-mixed system. This mesh can then be successively
refined by halving the voxel width, thus obtaining a sequence of
meshes with 1, 23, 43, 83, . . ., number of voxels in 3D. By halv-
ing the width of the voxels in each step, each voxel will be fully
contained within a voxel on a coarser mesh. This is not a nec-
cessary requirement for the method to work, but it does simplify
the implementation and keeps the overhead of the method at a
minimum.

With this particular structure of the hierarchy of meshes, in
which each voxel on a finer mesh is fully contained within a voxel on
a coarser mesh, it is fairly straightforward to map molecules between
the different scales. The mapping is a pure preprocessing step, in
which each voxel on each mesh is assigned a parent voxel in the mesh
one level coarser and children voxels in the mesh one level finer. This
assignment is particularly simple for Cartesian meshes, but would be
possible to perform also in the case of an unstructured mesh (albeit
much more computationally expensive).

B. Move molecules between meshes
The core idea of the algorithm is to transfer molecules between

the different levels of the hierarchy depending on the dynamics of
the system. For each species, we can determine the finest mesh res-
olution necessary to resolve all dynamics involving that species (see
Sec. III C 5), and each molecule of that species will be initialized
on that mesh resolution. Depending on how the simulation pro-
ceeds, the molecule can be moved to coarser levels in the hierarchy,
and products resulting from reactions involving the molecule can be
moved to finer levels in the hierarchy.

1. Move a molecule from a fine mesh to a coarse mesh
However, if the molecule survives for long enough, and thus

diffuse enough, it can successively be moved to a more coarse-
grained mesh resolution without losing too much accuracy. The time
until we can move a molecule from a fine mesh to a coarser mesh is
related to the diffusion constant D of the molecule and the width
h of the voxels in the current mesh. In particular, the time ttransfer
until we can transfer a molecule to a coarser level is given by the
relation

h =
√

6Dttransfer

C
(9)

for some constant C. In words, the molecule should, on average,
diffuse a distance that is a multiple

√
C of the voxel width on the

current mesh, before we move it to a coarser mesh. This corresponds
to the molecule getting “well-mixed” on the length scale of the
voxels.

A voxel on the fine mesh is fully contained within a voxel on
the coarse mesh, and for each molecule, we keep track of the time it
has diffused since its last transfer. When it has diffused for at least
ttransfer, it can be transferred again. When a molecule is transferred
to a coarser mesh, it is simply placed in the voxel containing its
current voxel. In Sec. IV A, we determine a reasonable value for C
numerically.

2. Move a molecule from a coarse mesh to a fine mesh
Sometimes a molecule needs to be moved from a coarse mesh to

a finer mesh in the hierarchy. For instance, when a molecule dissoci-
ates on a coarse mesh, the products might have to be initialized on a
much finer mesh than that occupied by the reacting molecule. This
is done by placing the molecule randomly inside one of the voxels
contained within the voxel on the coarse mesh.

3. When can a molecule be moved?
A molecule is only transferred between meshes immediately

after a diffusion event has fired, and before, we sample new tentative
bimolecular reactions and a new tentative diffusion event.

The reason is that transfering a molecule to a new mesh is sim-
ilar to executing a diffusion event; the molecule is placed inside a
new voxel. This means that after transfering a molecule, we have
to sample a new tentative bimolecular event and a new diffusion
event. Transfering the molecule immediately following a diffusion
event thus minimizes the overhead because we need to perform
these operations either way. We also avoid introducing a bias by
artificially discarding tentative reaction events following a molecule
transfer.

C. Reactions
When simulating the RDME on a single mesh, bimolecular

reactions may occur when molecules occupy the same voxel, and
products of zeroth- and first-order reactions are simply placed in
the voxel of the reacting molecule. In the case of the hRDME, it will
not be as straightforward. In particular, we need to determine the
reaction rate for two reactive molecules occupying overlapping vox-
els on different levels in the hierarchy of meshes. Also, molecules can
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be initialized on a different level than that occupied by the reacting
molecules, and in those cases, we need to determine which voxel the
products should be placed inside.

1. Zeroth order reactions
Reactions of the type 0/ → S are executed just as in the stan-

dard NSM algorithm. We sample a tentative reaction time and
add the tentative event to the reaction queue. If the reaction fires,
the new molecule is initialized on the mesh size required for the
species S.

2. Diffusion events
A diffusion event is executed by first moving the molecule to

one of the neighboring voxels with a uniform probability. Follow-
ing a diffusion event, all tentative bimolecular events involving the
molecule is removed from the queue. If we find a new tentative
bimolecular event in the updated voxel, it is added to the queue. Uni-
molecular reactions are not affected by the diffusion event. A new
tentative diffusion is also added to the queue.

3. Unimolecular reactions
Whenever a molecule is introduced into the system, we sam-

ple the next tentative unimolecular reaction involving this molecule.
We will not have to update this event during the lifespan of the
molecule, as unimolecular reactions are not affected by diffusion
events.

When a unimolecular event fires, the reacting molecule is
replaced by the product molecules. With each product molecule is
associated a required mesh size. The products are initialized on their
respective required mesh size. If this mesh is finer than the mesh
occupied by the reacting molecule, we sample a voxel uniformly
from the children of this voxel. If the mesh is coarser than that of the
reacting molecule, we sample a voxel from the parents of the current
voxel occupied by the reacting molecule.

For each new molecule introduced, we sample the correspond-
ing tentative next events (diffusion, unimolecular, and bimolecular).

4. Bimolecular reactions
Let S1 and S2 be two species that react according to S1 + S2

kaÐ→ S3. If two molecules of species S1 and S2 occupy the same voxel
on the same level in the hierarchy, they react just as in the NPM.
However, here we frequently encounter the case where one of the
molecules, M1 of species S1, occupies a voxel on a finer mesh than
that occupied by molecule M2 of species S2. There is still a possibil-
ity that the molecules react if the voxel occupied by M1 is contained
within the voxel occupied by M2. In this case, they will react as if
both molecules occupied the voxel occupied by M2 on the coarser
mesh.

Assume that the molecules react with the rate kmeso
r (s−1), still

undetermined. The S1 molecule diffuses with the rate kdiff(s−1), and
the molecule M2 occupies the coarsest mesh in the hierarchy con-
sisting of one voxel. This means that M2 does not diffuse and that
M1 always occupies a voxel contained in the voxel of M2.

Now, in each step, the probability that the molecules react,
Preact, is given by

Preact = kmeso
r

kmeso
r + kdiff

. (10)

Each event has a waiting time, tevent, of

tevent = 1
kmeso
r + kdiff

. (11)

Thus, the average time τ until the molecules react is the average
number of events until a reaction fires, (Preact)−1, times the average
time per event, tevent, so we get

τ = (Preact)−1tevent = 1
kmeso
r

. (12)

We now want to choose kmeso
r so that we obtain the correct mean

binding time τ. However, for a large enough domain, the mean bind-
ing time is (kmeso)−1, where kmeso is the reaction rate for the voxel
occupied by the molecule M2. Thus, the reaction rate should be
chosen as if both molecules occupied the coarser mesh, in order to
reproduce the correct mean binding time of the molecules.

This argument holds in general. Consider the case where the
M2 molecule occupies a level in the hierarchy that is not the coarsest.
Assume that the M2 molecule diffuses with diffusion rate DA and
that the M1 molecule is fixed inside a voxel. Now, there exists only
one voxel that the M2 molecule can occupy, that is also occupied by
the M1 molecule. This means that the molecules should react as if
both molecules occupy the mesh of the M2 molecule.

5. Choosing an initial mesh hierarchy
It has been shown that mesoscopic simulations of a reversible

reaction become more accurate down to some mesh size
h∗ ≈ 2

3πC3σ ≈ 3.2σ, where σ is the sum of the reaction radii of a
reactive pair of molecules.15 For mesh sizes below h∗, simulations
actually get less and less accurate, so the optimal mesh size is h∗. It
was also shown that for this mesh size, we will reproduce the correct
average rebind time.

The relative error of the mean rebind time, τmeso
react , for two

particles in the RDME using mesh size h is given by21

W(h) = ∣τ
meso
react − τmicro

react ∣
τmicro

react
= ka

D
G(h, σ), (13)

where G is defined as in Eqs. (7) and (8).
This error was used to, given a fixed mesh with mesh size h and

a chemical reaction system, partition a model into a mesoscopic and
microscopic subset in a hybrid method.21 Here, we can instead use it
to, given a model, compute a largest h for which any given reaction
can be handled to satisfy an error W(h) < ϵ, where ϵ is a user supplied
tolerance. This holds when21

ka(1 + ϵ)−1 < kmeso
a h3, (14)

where ka is the microscopic reaction rate and kmeso
a is the mesoscopic

reaction rate.
For each species, we can compute the coarsest mesh resolution

satisfying (14). Whenever a molecule is created, it will be initialized
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to this mesh size, and this will be the finest mesh size on which we
will ever need to simulate this molecule.

IV. NUMERICAL EXPERIMENTS
In this section, we show that for some problems we obtain

simulation results as accurate as with a microscale simulation, but
with a three orders of magnitude speed-up compared to microscale
simulations. Specifically, we consider problems where molecules
can participate in reactions soon after a dissociation, requiring
detailed spatial resolution in order to resolve the spatial correla-
tion of the products following such a dissociation. In particular,
in these examples, it will be necessary to resolve diffusion at vary-
ing length scales to simulate the systems accurately. For instance,
to simulate rebinding events accurately, it is necessary to accurately
simulate the diffusive process of a molecule starting in a voxel,
diffusing out, and then returning to the same voxel after some
time.

All timing data have been generated on a Macbook Pro 2017,
3.1 GHz CPU with 8 GB of RAM. The problems have been chosen
such that (14) is satisfied to a sufficiently small ϵ only for the finest
possible mesh size h∗. All results for the eGFRD algorithm have been
generated with a state-of-the-art implementation,12,19,34 available at
https://github.com/gfrd/modern_egfrd.

A. Rebinding dynamics
In the first example, we show that we accurately reproduce the

rebinding dynamics of a bimolecular reaction. We thus consider the
rebind dynamics of the simple system

S1 + S2
k1Ð→←Ð
k2

S3. (15)

Depending on the association rate k1, the products S1 and S2 may
have a high probability of rebinding fast. On the microscopic scale,
the molecules are placed in contact following a dissociation event,
potentially leading to many fast rebind events. On a coarse meso-
scopic mesh, the products are placed in the same voxel, but we
assume that they are immediately well-mixed inside that voxel.
We thus lose spatial information and will see fewer fast rebinding
events.

With the hRDME, we want to accurately reproduce the behav-
ior of a simulation on the finest mesh size h∗. This means that
the average rebind time will be correct, that is, the distribution of
rebinding times should match the distribution of a mesoscopic sim-
ulation on the mesh size h∗ (but not necessarily the rebinding-time
distribution of a microscopic simulation on length scales smaller
than h∗).

In Fig. 1, we show that for appropriately chosen method param-
eters, simulations with the hRDME on a sequence of seven meshes,
1, 23, 43, 83, 163, 323, and 643 voxels, is able to reproduce the distri-
bution of rebinding times obtained with a pure RDME simulation
on a mesh of 643 voxels.

The reaction radius of all species is σ = 0.002 46 (so that h∗ ≈
3.2 ⋅ 2σ ≈ 1/64), the diffusion constant is D = 1.0, and the association
rate k2 = 1.0, with a domain volume of 1. Note that the dissociation
rate k1 is not important for the rebinding time distribution.

FIG. 1. The distribution obtained with the hRDME on a sequence of seven meshes
overlaps the distribution obtained with the RDME on a mesh of 643 voxels, the
finest mesh used for the hRDME simulation. The histograms are based on roughly
500 000 bimolecular reactions.

1. How to choose the constant C?
In (9), there is a constant C that controls how much the

molecules should diffuse (on average) before they are moved
between meshes. To reproduce the rebind distribution, we find that
C = 1 seems sufficient. We show this in Fig. 2. However, as we have
no method to determine the optimal value for C for the general case,
we choose C = 20 for the following numerical examples. While we
could likely choose a smaller C, and thus save even more computa-
tional time, we want to choose a C that is likely to work for almost
any system.

FIG. 2. Rebinding time distributions for the hRDME with C = 1 and C = 20, com-
pared to a pure NPM simulation on a maximally resolved mesh of 643 voxels.
The distributions overlap. While C = 1 could provide sufficient accuracy for many
problems, we choose C = 20 to ensure a large enough C for the vast majority of
problems.
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B. Fast rebinding
Consider a simple system

S1
k1Ð→ S11 + S12

k2Ð→ S2. (16)

The same system, and extensions of it, has been studied in detail
before.15,21 Capturing the mean behavior of this system relies heav-
ily on being able to capture the reaction dynamics of S11 and S12
to sufficient accuracy. To do this, the system has to be simulated
on a sufficiently fine mesh. The required resolution can be deter-
mined from the criteria given by (13) for some sufficiently small ϵ.
We showed that ϵ < 0.025 is a reasonable choice for this system and
similar systems.21

If the association reaction is fast, we will need a mesoscopic
mesh of maximum resolution. This will make the simulation very
expensive, often more expensive than a simulation with the eGFRD
algorithm. However, by using the fact that most of the system can be
simulated at a coarse level, we can speed up the simulation by several
orders of magnitude.

For the simple system in (16), we note that both the molecules
S1 and S2 can be safely simulated on the coarsest scale, so all
molecules of these species will be initialized on the coarsest mesh.
When an S1 molecule dissociates, the products S11 and S12 are placed
in the same voxel on the finest mesh. We thus resolve the possi-
ble rebind events to the highest possible accuracy, and then, if the
molecules survive for some time, we can start moving them up in
the hierarchy.

All molecules have a reaction radius σ = 0.0025 and diffuse
with diffusion constant D = 1.0. We let k1 = 1.0 and k2 = 1.0. The
coarsest mesh has 1 voxel, with 7 meshes total in the hierarchy, so
that the finest mesh has (26)3 = 643 = 262 144 voxels. The total
volume of the domain is V = 1, and we simulate the system for
a total of 5 s and sample the time series in 100 equidistant points
between 0 and 5. At time 0, we have 100 uniformly distributed S1
molecules.

We compute the error E as the sum of the difference between
the time series, where the eGFRD simulations are considered the
correct solution.

The hRDME simulation is roughly 2000 times faster than
eGFRD and 500 times faster than a pure mesoscopic simulation of
maximum resolution. The accuracy is comparable to the accuracy of

the eGFRD simulation. In Table I, we present the accuracy of pure
NPM simulations on different mesh sizes compared to the hRDME
and eGFRD, as well as the wall time per trajectory. The hRDME
outperforms both eGFRD and highly resolved mesoscopic simula-
tions, without losing too much accuracy.

A simple extension of the system (16) is to add another layer,

S1
k1

1Ð→ S11 + S12
k1

2Ð→ S2, (17)

S2
k2

1Ð→ S21 + S22
k2

2Ð→ S3. (18)

Similarly, products produced by a dissociation is placed in the
same voxel on the finest mesh, while S1, S2, and S3 can be safely
simulated on the well-mixed scale. This means that we lose spatial
information in between reactions, but this will not negatively affect
the accuracy as long as we accurately capture fast rebinding events
following dissociations. All parameters are as above, with all reaction
rates equal to 1.0.

The speed-up compared to eGFRD is in this case approxi-
mately a factor of 1800, and 400 times faster than an NPM simu-
lation on a maximally resolved mesh. In Fig. 3, we plot the time
series of both of the systems above, simulated with the hRDME
and eGFRD. There is no visible difference between the results. In
Table I, we present the error (computed as above) and wall time
per trajectory for simulations with the NPM on different mesh
sizes, compared to the hRDME and eGFRD. In Fig. 4, we plot the
probability density of the number of S2 molecules after 1.0 s of
the system (16). There is good agreement between the mean value
and the standard deviation of the hRDME method and the eGFRD
method.

C. Mitogen Activate Protein Kinase Cascade
Takahashi et al. have shown that a Mitogen Activate Protein

Kinase Cascade (MAPK) system, for some parameter values, exhibits
fine-grained dynamics that cannot be accurately resolved with a
well-mixed model.35 Hellander et al. were able to reproduce the
behavior of the system with a highly resolved RDME simulation.15

However, this required a maximally resolved mesh, in that case 643

voxels, making the simulation very slow and completely dominated
by diffusion events. At this resolution, the RDME was slower than
microscale simulations.

TABLE I. Speedup, as a multiple of the hRDME (so that a large number means a slower simulation, and a small number
is faster), and relative error. We have tabulated the results of simulations with the NPM on a single mesh with varying
mesh resolution (n3 corresponds to a simulation with the NPM on a Cartesian mesh consisting of n3 voxels), results of
the hRDME, and finally, results from simulations with the eGFRD algorithm. The estimate of the error is based on 200
trajectories.

System 83 163 323 643 hRDME eGFRD

Single (16) Speedup 8.45 30.60 134.35 528.33 1.00 2006
Error 0.1529 0.1292 0.0936 0.0031 0.0062

Double (17) Speedup 7.46 26.39 110.93 404.95 1.00 1800
Error 0.2748 0.2419 0.1684 0.0079 0.0072
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FIG. 3. In (a), we plot the time series of the system (16) and in (b) the time series of the system (17). The eGFRD results are plotted with dashed lines and hRDME with +.
For reference, we have plotted the well-mixed results in solid lines. As we can see, eGFRD results and hRDME results agree well, while there is a significant error in the
well-mixed simulation results. The average is based on 200 trajectories, sampled at 101 points from 0 to 5.

The MAPK model is given by

KK + K
k1Ð→←Ð
k2

KK − K
k3Ð→ KK∗ + Kp, (19)

KK + Kp
k4Ð→←Ð
k5

KK − Kp
k6Ð→ KK∗ + Kpp, (20)

P + Kpp
k1Ð→←Ð
k2

P − Kpp
k3Ð→ P∗ + Kp, (21)

P + Kp
k4Ð→←Ð
k5

P − Kp
k6Ð→ P∗ + K, (22)

KK∗
k7Ð→ KK, (23)

P∗
k7Ð→ P. (24)

The volume of the domain is V = 1.0, all species diffuse with dif-
fusion constant D = 1.0 and the reaction radius of all species is
σ = 0.002 459 9. The reaction rates are

FIG. 4. Density of number of S2 molecules after 1.0 s, estimated from 500 trajec-
tories. The mean is 58.8 with the hRDME algorithm and 57.9 with eGFRD. The
standard deviation is 4.84 and 4.87, respectively.

k1 = 0.044 834 6, (25)

k2 = 1.35, (26)

k3 = 1.5, (27)

k4 = 0.092 990 2, (28)

k5 = 1.73, (29)

k6 = 15.0, (30)

k7 = 693 147.18. (31)

FIG. 5. The system was simulated for 50 s. The copy numbers are the aver-
age of 200 trajectories. We simulated the system with the hRDME algorithm,
an implementation of the eGFRD algorithm, and with a microscale solver imple-
mented by the authors33 (based on the same modeling framework as eGFRD
and denoted by HL in the plot). As we can see, all simulations match rea-
sonably well, but there is a small difference compared to the eGFRD results,
while the hRDME matches the other microscale implementation (HL) very
well. We have also plotted results of pure mesoscopic simulations on dif-
ferent mesh sizes for reference, where WM is the result of a well-mixed
simulation.
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TABLE II. Speedup (defined as in Table I) for different mesh resolutions for the MAPK
system, from a well-mixed simulation (WM) to 643 voxels and the hRDME algorithm,
compared to eGFRD simulations. The speed-up of the hRDME is roughly a factor of
60 compared to eGFRD, with a wall time of 7.51 s per trajectory for hRDME. We have
also simulated the system with C = 1 in the hRDME algorithm, with a total speed-
up of 170 and no noticeable difference in accuracy compared to the simulations with
C = 20.

WM 83 163 323 643 hRDME eGFRD

Speedup 0.05 0.35 1.36 5.36 94.15 1.00 59.03

We start the simulation with 120 copies of species K, and 30 each
of species KK and species P, all initialized uniformly on the finest
mesh.

Here, we show that it is possible to simulate this system with
high accuracy, but with a great speed-up compared to GFRD simu-
lations. For simplicity, we have made no assumptions about which
species could be simulated on a coarse-grained level. It is possi-
ble that the simulations could be optimized even more by initial-
izing some molecules on a mesh that is coarser than the finest
mesh.

In Fig. 5, we plot the average time series of the species Kpp.
The hRDME simulations match the microscale simulations well.
We have also simulated the system with the NPM on different
mesh resolutions, for reference. Timing results are presented in
Table II.

V. DISCUSSION
We have shown that coupling mesoscopic simulations on dif-

ferent mesh sizes can save orders of magnitudes of computational
time while being as accurate as microscale or highly resolved meso-
scopic simulations. This methodology is also faster, and much sim-
pler to implement, than a mesoscopic-microscopic hybrid scheme.
However, there are still cases where a hierarchical mesoscopic sim-
ulation will not be sufficiently accurate. For instance, molecular
crowding effects are not captured by the mesoscopic model, while
they are captured with the microscopic hard-sphere model. The
accuracy is also still limited by h∗;15,16 this lower bound on the
mesh size is inherent to the mesoscopic model and not due to the
methodology presented herein. This implies that the hRDME can-
not always accurately reproduce a microscale simulation, in par-
ticular, in cases where a mesh size finer than that given by h∗ is
required.

Here, we have considered structured Cartesian meshes only.
While the methodology, in principle, could be extended to unstruc-
tured meshes, this is technically more difficult, and the complex
shape of the voxels would incur a larger overhead. This, in turn,
means that it is more difficult to handle complex geometries than
it is when we have pure microscopic or mesoscopic simulations, or
hybrid methods.
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